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  ARTICLE INFO  ABSTRACT 

 In this study, the axially moving string with spring-loaded middle support is discussed. The 

supports assumed as simple support on the string both ends. The intermediate support shows the 

characteristics of the spring. The string velocity is accepted as harmonically varying around a mean 

value. The Hamiltonian principle is used to find the equations of motion. The equations of motion 

become nonlinear, considering the nonlinear effects caused by string extensions. The equations of 

motion and boundary conditions are become dimensionless by nondimensionalization. 

Approximate solutions were found by using multiple time scales which is one of the perturbation 

methods. By solving the linear problem that is obtained by the first terms of the perturbation series, 

the exact natural frequencies were calculated for the different locations of the mid-support, various 

spring coefficients, and various axial velocity values. The second-order nonlinear terms reveal the 

correction terms for the linear problem. Stability analysis is carried out for cases where the velocity 

change frequency is away from zero and two times the natural frequency. Stability boundaries are 

determined for the principal parametric resonance case. 
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1. Introduction 

Because of their low bending stiffness, products such as 

paper sheets, plastic films, power transmission belts, 

magnetic tapes, and textile fibers can be modeled as an 

axially moving string. Determining the dynamic behavior 

of these systems is very important for a stable and durable 

design. Fundamental studies about the subject can be 

found in references [1-3].  Wickert investigated the 

response problem for the vibration of an axially moving 

string that resting on an elastic foundation [4]. Nayfeh et 

al. [5] investigated solutions for quadratic and cubic 

nonlinearity problem and they concluded that the direct-

perturbation method is better for these problems. Pellicano 

and Zirilli [6] have researched axially moving beam 

vibrations under nonlinear effects. The string-beam 

transition problem was investigated in [7] for axially 

moving media. An axially moving string with various non-

ideal boundary conditions under nonlinear effects are 

investigated in [8]. Pellicano analyzed the dynamic 

properties of axially moving systems to explain the 

complex dynamic behavior observed in experimental and 

numerical research [9].  

Also, Bağdatli et al. investigated continuous media as 

an axially moving beam with middle support [10]. The 

combined longitudinal-transverse nonlinear dynamics of 

an axially moving beam were described in Ghayesh et al. 

[11] and they discussed the stability of an axially moving 

beam that has middle spring support. Two dimensional 

movements of an axially moving string were described in 

[12]. Similarly, the moving string system is modeled by 

using Hamilton’s principle [13]. An experimental study of 

the nonlinear characteristics of an axially moving string 

investigated in [14]. An alternative analytical method was 

investigated in [15] for the nonlinear vibration behavior of 

conical cantilever beams. To reduce vibration for a 

nonlinear drilling system a boundary control scheme was 

studied by He [16]. A new mathematical model studied in 

[17] to determine dynamic behavior for a beam or strip 

moving in a certain axial direction along a given area. 

Chen et al. [18] studied a nonlinear equation describing the 

transverse vibration of an axially moving string with 
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constant and time-dependent length. Zhao et al. [19] 

discussed the global balancing of an axially moving 

system under the input saturation nonlinearity 

circumstances. Zhang et al. [20] present numerical 

simulations for vibration reduction. Yılmaz et al. [21] used 

vibration analysis with FFT for determine the 

misalignment fault detection. 

In this study, the effect of spring mid-support condition 

on the nonlinear vibrations of the axially moving string 

was discussed. The equations of motion were obtained by 

using the Hamiltonian principle. To solve the equations of 

motion; multiple time scale perturbation method was used. 

This method is a semi-analytical method used to obtain 

approximate solutions of systems with differential 

equations that are difficult or impossible to solve.  Natural 

frequency analysis was performed depending on spring 

constant, string velocity, and position of the center support 

and the obtained results are given in graphics. Considering 

the effects of string elongation, the system became 

nonlinear, and then, the solution of the equations of motion 

was discussed. The effects of nonlinearities on solutions 

were investigated. The different vibration structures for 

different states of the string velocity change frequency are 

examined. By making stability analysis was made and the 

stable and unstable areas were identified. 

 

2. The Equations of Motion and Solution  

Figure 1 shows the basic model of the axially moving 

string with mid-supported spring. x*, z* and t* are 

coordinate and time variables, respectively. w* is the 

transverse and u* is axial displacement, and v* is the axial 

string velocity. In this section, the equations of motion were 

derived for axially moving spring mid-supported strings. 

Both ends were defined as simple-supported.  

The Lagrangian for the system can be written the extended 

form of Hamiltonian Principle as: 

 

ℒ = 𝑇 − 𝑉 =
1

2
𝜌𝐴∫ {(𝑤̇1

∗ + 𝑤1
∗′𝑣∗)2

𝑥𝑠

0

+ (𝑣∗ + 𝑢̇1
∗ + 𝑢1

∗′𝑣∗)2}𝑑𝑥∗

+   
1

2
𝜌𝐴∫ {(𝑤̇2

∗ + 𝑤2
∗′𝑣∗)2

𝐿

𝑥𝑠

+ (𝑣∗ + 𝑢2̇
∗ + 𝑢2

∗ ′𝑣∗)2}𝑑𝑥∗

−
1

2
𝐸𝐴∫ (𝑢1

∗′ +
1

2
𝑤1
∗′2)

2

𝑑𝑥∗
𝑥𝑠

0

−
1

2
𝐸𝐴∫ (𝑢2

∗ ′ +
1

2
𝑤2
∗′2)

2

𝑑𝑥∗
𝐿

𝑥𝑠

−∫ 𝑃 (𝑢1
∗′ +

1

2
𝑤1
∗′2) 𝑑𝑥∗

𝑥𝑠

0

−∫ 𝑃 (𝑢2
∗′ +

1

2
𝑤2
∗′2) 𝑑𝑥∗

𝐿

𝑥𝑠

−∫𝑘𝑤1
∗𝑑𝑥∗@𝑥 = 𝑥𝑠  

(1) 

where ( ̇ )means time derivative (
𝑑

𝑑𝑡∗
)  and( )′  means 

coordinate variable derivative (
𝑑

𝑑𝑥∗
) . Euler-Bernoulli 

beam theory was used to obtain Equation (1). In this 

equation, the first two integrals on the right-hand side are 

kinetic energy between supports, the next four integrals are 

elastic potential energy due to elongation, and axial force 

(P), and last term is spring potential energy on mid-support 

location(xs). After using the Hamiltonian principle into 

Equation (1), that can be expressed as follows: 

𝜌𝐴(𝑤̈1,2
∗ + 2𝑤̇1,2

∗ ′𝑣∗ + 𝑤1,2
∗ ′𝑣̇∗ + 𝑤1,2

∗ ′′𝑣∗2 )

−EA (𝑢1,2
∗ ′′𝑤1,2

∗ ′ + 𝑢1,2
∗ ′𝑤1,2

∗ ′′ +
3

2
𝑤1,2
∗ ′2𝑤1,2

∗ ′′)

−P𝑤1,2
∗ ′′ = 0

  (2) 

𝜌𝐴(𝑢̈1,2
∗ + 2𝑢̇1,2

∗ ′𝑣∗ + 𝑢1,2
∗ ′𝑣̇∗ + 𝑣̇∗ + 𝑢1,2

∗ ′′𝑣∗2 )

−EA (𝑢1,2
∗ ′ +

1

2
𝑤1,2
∗ ′2)

′

= 0
  (3) 

𝜌𝐴𝑣∗2 [𝑤1
∗′(𝑥𝑠) − 𝑤2

∗′(𝑥𝑠) ] − 𝐸𝐴 [𝑢1
′ (𝑥𝑠)𝑤1

′(𝑥𝑠) +

1

2
𝑤1
′3(𝑥𝑠) − 𝑢2

′ (𝑥𝑠)𝑤2
′(𝑥𝑠) −

1

2
𝑤2
′3(𝑥𝑠)] −

𝑃[𝑤1
∗′(𝑥𝑠) − 𝑤2

∗′(𝑥𝑠) ] − 𝑘𝑤1(𝑥𝑠) = 0  

(4) 

𝜌𝐴𝑣∗2 [𝑢1
′ (𝑥𝑠) − 𝑢2

∗′(𝑥𝑠) ] − 𝐸𝐴[𝑢1
′ (𝑥𝑠) − 𝑢2

′ (𝑥𝑠) +
1

2
𝑤1
′2(𝑥𝑠) −

1

2
𝑤2
′2(𝑥𝑠)] = 0  

(5) 
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Figure 1. Axially moving string with intermediate spring support  
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Equations (2) and (3) obtained from double integrals and 

Equations (4) and (5) from single integrals. To simplify the 

future parametric analysis, let us define the dimensionless 

parameters as follows, 

𝑣𝑏
2 =

𝐸𝐴

𝑃
, 𝑣𝑘 =

𝑘𝐿

𝑃
, 𝜂 =

𝑥𝑠
∗

𝐿
, 𝑥 =

𝑥∗

𝐿
, 𝑡 =

𝑡∗

√
𝜌𝐴𝐿2

𝑃

, 

𝑤1,2 =
𝑤1,2
∗

𝐿
, 𝑢1,2 =

𝑢1,2
∗

𝐿
, 𝑣 =

𝑣∗

√
𝑃

𝜌𝐴

 

(6) 

After all the operations were done and the necessary 

simplifications were made, the equations of motion and 

boundary conditions are obtained as follows, 

(𝑤̈1,2 + 2𝑤
′̇
1,2𝑣 + 𝑤1,2

′ 𝑣̇) + 𝑤1,2
″ (𝑣2 − 1)

=
1

2
𝑣𝑏
2

[
 
 
 
 
 
 
∫𝑤1

′2𝑑𝑥

𝜂

0

+∫𝑤2
′ 2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

𝑤1,2
″  

(7) 

𝑤1(0, 𝑡) = 0, 𝑤2(1, 𝑡) = 0

𝑤1(𝜂, 𝑡) =

1

𝑣𝑘

{
  
 

  
 

1 +
1

2
𝑣𝑏
2𝜀

[
 
 
 
 
 
 
∫𝑤1

′2𝑑𝑥

𝜂

0

+∫𝑤2
′ 2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

}
  
 

  
 

(𝑤2
′(𝜂, 𝑡) − 𝑤1

′(𝜂, 𝑡))
 (8) 

The right-hand side of the Equation (7) represents the 

nonlinear terms from string elongation. 𝑤̈1,2  represents 

local, 2𝑤̇′
1,2𝑣  represents Coriolis, and 𝑣𝑏

2 𝑤″
1,2  is 

represents centripetal acceleration.  is the location of 

center spring. The displacement in Equations (7) and (8) 

can be assumed as 𝑤1,2 = √𝜀 𝑦1,2 (𝜀<<1) to ensure that the 

displacement due to nonlinear effects appear in the higher-

order in perturbation method. Also, the string velocity can 

be assumed as varying harmonically around a fixed 

average value, 

𝑣 = 𝑣0 + 𝜀𝑣1sin𝛺𝑡 (9) 

Thus, the equations of motion and boundary conditions 

are, 

𝑦̈1,2 + 2𝑦̇1,2
′ 𝑣0 + 2𝑦̇1,2

′ 𝜀𝑣1sin𝛺𝑡 + 𝑦1,2
′ 𝜀𝑣1𝛺cos𝛺𝑡

+(𝑣0
2 + 𝜀2𝑣1

2sin2𝛺𝑡 + 2𝜀𝑣0𝑣1sin𝛺𝑡 − 1)𝑦1,2
″

=
1

2
𝑣𝑏
2𝜀 [∫𝑦1

′2𝑑𝑥

𝜂

0

+∫𝑦2
′ 2𝑑𝑥

1

𝜂

] 𝑦1,2
″

 (10) 

𝑦1(0, 𝑡) = 0, 𝑦2(1, 𝑡) = 0

𝑦1(𝜂, 𝑡) =

1

𝑣𝑘

{
  
 

  
 

1 +
1

2
𝑣𝑏
2𝜀

[
 
 
 
 
 
 
∫𝑦1

′ 2𝑑𝑥

𝜂

0

+∫𝑦2
′ 2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

}
  
 

  
 

(𝑦2
′ (𝜂, 𝑡) − 𝑦1

′(𝜂, 𝑡))
 (11) 

 

3. Perturbation Analysis  

For approximate solutions of Equation (10), multiple scales 

perturbation method was used. The displacement functions 

can be expanded as, 

𝑦1(𝑥, 𝑡; 𝜀) = 𝑦11(𝑥, 𝑇0, 𝑇1) + 𝜀𝑦12(𝑥, 𝑇0, 𝑇1) + ⋯ (12) 

𝑦2(𝑥, 𝑡; 𝜀) = 𝑦21(𝑥, 𝑇0, 𝑇1) + 𝜀𝑦22(𝑥, 𝑇0, 𝑇1) + ⋯ (13) 

 

where T0=t is the slow, T1=t is the fast time scales, and time 

derivatives can be explained as follows: 

𝑑

𝑑𝑡
= 𝐷0 + 𝜀𝐷1 +⋯ ,

𝑑2

𝑑𝑡2
= 𝐷0

2 + 2𝜀𝐷0𝐷1 +⋯ (14) 

where 𝐷𝑛 = 𝑑/𝑑𝑇𝑛 Substituting Equations (12), (13), and 

(14) into Equation (10) yields, 

The left-hand side (0 < 𝑥𝑠 < 𝜂) 

 

(𝐷0
2 + 2𝜀𝐷0𝐷1)(𝑦11 + 𝜀𝑦12)

+2𝑣0(𝐷0 + 𝜀𝐷1)(𝑦11
′ + 𝜀𝑦12

′ )

+(𝑣0
2 − 1)(𝑦11

″ + 𝜀𝑦12
″ )

+𝜀(2𝑣1sin𝛺𝑇0(𝐷0 + 𝜀𝐷1)(𝑦11
′ + 𝜀𝑦12

′ )

+2𝑣0𝑣1sin𝛺𝑇0(𝑦11
″ + 𝜀𝑦12

″ )

+𝑣1𝛺cos𝛺𝑇0(𝑦11
′ + 𝜀𝑦12

′ ))

+𝜀2𝑣1
2sin2𝛺𝑇0(𝑦11

″ + 𝜀𝑦12
″ )

=
1

2
𝑣𝑏
2𝜀

[
 
 
 
 
 
 
∫(𝑦11

′ + 𝜀𝑦12
′ )2𝑑𝑥

𝜂

0

+∫(𝑦21
′ + 𝜀𝑦22

′ )2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

(𝑦11
″ + 𝜀𝑦12

″ )

 (15) 

 

The right-hand side (𝜂 < 𝑥𝑠 < 1) 

 



 

 

 

(𝐷0
2 + 2𝜀𝐷0𝐷1)(𝑦21 + 𝜀𝑦22)

+2𝑣0(𝐷0 + 𝜀𝐷1)(𝑦21
′ + 𝜀𝑦22

′ )

+(𝑣0
2 − 1)(𝑦21

″ + 𝜀𝑦22
″ )

+𝜀(2𝑣1sin𝛺𝑇0(𝐷0 + 𝜀𝐷1)(𝑦21
′ + 𝜀𝑦22

′ )

+2𝑣0𝑣1sin𝛺𝑇0(𝑦21
″ + 𝜀𝑦22

″ )

+𝑣1𝛺cos𝛺𝑇0(𝑦21
′ + 𝜀𝑦22

′ ))

+𝜀2𝑣1
2sin2𝛺𝑇0(𝑦21

″ + 𝜀𝑦22
″ )

=
1

2
𝑣𝑏
2𝜀

[
 
 
 
 
 
 
∫(𝑦11

′ + 𝜀𝑦12
′ )2𝑑𝑥

𝜂

0

+∫(𝑦21
′ + 𝜀𝑦22

′ )2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

(𝑦21
″ + 𝜀𝑦22

″ )

 (16) 

If we make order arrangement to these equations and 

neglect the higher-order terms;  

 

Order (1) 

The equations of motion, 

𝐷0
2𝑦11 + 2𝑣0𝐷0𝑦11

′ + (𝑣0
2 − 1)𝑦11

″ = 0

𝐷0
2𝑦21 + 2𝑣0𝐷0𝑦21

′ + (𝑣0
2 − 1)𝑦21

″ = 0
 (17) 

And boundary conditions, 

𝑦12(0, 𝑡) = 0, 𝑦22(1, 𝑡) = 0, 𝑦12(𝜂, 𝑡) = 𝑦22(𝜂, 𝑡),

𝑦11(𝜂, 𝑡) =
1

𝑣𝑘
[𝑦21
′ (𝜂, 𝑡) − 𝑦11

′ (𝜂, 𝑡)]
 (18) 

Order (𝜀) 

The equations of motion, 

𝐷0
2𝑦12 + 2𝑣0𝐷0𝑦12

′ + (𝑣0
2 − 1)𝑦12

″

= −2𝐷0𝐷1𝑦11 − 2𝑣0𝐷1𝑦11
′ − 2𝑣1sin𝛺𝑇0𝐷0𝑦11

′

−2𝑣0𝑣1sin𝛺𝑇0𝑦11
″ − 𝑣1𝛺cos𝛺𝑇0𝑦11

′

+
1

2
𝑣𝑏
2 [∫𝑦11

′ 2
𝑑𝑥

𝜂

0

+∫𝑦21
′ 2
𝑑𝑥

1

𝜂

] 𝑦11
″

𝐷0
2𝑦22 + 2𝑣0𝐷0𝑦22

′ + (𝑣0
2 − 1)𝑦22

″

= −2𝐷0𝐷1𝑦21 − 2𝑣0𝐷1𝑦21
′ − 2𝑣1sin𝛺𝑇0𝐷0𝑦21

′

−2𝑣0𝑣1sin𝛺𝑇0𝑦21
″ − 𝑣1𝛺cos𝛺𝑇0𝑦21

′

+
1

2
𝑣𝑏
2 [∫𝑦11

′ 2
𝑑𝑥

𝜂

0

+∫𝑦21
′ 2
𝑑𝑥

1

𝜂

] 𝑦21
″

 (19) 

 

And boundary conditions, 

 

𝑦12(0, 𝑡) = 0, 𝑦22(1, 𝑡) = 0,
𝑦12(𝜂, 𝑡) = 𝑦22(𝜂, 𝑡),

𝑦12(𝜂, 𝑡) =
1

2
𝑣𝑏
2

[
 
 
 
 
 
 
∫𝑦1

′ 2𝑑𝑥

𝜂

0

+∫𝑦2
′ 2𝑑𝑥

1

𝜂 ]
 
 
 
 
 
 

𝑦11(𝜂, 𝑡)

 (20) 

 

We can get the solution function for the linear order (O(1)), 

 

𝑦11(𝑥, 𝑇0, 𝑇1; 𝜀) = 𝐴𝑛(𝑇1)𝑒
𝑖𝜔𝑛𝑇0𝑌1(𝑥)

+𝐴̅𝑛(𝑇1)𝑒
−𝑖𝜔𝑛𝑇0𝑌1̅(𝑥)

𝑦21(𝑥, 𝑇0, 𝑇1; 𝜀) = 𝐴𝑛(𝑇1)𝑒
𝑖𝜔𝑛𝑇0𝑌2(𝑥)

+𝐴̅𝑛(𝑇1)𝑒
−𝑖𝜔𝑛𝑇0𝑌2̅(𝑥)

 (21) 

 

Substituting Equations (21) into Equation (17), one obtains, 

 

(𝑣0
2 − 1)𝑌1′′ + 2𝑖𝑣0𝜔𝑛𝑌1′ − 𝜔𝑛

2𝑌1 = 0

(𝑣0
2 − 1)𝑌2′′ + 2𝑖𝑣0𝜔𝑛𝑌2′ − 𝜔𝑛

2𝑌2 = 0
 (22) 

and boundary conditions, 

𝑌1(0, 𝑡) = 0, 𝑌2(1, 𝑡) = 0, 𝑌1(𝜂, 𝑡) = 𝑌2(𝜂, 𝑡),

𝑌1(𝜂, 𝑡) =
1

𝑣𝑘
[𝑌2

′(𝜂, 𝑡) − 𝑌1
′(𝜂, 𝑡))]

 (23) 

 

For the approximate solution, the following functions are 

proposed, 
 

𝑌1(𝑥) = 𝑐1𝑒
𝛽1𝑥 + 𝑐2𝑒

𝛽2𝑥

𝑌2(𝑥) = 𝑐3𝑒
𝛽1𝑥 + 𝑐4𝑒

𝛽2𝑥
 (24) 

By applying boundary conditions, a matrix is created with 

obtained four equations. By taking the determinant of this 

matrix, the frequency equation obtained in a general form 

as follows. 

 

1

2
{−2(𝑒𝜂𝛽1 − 𝑒𝜂𝛽2)(𝑒𝜂𝛽1+𝛽2 − 𝑒𝛽1+𝜂𝛽2)𝑣𝑘

+ 𝑒𝜂(𝛽1+𝛽2)(𝑒𝛽1 − 𝑒𝛽2)(𝛽1 − 𝛽2)}

= 0 

(25) 

The natural frequencies against mean velocity (𝑣0 ) and 

spring coefficient (𝑣𝑘) are given in the following figures. 

Figure 2 was obtained for the middle support at the µ =0.1 

location. The variations of 𝑣𝑘  between 0 and 30, and 𝑣0  

between 0 and 1 were examined. Natural frequencies drop 

to zero while mean velocity increasing. The natural 

frequencies increase directly proportional to 𝑣𝑘. The effect 

of the spring coefficient on the natural frequencies 

decreases as the mean velocity increases. 
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a 

 

b 

 

c 
 

d 

 

e 

The first natural frequencies for µ =0.1, µ = 0.3 and µ = 

0.5 locations compared in Figure 3. As expected µ =0.1 

location has the smallest natural frequency values, and µ = 

0.5 location has the highest. When 𝑣𝑘 = 0 all 3 locations 

have the same values. While 𝑣0 increases the effect of the 

spring coefficient on the natural frequency values 

decreases, again. In Figure 2 all five natural frequency 

shapes are similar, but for µ = 0.3 and µ = 0.5 positions  𝑣𝑘 

has more effect on natural frequency.

 

a 

 

b 

195 

Figure 2. Variation of the natural frequency values with axial velocity and spring coefficient   

(µ =0.1 location) (a; first mode, b; second mode, c; third mode, d; forth mode, e; fifth mode)  

Figure 3. Comparison of the first mode natural frequency values for different µ locations 

(a; left-hand side, b; right-hand side) 



 

 

 

We can get the solution function for the linear order (O(1)); 

𝑦12(𝑥, 𝑇0, 𝑇1) = 𝜙1(𝑥, 𝑇1)𝑒
𝑖𝜔𝑛𝑇0

+𝑊1(𝑥, 𝑇0, 𝑇1) + 𝑐. 𝑐.

𝑦22(𝑥, 𝑇0, 𝑇1) = 𝜙2(𝑥, 𝑇1)𝑒
𝑖𝜔𝑛𝑇0

+𝑊2(𝑥, 𝑇0, 𝑇1) + 𝑐. 𝑐.

 (26) 

 

The first term ( ) refers to the secular terms of the function, 

the second term ( W ) to the non-secular terms of the 

function, and last term (c.c.) means complex conjugate.  

 

cos𝛺𝑇0 =
𝑒𝑖𝛺𝑇0 + 𝑒−𝑖𝛺𝑇0

2

sin𝛺𝑇0 =
𝑒𝑖𝛺𝑇0 − 𝑒−𝑖𝛺𝑇0

2𝑖

 (27) 

 

Following equations are obtained by doing above 

trigonometric transformations and write them together 

with the proposed solutions to the nonlinear order 

equations, 

 

𝑒𝑖𝜔𝑛𝑇0[−𝜔𝑛
2𝜙1 + 2𝑖𝑣0𝜔𝑛𝜙

′
1
+ (𝑣0

2 − 1)𝜙″
1
] =

−2(𝑖𝜔𝑛𝑌1 + 𝑣0𝑌
′
1)𝐴

′𝑒𝑖𝜔𝑛𝑇0

+𝑣1 (−𝜔𝑛𝑌1
′ −

𝛺

2
𝑌1
′ + 𝑖𝑣0𝑌1

′′)𝐴𝑒𝑖(𝛺+𝜔𝑛)𝑇0

+𝑣1(𝜔𝑛𝑌1̅′ −
𝛺

2
𝑌1̅′ + 𝑖𝑣0𝑌1̅′′)𝐴̅𝑒

𝑖(𝛺−𝜔𝑛)𝑇0

+
1

2
vb

[
 
 
 
 
 
 
2𝑌1′′(∫ 𝑌1′𝑌1̅′𝑑𝑥

𝜂

0

+∫𝑌2′𝑌2̅′𝑑𝑥)

1

𝜂

+𝑌1̅′′(∫ 𝑌1
′2𝑑𝑥

𝜂

0

+∫𝑌2
′2𝑑𝑥)

1

𝜂 ]
 
 
 
 
 
 

𝐴2𝐴̅𝑒𝑖𝜔𝑛𝑇0

+𝑁. 𝑆. 𝑇. +𝑐. 𝑐.

 (28) 

𝑒𝑖𝜔𝑛𝑇0[−𝜔𝑛
2𝜙2 + 2𝑖𝑣0𝜔𝑛𝜙

′
2
+ (𝑣0

2 − 1)𝜙″
2
] =

−2(𝑖𝜔𝑛𝑌2 + 𝑣0𝑌
′
2)𝐴

′𝑒𝑖𝜔𝑛𝑇0

+𝑣1 (−𝜔𝑛𝑌2
′ −

𝛺

2
𝑌2
′ + 𝑖𝑣0𝑌2

′′)𝐴𝑒𝑖(𝛺+𝜔𝑛)𝑇0

+𝑣1(𝜔𝑛𝑌2̅′ −
𝛺

2
𝑌2̅′ + 𝑖𝑣0𝑌2̅′′)𝐴̅𝑒

𝑖(𝛺−𝜔𝑛)𝑇0

+
1

2
𝑣𝑏
2

[
 
 
 
 
 
 
2𝑌2′′(∫𝑌1′𝑌1̅′𝑑𝑥

𝜂

0

+∫𝑌2′𝑌2̅′𝑑𝑥)

1

𝜂

+𝑌2̅′′(∫ 𝑌1
′2𝑑𝑥

𝜂

0

+∫𝑌2
′2𝑑𝑥)

1

𝜂 ]
 
 
 
 
 
 

𝐴2𝐴̅𝑒𝑖𝜔𝑛𝑇0

+𝑁. 𝑆. 𝑇. +𝑐. 𝑐.

 (29) 

 

𝜙1(0) = 0, 𝜙2(1) = 0,
𝜙1(𝜂) = 𝜙2(𝜂)

𝜙1(𝜂) =
1

2
𝑣𝑏
2

[
 
 
 
 
 
 
2𝑌1(𝜂)(∫𝑌1

′𝑌1̅̅ ̅′𝑑𝑥

𝜂

0

+∫𝑌2′𝑌2̅′𝑑𝑥

1

𝜂

)

+𝑌1̅(𝜂)(∫𝑌1
′2𝑑𝑥

𝜂

0

+∫𝑌2
′2𝑑𝑥

1

𝜂

)

]
 
 
 
 
 
 

𝐴2𝐴̅

 (30) 

 

The different vibration structures for different states of the 

string velocity change frequency () are examined 

separately below. 

 

i) 𝛺; away from 2𝜔𝑛 and 0: 

In this case, the solvability condition is obtained from 

Equations (28) and (29) as follows. 

 

𝐷1𝐴 − 𝑘3𝐴
2𝐴̅ = 0 (31) 

The amplitude A can be defined as follows, 

 

𝐴 =
1

2
𝑎𝑛𝑒

𝑖𝜃

 

where k3 is; 

𝑘3 =
1

4
𝑣𝑏
2

(

 
 

2(∫ 𝑌1′𝑌1̅′𝑑𝑥 + ∫ 𝑌2′𝑌2̅′𝑑𝑥
1

𝜂

𝜂

0

) (∫ 𝑌1
′′𝑌1̅𝑑𝑥

𝜂

0
+ ∫ 𝑌2

′′𝑌2̅𝑑𝑥
1

𝜂
)

𝑖𝜔𝑛 (∫ 𝑌1𝑌1̅𝑑𝑥 + ∫ 𝑌2𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

) + 𝑣0 (∫ 𝑌1′𝑌1̅𝑑𝑥 + ∫ 𝑌2′𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

)

+

(∫ 𝑌1
′2𝑑𝑥 + ∫ 𝑌2

′2𝑑𝑥
1

𝜂

𝜂

0

) (∫ 𝑌1̅
′′
𝑌1̅𝑑𝑥

𝜂

0
+ ∫ 𝑌2̅

′′
𝑌2̅𝑑𝑥

1

𝜂
)

𝑖𝜔𝑛 (∫ 𝑌1𝑌1̅𝑑𝑥 + ∫ 𝑌2𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

) + 𝑣0 (∫ 𝑌1′𝑌1̅𝑑𝑥 + ∫ 𝑌2′𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

)
)
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 (32) 

(33) 

 

Inserting Equation (32) into Equation (31) and separate the 

real and imaginary parts. 
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𝑎𝑛′ = 0

𝜃′ =
1

4
𝑘3𝐼𝑎𝑛

2
 (34) 

Hence, 

𝑎𝑛 = 𝑎0𝑛 (a is continuous)

𝜃 =
1

4
𝑘3𝐼𝑎0𝑛

2 𝑇1 + 𝜃0
 (35) 

The real part of k3 is small enough to be neglected 

compared to its imaginary part. 

𝑘3 = 𝑖𝑘3𝐼 (36) 

Nonlinear frequency equation from here, 

(𝜔𝑛)𝑛𝑙 = 𝜔𝑛 + 𝜀
1

4
𝑘3𝐼𝑎0𝑛

2  (37) 

The relationship between nonlinear natural frequency and 

amplitudes is shown in Figures. 4 to 7. The effect of the 

axial mean velocity for the first mode is shown in Figs 6 

and 7 for µ = 0.3 and µ = 0.5, respectively. These 

comparisons are again shown for 𝑣𝑘 = 1 in Fig. 8 and for 

the second mode in Fig. 9. Nonlinearities increase directly 

proportional to mean velocity. When 𝑣𝑘  increase, 

nonlinearity decreases. When the mid-spring location is at 

µ = 0.5, nonlinearity is increase according to µ = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

ii) Principal parametric resonance: 

 

In this case, the velocity change frequency can be defined 

as follows; 

𝛺 = 2𝜔𝑛 + 𝜀𝜎 (38) 

From Equations. (28) and (29) solubility condition is 

obtained as follows 

𝐷1𝐴 + 𝑘0𝐴̅𝑒
𝑖𝜎𝑇1 − 𝑘3𝐴

2𝐴̅ = 0 (39) 

By inserting the amplitude definition in Equation (39) and 

divide it into real and imaginary parts. 

𝑎′𝑛 = 𝑎𝑛(𝑘0𝐼sin𝛾𝑛 − 𝑘0𝑅cos𝛾𝑛)

𝛾′
𝑛
= 𝜎 + 2(𝑘0𝑅sin𝛾𝑛 + 𝑘0𝐼cos𝛾𝑛) −

1

2
𝑘3𝐼𝑎𝑛

2

𝑘0 = 𝑘0𝑅 + 𝑖𝑘0𝐼 ,  𝛾𝑛 = 𝜎𝑇1 − 2𝜃𝑛

For stable regime  𝑎𝑛
′  and 𝛾′

𝑛
 can be assumed zero and 

hence; 

𝜎1 =
1

2
𝑘3𝐼𝑎𝑛

2 − 2√𝑘0𝑅
2 + 𝑘0𝐼

2

𝜎2 =
1

2
𝑘3𝐼𝑎𝑛

2 + 2√𝑘0𝑅
2 + 𝑘0𝐼

2
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 (40) 

 (41) 

 (42) 

Figure 4. Nonlinear frequency-amplitude variation for axial mean

 velocity (mode 1). 

Figure 5. Nonlinear frequency-amplitude variation for axial mean 

velocity (mode 1). 

Figure 6. Nonlinear frequency-amplitude variation for axial mean

 velocity (mode 1). 

Figure 7. Variation of the amplitude with nonlinear frequency

 values for axial velocity (mode 2). 



 

 

 

where k0 is; 

𝑘0 =
1

4
𝑣1

(𝛺 − 2𝜔𝑛) (∫ 𝑌1̅
′
𝑌1̅𝑑𝑥 + ∫ 𝑌2̅

′
𝑌2̅𝑑𝑥

1

𝜂

𝜂

0

) − 2𝑖𝑣0 (∫ 𝑌1̅
′′
𝑌1̅𝑑𝑥 + ∫ 𝑌2̅

′′
𝑌2̅𝑑𝑥)

1

𝜂

𝜂

0

)

𝑖𝜔𝑛 (∫ 𝑌1𝑌1̅𝑑𝑥 + ∫ 𝑌2𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

) + 𝑣0 (∫ 𝑌1′𝑌1̅𝑑𝑥 + ∫ 𝑌2′𝑌2̅𝑑𝑥
1

𝜂

𝜂

0

 

We can write the complex amplitude in the form below 

(Equation (44)), inserting it into Equation (39) and divide 

it into real and virtual parts gives Equations (45) and (46); 

𝐴𝑛 =
1

2
(𝑝𝑛 + 𝑖𝑞𝑛)𝑒

𝑖(𝜎𝑇1/2) (44) 

𝑝′
𝑛
= −𝑘0𝑅𝑝𝑛 + (

𝜎

2
− 𝑘0𝐼)𝑞𝑛 −

1

4
𝑘3𝐼𝑞𝑛(𝑝𝑛

2 + 𝑞𝑛
2)

= 𝐹1(𝑝𝑛 , 𝑞𝑛) 
(45) 

𝑞′
𝑛
= 𝑘0𝑅𝑞𝑛 − (

𝜎

2
+ 𝑘0𝐼)𝑝𝑛 +

1

4
𝑘3𝐼𝑝𝑛(𝑝𝑛

2 + 𝑞𝑛
2)

= 𝐹2(𝑝𝑛 , 𝑞𝑛) 
(46) 

 

Hence the Jacobian matrix. 

 

[
𝜕𝐹1/𝜕𝑝𝑛 𝜕𝐹1/𝜕𝑞𝑛
𝜕𝐹2/𝜕𝑝𝑛 𝜕𝐹2/𝜕𝑞𝑛

]
𝑝𝑛=𝑞𝑛=0

 (47) 

 

and eigenvalues. 

 

𝜆1,2 = ±√𝑘0𝑅
2 + 𝑘0𝐼

2 −
𝜎2

4
 (48) 

 

From here, the stability limits yields;  

 

𝜎 > 2√𝑘0𝑅
2 + 𝑘0𝐼

2 , 𝜎 < −2√𝑘0𝑅
2 + 𝑘0𝐼

2  (49) 

 

 

 

 

 

In Figure 10, the changes of amplitudes depending on the 

detuning parameter are given comparatively. The unstable 

region increases with the spring velocity increase. µ = 0.5 

has a smaller unstable region according to µ = 0.1 for low 

spring velocities but while spring velocity increasing this 

unstable region increases much more according to case µ 

= 0.1.  

 

4. Conclusions 

The transverse vibrations of an axially moving string with 

spring-loaded middle support are discussed. From this study, 

we can see there is no perfect design for all conditions. The 

design of Spring mid-supported string must be made 

specifically for the location where it will be used, and 

selections should be made according to the following criteria.   

• Increasing rigidity of the spring coefficient also 

increases the natural frequency of the string. 

• While the string velocity increasing, the natural 

frequency decrease. 

• When mid-support moves right, natural frequencies 

increase more significantly with the rigidity of the 

spring coefficient increase until center location. 

• When v_k increase, nonlinearity decreases.  

• When the mid-spring location is at µ = 0.5, 

nonlinearity is increase according to µ = 0.3. 

• The unstable region increases with the velocity 

increase.  

• The unstable region is smaller for µ = 0.5 according 

to µ = 0.1 for smaller low spring velocities but while 

spring velocity increasing this unstable region 

increases much more for µ = 0.5. 
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Nomenclature 

ℒ : Lagrangian. 

T : Kinetic energy. 

V : Potential energy. 

L : String Length. 
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 (43) 

)

Figure 8. Variation of the aptitude with detuning parameter for 

different µ locations and axial velocity. 
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ρ : Constant density. 

A : Cross-section of string. 

E : Young’s modulus. 

𝑣𝑏 : Longitudinal rigidity. 

𝑣𝑘 : The effect of the rigidity of the spring coefficient. 

N.S.T. : Non-secular terms. 

𝜎 : The detuning parameter. 
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