Adryaman University Journal of Science

https://dergipark.org.tr/en/pub/adyujsci

Inverse Spectral Problems for Second Order Difference Equations with

Generalized Function Potentials by aid of Parseval Formula

Bayram BALA ${ }^{1, *}$
${ }^{1}$ Harran University, Department of Mathematics, Şanlurrfa, Turkey. bbala@harran.edu.tr, ORCID: 0000-0001-6515-6039

[^0]
Abstract

In the present study we are investigated inverse spectral problems for spectral analysis and two spectra of matrix J by using equality which is equivalance Parseval formula. The matrix J is $N \times N$ tridiagonal almost-symmetric matrix. The mean of almost-symmetric is the entries above and below the main diagonal are the same except the entries a_{M} and c_{M}.

Keywords: Parseval formula; Spectral analysis; Two spectra.

Parseval Formülü yardımıyla Genelleşmiş Fonksiyon Katsayılı İkinci Mertebeden Fark Denklemleri için Ters Spektral Problemler

Öz

Bu çalışmada, Parseval formülü ile eşdeğer olan eşitlik kullanılarak J matrisinin spektral analizine göre ve iki spektrumuna göre ters spektral problemleri incelenmiştir. $J, N \times N$ tipinde hemen hemen simetrik üçköşegensel matristir. Hemen hemen simetriklik, a_{M} ve c_{M} elemanları dışında matrisin köşegeninin altında ve üstündeki elemanları eşit olmasıdır.

Anahtar Kelimeler: Parseval formülü; Spektral analiz; İki spektrum.

1. Introduction

Consider the second order difference equation

$$
\begin{equation*}
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda \rho_{n} y_{n}, \quad a_{-1}=c_{N-1}=1, n \in\{0,1, \ldots, N-1\}, \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
y_{-1}=y_{N}=0 \tag{2}
\end{equation*}
$$

where $y=\left\{y_{n}\right\}_{n=0}^{N-1}$ is column vector which is solution of the second order difference equation, ρ_{n} is constant

$$
\rho_{n}=\left\{\begin{array}{ll}
1, & 0 \leq n \leq M \tag{3}\\
\alpha, & M<n \leq N-1
\end{array}, \alpha \in \mathbb{R}^{+}-\{1\}\right.
$$

and $a_{n}, b_{n} \in \mathbb{R}, \quad a_{n}>0$ are coefficients of Eqn. (1),

$$
\begin{array}{ll}
c_{n}=a_{n} / \alpha, & n \in\{M, M+1, \ldots, N-2\} \tag{4}\\
d_{n}=b_{n} / \alpha, & n \in\{M+1, M+2, \ldots, N-1\}
\end{array}
$$

Now, we can write the Eqn. (1) by definition of ρ_{n}

$$
\begin{cases}a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda y_{n}, & n \in\{0,1, \ldots, M\} \\ c_{n-1} y_{n-1}+d_{n} y_{n}+c_{n} y_{n+1}=\lambda y_{n}, & n \in\{M+1, M+2, \ldots, N-1\}\end{cases}
$$

J is $N \times N$ tridiagonal almost-symmetric matrix and the entries of J are the coefficients of Eqn. (1).

$$
J=\left[\begin{array}{cccccccccccc}
b_{0} & a_{0} & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
a_{0} & b_{1} & a_{1} & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & a_{1} & b_{2} & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & b_{M-1} & a_{M-1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & a_{M-1} & b_{M} & a_{M} & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & c_{M} & d_{M+1} & c_{M+1} & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & c_{M+1} & d_{M+2} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & d_{N-3} & c_{N-3} & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & c_{N-3} & d_{N-2} & c_{N-2} \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & c_{N-2} & d_{N-1}
\end{array}\right] .
$$

So, the eigenvalue problem $J y=\lambda y$ is equivalent problem (1)-(3) which is discrete form Sturm-Liouville problem with discontinuous coefficients

$$
\begin{align*}
\frac{d}{d x}\left[p(x) \frac{d}{d x} y(x)\right]+q(x) y(x) & =\lambda \rho(x) y(x), \quad x \in[a, b] \tag{5}\\
y(a)=y(b) & =0
\end{align*}
$$

where $\rho(x)$ is a piecewise function

$$
\rho(x)=\left\{\begin{array}{ll}
1, & a \leq x \leq c \\
\alpha^{2}, & \mathrm{c}<x \leq b
\end{array} \quad \alpha^{2} \neq 1 .\right.
$$

H. Hochstadt made significant contributions to the development of the inverse problem for second order difference equations. He studied inverse problem for Jacobi matrices in [1-4]. Later, G. Guseinov has pioneered for inverse problem of infinite symmetric tridiagonal matrices. He considered different kinds of inverse spectral problems for second order difference equation; such as the inverse spectral problems of spectral analysis for infinite Jacobi matrices in [5], the inverse spectral problems for the infinite non-self adjoint Jacobi matrices from generalized spectral function in [6, 7], and the inverse spectral problems for same matrices from spectral data and two spectra in [8-12]. The inverse spectral problem for discrete form of Sturm-Liouville problem with continuous coefficients has been studied in [13] and the inverse spectral problem with spectral parameter in the initial conditions has been studied by M. Manafov in [14]. The eigenvalues and eigenfunctions and the inverse problem for Sturm-Liouville operator with discontinuous coefficients which is the same problem given by (5) are investigated by E. Akhmedova and H .

Huseynov in [15, 16], respectively. Bala et al. are studied inverse spectral problem for almost symmetric tridiagonal matrices from generalized spectral function in [17] and they examined inverse spectral problems for same matrices from spectral data and two spectra in [18]. Finite dimensional inverse problems are investigated by H. Huseynov in [19].

Also, Parseval equality of discrete Sturm-Liouville equation with periodic generalized function potentials is studied by Manafov et al. in [20]. At the same time a new approach for higher-order difference equations and eigenvalue problems is examined by Bas and Ozarslan in [21].

The goal of this article is to study inverse spectral problems of the problem (1)-(3) for spectral analysis and two spectra by using Parseval formula.

2. Direct Problem for Spectral Analysis

The matrix J has N number eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ and N number eigenvectors $v_{1}, v_{2}, \ldots, v_{N}$, which form an orthonormalized basis. Assume that the eigenvalues are real. We bring to mind the algorithm of structure for the matrix J eigenvalues and eigenvectors.

Let $P_{n}(\lambda)$ be a solution of Eqn. (1)

$$
\begin{equation*}
a_{n-1} P_{n-1}(\lambda)+b_{n} P_{n}(\lambda)+a_{n} P_{n+1}(\lambda)=\lambda \rho_{n} P_{n}(\lambda), \quad n \in\{0,1, \ldots, N-1\} \tag{6}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
P_{-1}(\lambda)=0, \quad P_{0}(\lambda)=1 \tag{7}
\end{equation*}
$$

and the degree of polynomial $P_{n}(\lambda)$ is n.

Lemma 1. The following equality holds:

$$
\operatorname{det}(J-\lambda I)=(-1)^{N} a_{0} a_{1} \ldots a_{M} c_{M+1} \ldots c_{N-1} P_{N}(\lambda) .
$$

Proof. See [17].
According to Lemma 1, the roots of the equation $P_{n}(\lambda)$ are equal the eigenvalues of J, and eigenvectors corresponding eigenvalues $\lambda_{k}, k=\overline{1, N}$ will be

$$
\mathfrak{R}\left(\lambda_{k}\right)=\left(P_{0}\left(\lambda_{k}\right), P_{1}\left(\lambda_{k}\right), \ldots, P_{N-1}\left(\lambda_{k}\right)\right)^{T}
$$

Assuming that $v_{k}=\frac{\mathfrak{R}\left(\lambda_{k}\right)}{\sqrt{\beta_{k}}}$, where $\beta_{k}=\sum_{j=0}^{N-1} P_{j}^{2}\left(\lambda_{k}\right)$. Thus, we have the complete orthonormalized system of eigenvectors of the matrix J. The numbers β_{k} are called normalized numbers of the problem (1)-(3).

Lemma 2. Eigenvalues of matrix J are different.

Proof. Because of eigenvalues $\lambda_{k}, k=1,2, \ldots, N$ are the roots of polynomial $P_{N}(\lambda)$, we must show that $P_{N}^{\prime}\left(\lambda_{k}\right) \neq 0$. Firstly, take the derivative equation Eqn. (6) by λ, we have

$$
\begin{equation*}
a_{n-1} P_{n-1}^{\prime}(\lambda)+b_{n} P_{n}^{\prime}(\lambda)+a_{n} P_{n+1}^{\prime}(\lambda)=\lambda \rho_{n} P_{n}^{\prime}(\lambda)+\rho_{n} P_{n}(\lambda) . \tag{8}
\end{equation*}
$$

Now, if the Eqn. (8) is multiplied by $P_{n}(\lambda)$ and the Eqn. (6) is multiplied by $P_{n}^{\prime}(\lambda)$, the second result is substracted from the first, for $n \in\{0,1, \ldots, N-1\}$ we obtain

$$
\begin{equation*}
a_{n-1}\left(P_{n-1}^{\prime}(\lambda) P_{n}(\lambda)-P_{n}^{\prime}(\lambda) P_{n-1}(\lambda)\right)-a_{n}\left(P_{n}^{\prime}(\lambda) P_{n+1}(\lambda)-P_{n+1}^{\prime}(\lambda) P_{n}(\lambda)\right)=\rho_{n} P_{n}^{2}(\lambda) \tag{9}
\end{equation*}
$$

For $\lambda=\lambda_{k}$ and summing n from 0 to $N-1$, pay attention to Eqn. (7) and $P_{N}\left(\lambda_{k}\right)=0$ we have

$$
\begin{equation*}
a_{N-1} P_{N}^{\prime}\left(\lambda_{k}\right) P_{N-1}\left(\lambda_{k}\right)=\sum_{j=0}^{M} P_{j}^{2}(\lambda)+\sum_{j=M+1}^{N-1} \alpha P_{j}^{2}(\lambda) . \tag{10}
\end{equation*}
$$

As a result, $P_{N}^{\prime}\left(\lambda_{k}\right) \neq 0$.

According to Lemma 2, we can assume that $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}$. The following Lemma is about Parseval equality.

Lemma 3. The expansion formula which is equivalent Parceval equality, can be written as below:

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\eta}{\beta_{j}} P_{m}\left(\lambda_{j}\right) P_{n}\left(\lambda_{j}\right)=\delta_{m n}, \quad m, n=\overline{0, N-1}, \tag{11}
\end{equation*}
$$

where η is defined by

$$
\eta= \begin{cases}1, & m \text { or } n \leq M \tag{12}\\ \alpha, & m \text { or } n>M\end{cases}
$$

and $\delta_{m n}$ is the Kronecker delta.

For $n=m=0$ in the Eqn. (11) and from conditions (7) we obtain following equality

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{1}{\beta_{j}}=1 \tag{13}
\end{equation*}
$$

Thus, we get eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{N}$ and eigenvectors $v_{j}, j=1,2, \ldots, N$ corresponding $\left\{\lambda_{k}\right\}_{k=1}^{N}$. So, we can say that the direct spectral problem of spectral analysis is solved.

Now let's try to answer the following question:

If we know eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{N}$ and eigenvectors $\left\{v_{k}\right\}_{k=1}^{N}$ of matrix J, is it possible to reconstruct the matrix J by using the following formula

$$
J u=\sum_{k=1}^{N} \lambda_{k}\left(u, v_{k}\right) v_{k}, \quad u \in l_{2}(0, N-1)
$$

where $(u, v)=\sum_{j=0}^{N-1} u_{j} \bar{v}_{j}$ scalar product.

It is clear that eigenvalues of J is not sufficient for reconstruct matrix J. On account of this we must have some more information about eigenvectors.

Definition 4. The collection of quantitites $\left\{\lambda_{k}, \beta_{k}\right\}$ are called spectral data for the matrix J.

Additional we will need the presentation of entries of the matrix J by the polynomial $P_{n}(\lambda)$. For $\lambda=\lambda_{j}$ the Eqn. (6) is multiplied by $\frac{\eta}{\beta_{j}} P_{m}\left(\lambda_{j}\right)$, then summing by j from 1 to N and using Lemma 3, we have

$$
\begin{aligned}
& a_{n}=\sum_{j=1}^{N} \frac{\eta^{2} \lambda_{j}}{\beta_{j}} P_{n}\left(\lambda_{j}\right) P_{n+1}\left(\lambda_{j}\right), \quad n=\overline{0, \mathrm{~N}-2}-\mathrm{M}, \\
& b_{n}=\sum_{j=1}^{N} \frac{\eta^{2} \lambda_{j}}{\beta_{j}} P_{n}^{2}\left(\lambda_{j}\right), \quad n=\overline{0, \mathrm{~N}-1},
\end{aligned}
$$

where η is defined by (12). It is clear that $\rho_{n}=\eta=\alpha$ for m or $n>M$. Then, we can write these equalities as below:

$$
\begin{align*}
& a_{n}=\sum_{j=1}^{N} \frac{\lambda_{j}}{\beta_{j}} P_{n}\left(\lambda_{j}\right) P_{n+1}\left(\lambda_{j}\right), \quad n=\overline{0, M-1}, \tag{14}\\
& a_{M}=\sum_{j=1}^{N} \frac{\alpha \lambda_{j}}{\beta_{j}} P_{M}\left(\lambda_{j}\right) P_{M+1}\left(\lambda_{j}\right), \quad c_{M}=\sum_{j=1}^{N} \frac{\lambda_{j}}{\beta_{j}} P_{M}\left(\lambda_{j}\right) P_{M+1}\left(\lambda_{j}\right), \tag{15}\\
& c_{n}=\sum_{j=1}^{N} \frac{\alpha \lambda_{j}}{\beta_{j}} P_{n}\left(\lambda_{j}\right) P_{n+1}\left(\lambda_{j}\right), \quad n=\overline{M+1, N-2}, \tag{16}\\
& b_{n}=\sum_{j=1}^{N} \frac{\lambda_{j}}{\beta_{j}} P_{n}^{2}\left(\lambda_{j}\right), \quad n=\overline{0, M}, \tag{17}\\
& d_{n}=\sum_{j=1}^{N} \frac{\alpha \lambda_{j}}{\beta_{j}} P_{n}^{2}\left(\lambda_{j}\right), \quad n=\overline{M+1, N-1} . \tag{18}
\end{align*}
$$

3. Inverse Problem of Spectral Analysis

The inverse problem of spectral analysis is reconstruct matrix J by using the collection quantities $\left\{\lambda_{k}, \beta_{k}\right\}$.

Theorem 5. Let an arbitrary collection $\left\{\lambda_{k}, \beta_{k}\right\}$ of matrix is J. In order for this collection to be spectral data for some matrix which have form J, it is necessary and sufficient that the following conditions are satisfied:
(i) $\lambda_{k} \neq \lambda_{j}$,
(ii) $\sum_{j=1}^{N} \frac{1}{\beta_{j}}=1$,
(iii) $a_{n}>0, n=\overline{0, N-2}$.

Lemma 6. Let $\lambda_{k}, k=\overline{1, N}$ are distinct real numbers and for the positive numbers $\beta_{k}, k=\overline{1, N}$ be given that $\sum_{j=1}^{N} \frac{1}{\beta_{j}}=1$. Then there exists unique polynomials $P_{k}(\lambda), k=\overline{0, N-1}$ with $\operatorname{deg} P_{j}(\lambda)=j$ and positive leading coefficients satisfying the conditions (11).

Now, we will give another method for a kind of approach to the solution of the inverse spectral problem which is called the Gelphand-Levitan-Marchenko method.

Let $R_{n}(\lambda)$ be a solution of the Eqn. (1) satisfying the conditions

$$
R_{-1}(\lambda)=0, \quad R_{0}(\lambda)=1,
$$

in the case $a_{n} \equiv 1, b_{n} \equiv 0$.

Recall that $P_{n}(\lambda)$ is a polynomial of degree n, so it can be expressed as

$$
\begin{equation*}
P_{n}(\lambda)=\gamma_{n}\left(R_{n}(\lambda)+\sum_{k=0}^{n-1} \chi_{n, k} R_{k}(\lambda)\right), \quad n \in\{0,1, \ldots, M, \ldots, N\} \tag{19}
\end{equation*}
$$

where γ_{n} and $\chi_{n, k}$ are constants. There is a connection between coefficients $a_{n}, b_{n}, c_{n}, d_{n}$ and $\gamma_{n}, \chi_{n, k}$.

Then we can write the equalities

$$
\begin{align*}
& a_{n}=\frac{\gamma_{n}}{\gamma_{n+1}} \quad(0 \leq n \leq M), \quad \gamma_{0}=1, \tag{20}\\
& c_{n}=\frac{\gamma_{n}}{\gamma_{n+1}} \quad(M<n \leq N-2), \quad c_{M}=\frac{\gamma_{M}}{\alpha \gamma_{M+1}}, \\
& b_{n}=\chi_{n, n-1}-\chi_{n+1, n} \quad(0 \leq n \leq M), \quad \chi_{0,-1}=0, \\
& d_{n}=\chi_{n, n-1}-\chi_{n+1, n} \quad(M<n \leq N-1) . \tag{21}
\end{align*}
$$

Now, we can write from Eqn. (19)

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\eta}{\beta_{j}} P_{n}\left(\lambda_{j}\right) R_{m}\left(\lambda_{j}\right)=\gamma_{n}\left[G_{n m}+\sum_{k=0}^{n-1} \chi_{n, k} G_{k m}\right], \tag{22}
\end{equation*}
$$

where η is defined by (12) and

$$
\begin{equation*}
G_{n m}=\sum_{j=1}^{N} \frac{\eta}{\beta_{j}} R_{n}\left(\lambda_{j}\right) R_{m}\left(\lambda_{j}\right) . \tag{23}
\end{equation*}
$$

Since the expansion

$$
R_{j}(\lambda)=\sum_{k=0}^{j} w_{k}^{(\mathrm{i})} P_{k}(\lambda)
$$

holds, then from Eqn. (11) we have

$$
\sum_{j=1}^{N} \frac{1}{\beta_{j}} P_{n}\left(\lambda_{j}\right) R_{m}\left(\lambda_{j}\right)=\frac{1}{\eta \gamma_{n}} \delta_{n m}, n \geq 0, s=\overline{0, n}
$$

Considering the Eqn. (22) we get

$$
\begin{align*}
& G_{n m}+\sum_{k=0}^{n-1} \chi_{n, k} G_{k m}=0, \quad m=\overline{0, n-1}, n \geq 1, \tag{24}\\
& G_{n n}+\sum_{k=0}^{n-1} \chi_{n, k} G_{k n}=\frac{1}{\eta \gamma_{n}^{2}}, \quad n=\overline{0, \mathrm{~N}-1} \tag{25}
\end{align*}
$$

Eqn. (24) is important for the solution of inverse spectral problem. Firstly, $G_{n m}$ are determined by using Eqn. (23) and then quantities $\chi_{n, k}, k=\overline{0, n-1}$ are found from system of Eqn. (24). Thus we can find unknowns γ_{n} with aid of $\chi_{n, k}$ from Eqn. (25).

Lemma 7. For any fixed n the system of Eqn. (24) is identically solvable.
Proof. It is clear that

$$
v_{n}=\left(\frac{R_{n}\left(\lambda_{1}\right)}{\sqrt{\beta_{1}}}, \frac{R_{n}\left(\lambda_{2}\right)}{\sqrt{\beta_{2}}}, \ldots, \frac{R_{n}\left(\lambda_{N}\right)}{\sqrt{\beta_{N}}}\right), n=\overline{0, N-1}
$$

are linear independent and from the Eqn. (23), we have

$$
G_{n s}=\left(v_{n}, v_{s}\right)
$$

The basic determinant of the system (24)

$$
\begin{equation*}
\operatorname{det}\left\{G_{i j}\right\}_{i, j=0}^{n-1}=\operatorname{det}\left\{\left(v_{i}, v_{j}\right)\right\}_{i, j=0}^{n-1} . \tag{26}
\end{equation*}
$$

Lemma 8. Let $G_{n m}, m=\overline{0, n-1}$ be a solution of the system (24). Then

$$
G_{n m}+\sum_{k=0}^{n-1} \chi_{n, k} G_{k m}>0, \quad n=\overline{0, \mathrm{~N}-1} .
$$

Proof. See [19].
Therefore we can determine the entries of the matrix J from the formulas Eqn. (20) and Eqn. (21).

4. Inverse Problem for Two Spectra

Consider the boundary value problem

$$
\begin{equation*}
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda \rho_{n} y_{n}, \quad n=\overline{1, N-1}, \tag{27}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
y_{0}=y_{N}=0 \tag{28}
\end{equation*}
$$

where ρ_{n} is defined in (3). Now, the matrix of coefficients of Eqn. (27) is denoted by J_{1} which has the same form with matrix J. If we delete the first row and the first column of the matrix J then we have $N-1 \times N-1$ tridiagonal matrix J_{1} which has $N-1$ number eigenvalues $\mu_{k}, k=\overline{1, N-1}$. Assume that eigenvalues of matrix J_{1} are distinct and real. Thus we can write

$$
\mu_{1}<\mu_{2}<\ldots<\mu_{N-1} .
$$

The solution of Eqn. (27) is denoted by $\left\{Q_{n}(\lambda)\right\}$ provided that $Q_{0}(\lambda)=0, Q_{1}(\lambda)=1$. It is clear that the eigenvalues $\mu_{j}, j=\overline{1, N-1}$ are zeros of the polynomial $Q_{N}(\lambda)$. While we determine entries of J, we will use eigenvalues of matrices J and J_{1}.

Now we will give an important lemma for the inverse spectral problem according to the two spectra.

Lemma 9. The eigenvalues of matrices J and J_{1} alternate, i.e.

$$
\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<\ldots<\lambda_{N-1}<\mu_{N-1}<\lambda_{N}
$$

Proof. See [19].
Additionally, we can find the normalized numbers β_{k} by aid of two spectrums $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{N-1}$ of the matrices J and J_{1} respectively. Assume that

$$
\begin{equation*}
f_{n}(\lambda)=Q_{n}(\lambda)+m(\lambda) P_{n}(\lambda) \tag{29}
\end{equation*}
$$

and require that $f_{N}(\lambda)=0 . m(\lambda)$ is a meromorphic function,

$$
\begin{equation*}
m(\lambda)=-\frac{Q_{N}(\lambda)}{P_{N}(\lambda)} \tag{30}
\end{equation*}
$$

its poles and zeros coincide with the eigenvalues of the problem (1)-(2) and (27)-(28), respectively. We see that the function $f_{n}(\lambda)$ satifies the equation

$$
\begin{equation*}
a_{n-1} f_{n-1}(\lambda)+b_{n} f_{n}(\lambda)+a_{n} f_{n+1}(\lambda)=\lambda \rho_{n} f_{n}(\lambda) \tag{31}
\end{equation*}
$$

Now, if the equality Eqn. (31) is multiplied by $P_{n}\left(\lambda_{k}\right)$ and the Eqn. (6) (for $\lambda=\lambda_{k}$) is multiplied by $f_{n}(\lambda)$ then the second result is substracted from the first and sum by n, we obtain:

$$
\left(\lambda-\lambda_{k}\right) \sum_{n=1}^{N-1} \rho_{n} f_{n}(\lambda) P_{n}\left(\lambda_{k}\right)=\sum_{n=1}^{N-1}\left\{\begin{array}{l}
a_{n-1}\left(f_{n-1}(\lambda) P_{n}\left(\lambda_{k}\right)-P_{n-1}\left(\lambda_{k}\right) f_{n}(\lambda)\right) \\
-a_{n}\left(f_{n}(\lambda) P_{n+1}\left(\lambda_{k}\right)-P_{n}\left(\lambda_{k}\right) f_{n+1}(\lambda)\right)
\end{array}\right\}
$$

or

$$
\left(\lambda-\lambda_{k}\right) \sum_{n=1}^{N-1} \rho_{n} f_{n}(\lambda) P_{n}\left(\lambda_{k}\right)=-a_{0}
$$

and then for $\lambda \rightarrow \lambda_{k}$, we have

$$
\beta_{k}=\frac{a_{0} P_{N}^{\prime}\left(\lambda_{k}\right)}{Q_{N}\left(\lambda_{k}\right)}
$$

On the other hand from Lemma 1, we get

$$
\begin{aligned}
& \operatorname{det}(J-\lambda I)=(-1)^{N} a_{0} a_{1} \ldots a_{M} c_{M+1} \cdots c_{N-1} P_{N}(\lambda), \\
& \operatorname{det}\left(J_{1}-\lambda I\right)=(-1)^{N-1} a_{1} \ldots a_{M} c_{M+1} \cdots c_{N-1} Q_{N}(\lambda)
\end{aligned}
$$

and from these equalities we can find

$$
P_{N}(\lambda)=\frac{\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{N}\right)}{a_{0} a_{1} \ldots a_{M} c_{M+1} \ldots c_{N-1}}, \quad Q_{N}(\lambda)=\frac{\left(\lambda-\mu_{1}\right) \ldots\left(\lambda-\mu_{N-1}\right)}{a_{1} \ldots a_{M} c_{M+1} \ldots c_{N-1}} .
$$

As a result

$$
\beta_{k}=\frac{\prod_{\substack{j=1 \\ j \neq k}}^{N}\left(\lambda_{k}-\lambda_{j}\right)}{\prod_{j=1}^{N-1}\left(\lambda_{k}-\mu_{j}\right)}
$$

Theorem 10. Let the collections $\left\{\lambda_{k}\right\}_{k=1}^{N},\left\{\mu_{k}\right\}_{k=1}^{N-1}$ to be real numbers. These collections are spectrums of the $N \times N$ and $N-1 \times N-1$ tridiagonal almost-symmetric matrices J and J_{1}, respectively, it is necessary and sufficient that they are alternate as below:

$$
\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<\ldots<\lambda_{N-1}<\mu_{N-1}<\lambda_{N} .
$$

5. Conclusion

While solving the inverse spectral problem from two spectra, firstly we determine the normalized numbers β_{k} of the matrix J by using the eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{N},\left\{\mu_{k}\right\}_{k=1}^{N-1}$ of the matrices J and J_{1}, respectively. Thus, we reduce the problem from two spectra to spectral analysis, and then we determine the values $G_{n m}, \chi_{n, \mathrm{k}}$ and γ_{n} from the formulas (23)-(25) by aid of the eigenvalues λ_{k} and the normalized numbers β_{k} of the matrix J.

Consequently, the entries a_{n}, b_{n}, c_{n} and d_{n} are found from the Eqn. (20) and Eqn. (21). Thus, the matrix J is reconstructed by using Parseval formula.

References

[1] Hochstadt, H., On some inverse problems in matrix theory, Archiv der Mathematik, 18(2), 201-207, 1967.
[2] Hochstadt, H., On the construction of a Jacobi matrix from spectral data, Linear Algebra and Its Applications, 8(5), 435-446, 1974.
[3] Hochstadt, H., On the construction of a Jacobi matrix from mixed given data, Linear Algebra and its Applications, 28, 113-115, 1979.
[4] Fu, L., Hochstadt, H., Inverse theorems for Jacobi matrices, Journal of Mathematical Analysis and Applications, 47(1), 162-168, 1974.
[5] Gasymov, M.G., Guseinov, G.Sh., On inverse problems of spectral analysis for infinite Jacobi matrices in the limit-circle case, In Soviet Mathematics Doklady, 40, 627-630, 1990.
[6] Guseinov, G.Sh., Determination of an infinite non-selfadjoint Jacobi matrix from its generalized spectral function, Matematicheskie Zametki, 23, 237-248, 1978; English transl.: Mathematical Notes, 23, 130-136, 1978.
[7] Guseinov, G.Sh., The inverse problem from the generalized spectral matrix for a second order non-selfadjoint difference equation on the axis, Izvetsiya Akademii Nauk Azerb. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 5, 16-22, 1978 (in Russian)
[8] Guseinov, G.Sh., An inverse spectral problem for complex Jacobi matrices, Communications in Nonlinear Science and Numerical Simulation, 15(4), 840-851, 2010.
[9] Guseinov, G.Sh., Construction of a complex Jacobi matrix from two-spectra, Hacettepe Journal of Mathematics and Statistics, 40(2), 2011.
[10] Guseinov, G. Sh., On construction of a complex finite Jacobi matrix from two-spectra, Electronic Journal of Linear Algebra, 26, 101-120, 2013.
[11] Guseinov, G.Sh., On a discrete inverse problem for two spectra, Discrete Dynamics in Nature and Society, 14 pages, 2012.
[12] Guseinov, G.Sh., On an inverse problem for two spectra of finite Jacobi matrices, Applied Mathematics and Computation, 218(14), 7573-7589, 2012.
[13] Guseinov, G.Sh., Inverse spectral problems for tridiagonal N by N complex hamiltonians, Symmetry Integrability and Geometry: Methods and Applications, 28 pages, 2009.
[14] Manafov, M.D., Bala, B., Inverse spectral problems for tridiagonal N by N complex hamiltonians with spectral parameter in the initial conditions, Adıyaman Üniversitesi Fen Bilimleri Dergisi, 3(1), 20-27, 2013.
[15] Akhmedova, E.N., Huseynov, H.M., On eigenvalues and eigenfunctions of one class of Sturm-Liouville operators with discontinuous coefficients, Transactions of National Academy of Sciences of Azerbaijan Series of Physical-Technical and Mathematical Sciences, 23-4, 7-18, 2003.
[16] Akhmedova, E.N., Huseynov, H.M., On inverse problem for Sturm-Liouville operators with discontinuous coefficients, Transactions of Saratov University, (Izv. Sarat. Univ.), 10(1), 3-9, 2010.
[17] Bala, B., Kablan, A., Manafov, M.Dzh., Direct and inverse spectral problems for discrete Sturm-Liouville problem with generalized function potential, Advances in Difference Equations, 2016(1), 172, 2016.
[18] Huseynov, H.M., Finite dimensional inverse problems, Transactions of National Academy of Sciences of Azerbaijan Series of Physical-Technical and Mathematical Sciences, 21(1), 80-87, 2001.
[19] Bala, B., Manafov, M.Dzh., Kablan, A., Inverse spectral problems for spectral data and two spectra of N by N tridiagonal almost-symmetric matrices, Applications and Applied Mathematics, 14(2), 12 pages, 2019.
[20] Manafov, M.Dzh., Kablan, A., Bala, B., Parseval equality of discrete Sturm-Liouville equation with periodic generalized function potentials, AIP Conference Proceedings. Vol. 1991. No. 1. AIP Publishing, 2018.
[21] Baş, E., Özarslan, R., A new approach for higher-order difference equations and eigenvalue problems via physical potentials, The European Physical Journal Plus, 134(6), 253, 2019.

[^0]: Received: 19.07.2019
 Accepted: 03.03.2020
 Published: 25.06.2020

