

Adıyaman University Journal of Science

https://dergipark.org.tr/en/pub/adyujsci

ISSN 2147-1630 e-ISSN 2146-586X

Comparison of Jordan (σ, τ) - Derivations and Jordan Triple (σ, τ) - Derivations in Semiprime Rings

Emine KOÇ SÖGÜTCÜ^{1,*}, Öznur GÖLBAŞI²

¹Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey eminekoc@cumhuriyet.edu.tr, ORCID: 0000-0002-8328-4293

²Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey ogolbasi@cumhuriyet.edu.tr, ORCID: 0000-0002-9338-6170

Received: 11.05.2019 **Accepted:** 21.03.2020 **Published:** 25.06.2020

Abstract

Let R be a 3!-torsion free semiprime ring, τ , σ two endomorphisms of R, $d: R \to R$ be an additive mapping and L be a noncentral square-closed Lie ideal of R. An additive mapping $d: R \to R$ is said to be a Jordan (σ, τ) -derivation if $d(x^2) = d(x)\sigma(x) + \tau(x)d(x)$ holds for all $x, y \in R$. Also, d is called a Jordan triple (σ, τ) -derivation if $d(xyx) = d(x)\sigma(yx) + \tau(x)d(y)\sigma(x) + \tau(xy)d(x)$, for all $x, y \in R$. In this paper, we proved the following result: d is a Jordan (σ, τ) -derivation on L if and only if d is a Jordan triple (σ, τ) -derivation on L.

Keywords: Semiprime ring; Jordan derivation; Jordan triple derivation; (σ, τ) -derivation; Jordan (σ, τ) derivation; Jordan triple (σ, τ) -derivation.

Yarıasal halkalarda Jordan (σ,τ)- Türevler ve Jordan Üçlü (σ,τ)-Türevlerin Karşılaştırılması

Öz

R bir 3!-torsion free yarıasal halka, τ ve σ iki endomorfizm, $d: R \to R$ toplamsal dönüşüm ve L merkez tarafından kapsanmayan R halkasının bir kare kapalı Lie ideali olsun. $d: R \to R$

DOI: 10.37094/adyujsci.563317

toplamsal dönüşümü her $x,y \in R$ için $d(x^2) = d(x)\sigma(x) + \tau(x)d(x)$ koşulunu sağlıyorsa d dönüşümüne Jordan (σ,τ) –türev denir. Ayrıca, $d:R \to R$ toplamsal dönüşümü her $x,y \in R$ için $d(xyx) = d(x)\sigma(yx) + \tau(x)d(y)\sigma(x) + \tau(xy)d(x)$ koşulunu sağlıyorsa d dönüşümüne Jordan üçlü (σ,τ) –türev denir. Bu çalışmada, d bir L üzerinde Jordan (σ,τ) –türev olması için gerek ve yeter koşul d dönüşümünün L üzerinde Jordan üçlü (σ,τ) –türev olmasıdır sonucu ispatlanmıştır.

Anahtar kelimeler: Yarıasal halka; Jordan türev; Jordan üçlü türev; (σ, τ) –türev; Jordan (σ, τ) –türev; Jordan üçlü (σ, τ) –türev.

1. Introduction

R is an associative ring with center Z. A ring R is prime ring if xRy = (0) implies x = 0 or y = 0, and semiprime ring if xRx = (0) implies x = 0. An additive subgroup L of R is said to be a Lie ideal of R if $[L, R] \subseteq L$. A Lie ideal L is said to be square-closed if $a^2 \in L$ for all $a \in L$. An additive mapping $d: R \to R$ is called a derivation (resp. Jordan derivation) if $d(u_1u_2) = d(u_1)u_2 + u_1d(u_2)$ (resp. $d(u_1^2) = d(u_1)u_1 + u_1d(u_1)$) holds for all $u_1, u_2 \in R$. Let σ and τ be endomorphisms of R. An additive mapping $d: R \to R$ is said to be a (σ, τ) -derivation (resp. Jordan (σ, τ) -derivation) if $d(uv) = d(u)\sigma(v) + \tau(u)d(v)$ (resp. $d(u^2) = d(u)\sigma(u) + \tau(u)d(v)$) holds for all $u, v \in R$. A Jordan triple derivation $d: R \to R$ is an additive mapping satisfying $d(u_1u_2u_1) = d(u_1)u_2u_1 + u_1d(u_2)u_1 + u_1u_2d(u_1)$, for all $u_1, u_2 \in R$. Also, d is called a Jordan triple (σ, τ) -derivation if $d(u_1u_2u_1) = d(u_1)\sigma(u_2u_1) + \tau(u_1)d(u_2)\sigma(u_1) + \tau(u_1u_2)d(u_1)$, for all $u_1, u_2 \in R$.

We can invetigate that every derivation is a Jordan derivation, but the opposite is not usually true. This result by Herstein [1] was shown in a prime ring of 2- torsion free. The same result was proved by Cusack in [2] to the semiprime rings. The same result was generalized to the Lie ideal of the semiprime ring in [4].

In [4], Jing and Lu, has proven to be a derivation of any of the Jordan triple derivation on prime rings. Vukman [5], examined the results for the semiprime rings. Hence, Rehman and Koç Sögütcü has transferred it Lie ideal of the semiprime ring in [6].

In [7] Herstein proved that each Jordan derivation of the prime ring is a Jordan triple derivation, while Bresar is a derivation of each Jordan triple derivation of a semiprime ring in [8]. In [9], the relation between Jordan triple derivation and Jordan derivation is given.

In this paper, we present the results corresponding to Jordan triple (σ, τ) –derivation and Jordan (σ, τ) –derivation.

2. Results

Lemma 1. [10, Corollary 2.1] Let R be a 2-torsion free semiprime ring, L be a Lie ideal of R such that $L \nsubseteq Z(R)$ and $a,b \in L$.

- i) If aLa = (0), then a = 0.
- ii) If aL = (0) (or La = (0)), then a = 0.
- iii) If L is square-closed and aLb = (0), then ab = 0 and ba = 0.

Lemma 2. [6, Theorem 2.1] Let R be a 2-torsion free semiprime ring, $\alpha, \beta \in Aut(R)$ and $L \nsubseteq Z(R)$ be a nonzero square-closed Lie ideal of R. If an additive mapping $d: R \to R$ satisfying

$$d(u_1u_2u_1) = d(u_1)\alpha(u_2u_1) + \beta(u_1)d(u_2)\alpha(u_1) + \beta(u_1u_2)d(u_1), \text{ for all } u_1, u_2 \in L.$$

and $d(u_1), \beta(u_2) \in L$, then d is a (α, β) -derivation on L.

Lemma 3. Let R be a 2-torsion free semiprime ring, $L \nsubseteq Z(R)$ is a square-closed Lie ideal of R, τ , σ two endomorphisms of R, $\sigma(L) = L$ and $a, b \in L$. If $a\sigma(ub) + \tau(bu)a = 0$, for all $u \in L$ then $a\sigma(ub) = 0$.

Proof. By the hypothesis, we have

$$a\sigma(ub) + \tau(bu)a = 0. \tag{1}$$

Then replacing u by 4ubv, $v \in U$ in Eqn. (1) and by 2-torsion freeness, we get $a\sigma(ubvb) + \tau(bubv)a = 0$.

Application of Eqn. (1) yields that

$$-\tau(bu)a\sigma(vb) + \tau(bu)\tau(bv)a = 0.$$

Again using Eqn. (1), we get $a\sigma(ub)\sigma(vb) = 0$.

Using $\sigma(L) = L$, we obtain that $a\sigma(ub)L\sigma(b) = 0$, and so $a\sigma(ub)La\sigma(ub) = 0$. By Lemma 1, we get $a\sigma(ub) = 0$, for all $u \in L$.

Theorem 4. Let R be a 3!-torsion free semiprime ring, τ , σ two endomorphisms of R, $d: R \to R$ an additive mapping, $L \nsubseteq Z(R)$ be a nonzero square-closed Lie ideal of R and

d(L), $\tau(L) \subseteq L$, $\sigma(L) = L$. Then d is a Jordan (σ, τ) -derivation on L if and only if d is a Jordan triple (σ, τ) -derivation on L.

Proof. We obtain that

$$d(u_1^2) = d(u_1)\sigma(u_1) + \tau(u_1)d(u_1), \text{ for all } u_1 \in L.$$
(2)

Replacing u_1 by $u_1 + u_2$ in Eqn. (2), using d is an additive mapping and $u_1 \circ u_2 = u_1 u_2 + u_2 u_1$, we see that

$$d(u_1^2) + d(u_1 \circ u_2) + d(u_2^2) = d(u_1)\sigma(u_1) + \tau(u_1)d(u_1) + d(u_1)\sigma(u_2) + d(u_2)\sigma(u_1) + \tau(u_1)d(u_2) + \tau(u_2)d(u_1) + d(u_2)\sigma(u_2) + \tau(u_2)d(u_2).$$

By the Eqn. (2), we have

$$d(u_1 \circ u_2) = d(u_1)\sigma(u_2) + d(u_2)\sigma(u_1) + \tau(u_1)d(u_2) + \tau(u_2)d(u_1), \tag{3}$$

for all $u_1, u_2 \in L$. Since $u_1^2 \circ u_2 + 2u_1u_2u_1 = u_1 \circ (u_1 \circ u_2)$, we find

$$d(u_1^2 \circ u_2 + 2u_1u_2u_1) = d(u_1 \circ (u_1 \circ u_2))$$
, for all $u_1, u_2 \in L$.

By the Eqn. (3), we see that

$$d(u_1^2 \circ u_2 + 2u_1u_2u_1) = d(u_1)\sigma(u_1)\sigma(u_2) + \tau(u_1)d(u_1)\sigma(u_2) + d(u_2)\sigma(u_1^2)$$
$$+\tau(u_1^2)d(u_2) + \tau(u_2)d(u_1)\sigma(u_1) + \tau(u_2)\tau(u_1)d(u_1)$$
$$+d(2u_1u_2u_1).$$

On the other hand,

$$d(u_1 \circ (u_1 \circ u_2)) = d(u_1)\sigma(u_1u_2) + d(u_1)\sigma(u_2u_1) + d(u_1)\sigma(u_2)\sigma(u_1)$$

$$+d(u_2)\sigma(u_1)\sigma(u_1) + \tau(u_1)d(u_2)\sigma(u_1) + \tau(u_2)d(u_1)\sigma(u_1)$$

$$+\tau(u_1)d(u_1)\sigma(u_2) + \tau(u_1)d(u_2)\sigma(u_1) + \tau(u_1)\tau(u_1)d(u_2)$$

$$+\tau(u_1)\tau(u_2)d(u_1) + \tau(u_1u_2)d(u_1) + \tau(u_2u_1)d(u_1).$$

After comparing the above two equations, we get

$$2d(u_1u_2u_1) = 2d(u_1)\sigma(u_2u_1) + 2\tau(u_1)d(u_2)\sigma(u_1) + 2\tau(u_1u_2)d(u_1),$$

for all $u_1, u_2 \in L$.

That is,

$$d(u_1u_2u_1) = d(u_1)\sigma(u_2u_1) + \tau(u_1)d(u_2)\sigma(u_1) + \tau(u_1u_2)d(u_1).$$

Reverse, we see that

$$d(u_1u_2u_1) = d(u_1)\sigma(u_2u_1) + \tau(u_1)d(u_2)\sigma(u_1) + \tau(u_1u_2)d(u_1), \tag{4}$$

for all $u_1, u_2 \in L$.

Replacing u_2 by $4u_1u_2u_1$ in Eqn. (4), using Eqn. (4) and 2-torsion freeness of R, this implies that

$$d(u_1^2 u_2 u_1^2) = d(u_1)\sigma(u_1 u_2 u_1^2) + \tau(u_1)d(u_1 u_2 u_1)\sigma(u_1) + \tau(u_1^2 u_2 u_1)d(u_1)$$

$$= d(u_1)\sigma(u_1 u_2 u_1^2) + \tau(u_1)d(u_1)\sigma(u_2 u_1)\sigma(u_1) + \tau(u_1)\tau(u_1)d(u_2)\sigma(u_1)\sigma(u_1)$$

$$+\tau(u_1)\tau(u_1 u_2)d(u_1)\sigma(u_1) + \tau(u_1^2 u_2 u_1)d(u_1).$$

On the other hand, replacing u_1 by u_1^2 in Eqn. (4), we have

$$d(u_1^2 u_2 u_1^2) = d(u_1^2) \sigma(u_2 u_1^2) + \tau(u_1^2) d(u_2) \sigma(u_1^2) + \tau(u_1^2 u_2) d(u_1^2).$$

Comparing the expressions and let us write $A(u_1) = d(u_1^2) - d(u_1)\sigma(u_1) - \tau(u_1)d(u_1)$ for brevity, we get

$$A(u_1)\sigma(u_2u_1^2) + \tau(u_1^2u_2)A(u_1) = 0.$$

By Lemma 3, we get $A(u_1)\sigma(u_2)\sigma(u_1^2)=0$, for all $u_1,u_2\in L$ and using $\sigma(L)=L$, we have

$$A(u_1)u_2\sigma(u_1^2) = 0$$
, for all $u_1, u_2 \in L$. (5)

Multiplying $\sigma(u_1^2)$ on the left and $A(u_1)$ on the right hand side of Eqn. (5), we see that $\sigma(u_1^2)A(u_1)u_2\sigma(u_1^2)A(u_1) = 0, \text{ for all } u_1, u_2 \in L.$

Lemma 1 leads to

$$\sigma(u_1^2)A(u_1) = 0, \text{ for all } u_1 \in L.$$
(6)

Replacing u_2 by $4\sigma(u_1^2)u_2A(u_1)$ in Eqn. (5) and by 2-torsion freeness, we have

$$A(u_1)\sigma(u_1^2)u_2A(u_1)\sigma(u_1^2) = 0$$
, for all $u_1, u_2 \in L$.

Using Lemma 1, we have

$$A(u_1)\sigma(u_1^2) = 0 \text{ for all } u_1 \in L.$$
 (7)

Replacing u_1 by u_1+u_2 in Eqn. (7), we obtain that

$$0 = A(u_1 + u_2)\sigma((u_1 + u_2)^2)$$

$$= (d(u_1^2) - d(u_1)\sigma(u_1) - \tau(u_1)d(u_1) + d(u_2^2) - d(u_2)\sigma(u_2) - \tau(u_2)d(u_2)$$

$$+ d(u_1 \circ u_2) - d(u_1)\sigma(u_2) - d(u_2)\sigma(u_1)$$

$$-\tau(u_1)d(u_2) - \tau(u_2)d(u_1)\sigma((u_1 + u_2)^2).$$

Let us write $B(u_1, u_2) = d(u_1 \circ u_2) - d(u_1)\sigma(u_2) - d(u_2)\sigma(u_1) - \tau(u_1)d(u_2) - \tau(v)d(u_1)$, for brevity. For all $u_1, u_2 \in L$,

$$(A(u_1) + A(u_2) + B(u_1, u_2))\sigma((u_1 + u_2)^2) = 0.$$

Using Eqn. (7) and $(u_1 + u_2)^2 = u_1^2 + u_1 \circ u_2 + u_2^2$, we have

$$0 = A(u_2)\sigma(u_1^2) + A(u_1)\sigma(u_2^2) + A(u_1)\sigma(u_1 \circ u_2) + A(u_2)\sigma(u_1 \circ u_2)$$

$$+B(u_1, u_2)\sigma(u_1^2) + B(u_1, u_2)\sigma(u_2^2) + B(u_1, u_2)\sigma(u_1 \circ u_2). \tag{8}$$

Replacing u_1 with $-u_1$ in Eqn. (8) and using $A(-u_1) = A(u_1)$ and $B(-u_1, u_2) = -B(u_1, u_2)$, we get

$$0 = A(u_2)\sigma(u_1^2) + A(u_1)\sigma(u_2^2) - A(u_1)\sigma(u_1 \circ u_2) - A(u_2)\sigma(u_1 \circ u_2)$$

-B(u_1, u_2)\sigma(u_1^2) - B(u_1, u_2)\sigma(u_2^2) + B(u_1, u_2)\sigma(u_1 \cdot u_2). (9)

Combining Eqn. (8) with Eqn. (9), we have

$$2A(u_1)\sigma(u_1 \circ u_2) + 2A(u_2)\sigma(u_1 \circ u_2) + 2B(u_1, u_2)\sigma(u_1^2) + 2B(u_1, u_2)\sigma(u_2^2) = 0.$$

By 2-torsion freeness, we have

$$A(u_1)\sigma(u_1 \circ u_2) + A(u_2)\sigma(u_1 \circ u_2) + B(u_1, u_2)\sigma(u_1^2) + B(u_1, u_2)\sigma(u_2^2) = 0.$$
 (10)

Replacing u_1 by $2u_1$ in Eqn. (8), we find

$$0 = 4A(u_2)\sigma(u_1^2) + 4A(u_1)\sigma(u_2^2) + 8A(u_1)\sigma(u_1 \circ u_2) + 2A(u_2)\sigma(u_1 \circ u_2)$$
$$+8B(u_1, u_2)\sigma(u_1^2) + 2B(u_1, u_2)\sigma(u_2^2) + 4B(u_1, u_2)\sigma(u_1 \circ u_2).$$

Using Eqn. (8) and Eqn. (9) in the last equation, we get

$$6 A(u_1) \sigma(u_1 \circ u_2) + 6 B(u_1, u_2) \sigma(u_1^2) = 0$$
, for all $u_1, u_2 \in L$.

By 3!-torsion freeness, we have

$$A(u_1)\sigma(u_1 \circ u_2) + B(u_1, u_2)\sigma(u_1^2) = 0, \tag{11}$$

for all $u_1, u_2 \in L$.

Right multiplication of Eqn.(11) by $A(u_1)$, we have

$$A(u_1)\sigma(u_1 \circ u_2)A(u_1) + B(u_1, u_2)\sigma(u_1^2)A(u_1) = 0.$$

Using Eqn.(6), we find that

$$A(u_1)\sigma(u_1u_2)A(u_1) + A(u_1)\sigma(u_2u_1)A(u_1) = 0$$
, for all $u_1, u_2 \in L$.

Since $\sigma(L) = L$, we have

$$A(u_1)\sigma(u_1)u_2A(u_1) + A(u_1)u_2\sigma(u_1)A(u_1) = 0, (12)$$

for all $u_1, u_2 \in L$.

Replacing u_2 by $2u_2\sigma(u_1)$ in the above relation and by 2-torsion freeness, we get

$$A(u_1)\sigma(u_1)u_2\sigma(u_1)A(u_1) + A(u_1)u_2\sigma(u_1^2)A(u_1) = 0$$
, for all $u_1, u_2 \in L$.

Again using Eqn. (6), we get

$$A(u_1)\sigma(u_1)u_2\sigma(u_1)A(u_1) = 0$$
, for all $u_1, u_2 \in L$.

and so

$$\sigma(u_1)A(u_1)\sigma(u_1)u_2\sigma(u_1)A(u_1)\sigma(u_1)=0, \text{ for all } u_1,u_2\in L.$$

By Lemma 1, we have

$$\sigma(u_1)A(u_1)\sigma(u_1) = 0$$
, for all $u_1 \in L$.

Right multiplication of Eqn. (12) by $\sigma(u_1)$ and using the last equation, we see that

$$A(u_1)\sigma(u_1)u_2A(u_1)\sigma(u_1)=0$$
, for all $u_1,u_2\in L$.

Again using Lemma 1, we have

$$A(u_1)\sigma(u_1) = 0, \text{ for all } u_1 \in L.$$
(13)

Replacing u_1 by u_1+u_2 , we have

$$0 = A(u_1 + u_2)\sigma(u_1 + u_2) = (A(u_1) + A(u_2) + B(u_1, u_2))\sigma(u_1 + u_2).$$

Using Eqn. (13), we get

$$A(u_1)\sigma(u_2) + A(u_2)\sigma(u_1) + B(u_1,u_2)\sigma(u_1) + B(u_1,u_2)\sigma(u_2) = 0.$$

Replacing u_1 by $-u_1$ in the above relation, we have

$$A(u_1)\sigma(u_2) + B(u_1, u_2)\sigma(u_1) = 0, (14)$$

for all $u_1, u_2 \in L$.

Right multiplication of Eqn. (14) by $\sigma(u_1)A(u_1)$, we find

$$A(u_1)\sigma(u_2)\sigma(u_1)A(u_1) + B(u_1, u_2)\sigma(u_1^2)A(u_1) = 0.$$

Using Eqn. (6), we see

$$A(u_1)\sigma(u_2)\sigma(u_1)A(u_1) = 0$$

and so $\sigma(u_1)A(u_1)u_2\sigma(u_1)A(u_1) = 0$.

By Lemma 1, we have

$$\sigma(u_1)A(u_1) = 0$$
, for all $u_1 \in L$.

Right multiplication of Eqn. (14) by $A(u_1)$ and using the last equation

$$A(u_1)\sigma(u_2)A(u_1) = 0$$
, for all $u_1, u_2 \in L$.

By Lemma 1 and $\sigma(L) = L$, we get $A(u_1) = 0$, for all $u_1 \in L$. We conclude that d is a Jordan (σ, τ) -derivation.

Corollary 5. Let R be a 3!-torsion free semiprime ring, τ , σ two endomorphisms of R, $d: R \to R$ an additive mapping, $L \nsubseteq Z(R)$ be a nonzero square-closed Lie ideal of R, σ , $\tau \in Aut(R)$ and d(L), $\tau(L) \subseteq L$, $\sigma(L) = L$. If d is a Jordan (σ, τ) -derivation on L, then d is (σ, τ) -derivation on L.

Proof. By Theorem 4 and Lemma 2, we get the required results.

3. Conclusions

Our study is about the comparison of Jordan triple (σ, τ) -derivation and Jordan (σ, τ) -derivation. Using this theorem, each Jordan (σ, τ) -derivation has been shown to be a (σ, τ) -derivation.

Acknowledgement

This paper is promoted by the Scientific Research Project Fund of Cumhuriyet University by the project number F-563.

References

- [1] Herstein, I.N., Jordan derivations of prime rings, Proceedings of the American Mathematical Society, 8, 1104-1110, 1957.
- [2] Cusack, J.M., *Jordan derivations on rings*, Proceedings of the American Mathematical Society, 53, 321-324, 1975.
- [3] Gupta, V., *Jordan derivations on Lie ideals of prime and semiprime rings*, East-West Journal of Mathematics, 9 (1), 47-51, 2007.
- [4] Jing, W., Lu, S., Generalized Jordan derivations on prime rings and standard opetaror algebras, Taiwanese Journal of Mathematics, 7, 605-613, 2003.
- [5] Vukman, J., A note on generalized derivations of semiprime rings, Taiwanese Journal of Mathematics, 11, 367-370., 2007.
- [6] Rehman, N., Koç Sögütcü, E., *Lie idelas and Jordan Triple* (α,β) -derivations in rings, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 69(1), 528-539, 2020. (doi: 10.31801/cfsuasmas.549472)
- [7] Herstein, I.N., *Topics in ring theory*, The University of Chicago Press, Chicago, London, 1969.
- [8] Bresar, M., Jordan mappings of semiprime rings, Journal of Algebra, 127, 218-228, 1989.
- [9] Fošner, M., Ilišević, D., *On Jordan triple derivations and related mappings*, Mediterranean Journal of Mathematics, 5, 415-427, 2008.
- [10] Hongan, M., Rehman, N., Al-Omary, R. M., *Lie ideals and Jordan triple derivations in rings*, Rendiconti del Seminario Matematico della Università di Padova, 125,147-156, 2011. (doi: 10.4171/RSMUP/125-9).