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ABSTRACT
The extraction of lanthanum (La) and cerium (Ce) from a bastnasite ore by direct acidic leaching 
was investigated. The effects of acid concentration and leaching temperature on the extraction of 
La and Ce from the ore were tested. Using nitric (NHO3), more than 85% of the La and Ce were 
simultaneously extracted into leach solution whereas the La and Ce dissolutions were determined 
as less than 85% by using sulfuric acid (H2SO4). The La dissolution exceeded 90% by using 
hydrochloric acid (HCl); however, the Ce dissolution remained below 85% under the following 
conditions: solid-to-liquid ratio of 20% (w/v), the acid concentration of 20%, leaching temperature 
of 25 °C and leaching time of 1 h. The result revealed that HNO3 could be used as a solvent for 
the maximum simultaneous extraction of the La and Ce from the bastnasite ore. The leaching 
temperature had no crucial effect on the dissolution of La and Ce when HNO3 or HCl solutions 
were preferred as a solvating agent. However, the leaching temperature had a slight positive effect 
on the dissolutions of La and Ce when H2SO4 was used as a solvent.

ÖZ
Direkt asit liçi ile bir bastnazit cevherinden lantanyum (La) ve seryum (Ce) ekstraksiyonu 
araştırılmıştır. Bastnazit cevherinden La ve Ce ekstraksiyonuna asit konsantrasyonu ve liç 
sıcaklığının etkileri test edilmiştir. Nitrik asit (NHO3) kullanarak La ve Ce’un %85’ten fazlası liç 
çözeltisine alınmıştır ancak çözünme değerleri sülfürik asit (H2SO4) kullanıldığında %85’ten az 
olarak belirlenmiştir. La çözünümü hidroklorik asit (HCl) kullanımıyla %90’ı geçmiştir fakat Ce 
çözünümü %20 (g/L) katı-sıvı oranı, %20 asit konsantrasyonu, 25 °C liç sıcaklığı ve 1 saat liç 
süresi şartları altında %85’in altında kalmıştır. Sonuçlar bastnazit cevherinden eş zamanlı olarak 
maksimum La ve Ce çözünümüne ulaşılabilmek için çözücü olarak HNO3 kullanılabileceğini ortaya 
koymuştur. Çözücü olarak HNO3 ve HCl tercih edildiğinde liç sıcaklığının La ve Ce çözünümüne 
önemli bir etki yapmadığı belirlenmiştir. Fakat çözücü olarak H2SO4 kullanılmasıyla liç sıcaklığının 
La ve Ce çözünmeleri üzerine hafif bir pozitif etkisi saptanmıştır.

Orijinal Araştırma / Original Research

EXTRACTION OF LANTHANUM AND CERIUM FROM A BASTNASITE ORE BY 
DIRECT ACIDIC LEACHING 
DİREKT ASİT LİÇİ İLE BASTNAZİT CEVHERİNDEN LANTANYUM VE SERYUM 
KAZANIMI

Keywords:
Lanthanum, 
Cerium, 
Direct acidic leaching, 
Bastnasite ore.

Anahtar Sözcükler:
Lantanyum, 
Seryum, 
Direkt asit liçi, 
Bastnazit cevheri.

Geliş Tarihi  /  Received : 21 Kasım / November 2019
Kabul Tarihi  /  Accepted : 01 Mayıs / May 2020



86

S. Kursunoglu, et al / Scientific Mining Journal, 2020, 59(2), 85-92

INTRODUCTION

The unique properties of rare earth make their 
usage inevitable for the high technological fields. 
Rare earth elements (REEs) are mainly used in 
the production of ceramics, automobile catalytic 
converters, fluid shredder catalysts, glass 
additives and polishing, metallurgical alloys, 
neodymium magnets, lasers, and rechargeable 
battery alloys (Jha et al., 2016; Swain and Mishra, 
2019; Huang et al., 2019).

Lanthanides are erbium (Er), cerium (Ce), 
ytterbium (Yb), dysprosium (Dy), gadolinium 
(Gd), praseodymium (Pr), holmium (Ho), 
lanthanum (La), europium (Eu), promethium (Pm), 
neodymium (Nd), samarium (Sm), scandium (Sc), 
lutetium (Lu), terbium (Tb), thulium (Tm), and 
yttrium (Y) elements, whose atomic numbers are 
in the range of 57-71 in the periodic table (Chen, 
2011). Lanthanides exist as carbonate, oxide, 
phosphate, and silicates in rock form. REEs are 
classified as light rare earth (LREE) and heavy 
rare earth (HREE) minerals (Zhang et al., 2018). 
The atomic numbers of LREEs are in the range of 
57-64. HREEs have atomic numbers between 65-
71. The difference is because LREEs have a non-
pair 4f electron layer. The HREEs have a double 
electron in the 4f layer. Although scandium (Sc) 
is the lightest element that differs from its status 
as a metal, it has a transitive property and is 
neither in the heavy nor light category. Yttrium (Y) 
is another transitive metal, chemically similar to 
lanthanides.

Although approximate 250 minerals are 
containing REEs, most of the world’s rare earth 
reserves include bastnasite (La(CO3)F) and 
monazite ((Ce,La,Nd,Th)PO4) minerals (Gupta 
and Krishnamurthy, 2005; Demol et al., 2018). 
Xenotime (Y(PO4)) is the other important REE 
mineral resource (Chelgani et al., 2015). 

Alkali digestion and sulfuric acid baking 
processes followed by water leaching are used 
for REE beneficiation from high and low-grade 
monazite ores, respectively (Lucas et al., 2014). 
Water leaching after sulfuric acid baking is also 
applied to the bastnasite and xenotime minerals 
to extract the REEs (Demol et al., 2019). Under 
the influence of several chemicals, physical 
and biological processes, rare earth elements, 
which are separated from the primary rock and 
adsorbed to clay minerals, form weathered 

crust elution-deposited rare earth ores. Column 
leaching with ammonium sulfate and ammonium 
formate was successfully applied for the recovery 
of REEs from these ores (Feng et al., 2018; Zhou 
et al., 2019). Coal fly ashes and bottom ashes 
as secondary resources, which are a by-product 
of coal-burning thermal power plants, can be 
utilized for the extraction of REEs. REEs were 
successfully obtained by direct leaching or alkali 
fusion-leaching methods from these combustion 
products (Peiravi et al., 2017; Tang et al., 2019; 
Tuan et al., 2019). The recovery of REEs from 
waste materials, such as scraps, cathode ray 
tubes, magnets, and glasses are of increasing 
importance (Yin et al., 2018; Jowitt et al., 2018; 
Liu et al., 2019).

The main objective is to investigate the extraction 
of La and Ce from a bastnasite ore using inorganic 
acids through a direct acidic leaching process 
under the atmospheric conditions. By applying 
the direct acidic leaching method, physical 
mineral processing techniques such as attrition 
scrubbing, screening, and desliming by a cyclone 
were eliminated. 

1. MATERIALS AND METHODS

The bastnasite ore used in this study was taken 
from the Beylikahir deposit in Turkey. The ore was 
firstly crushed in a laboratory jaw crusher and 
then ground in a laboratory ball mill. The ground 
ore was subjected to particle size analysis by 
using Mastersizer 2000 (Malvern). The chemical 
composition of the ground ore was determined by 
X-Ray Fluorescence (XRF) (Zetium, PANalytical) 
while the mineralogical composition was identified 
using a Bruker Discover D8 (XRD) instrument 
with Cu Kα1 (wavelength 1.54060 Å) radiation 
source and calibrated with a silicon standard 
for alignment of the 2θ = 5°–75° radiation 
generated at 40 mA and 40 kV. The mineral 
phases were identified using Diffrac Suite EVA 
software equipped with the current ICDD PDF-
2/Minerals database. To confirm the XRD data, 
the ore sample was examined by field emission 
scanning electron microscopy (FE-SEM) coupled 
with energy-dispersive X-ray spectroscopy (EDX) 
(Zeiss GeminiSEM 300). 

A 150-mL Pyrex beaker, which was placed on a 
digital temperature controlled hot plate equipped 
with a magnetic stirrer, was used in the leaching 
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experiments. One hundred milliliters of lixiviant 
and 20 g of ore were added to the beaker and 
then heated to the desired temperature. After the 
leaching test was finished, the leach slurry was 
filtered under vacuum through a Buchner funnel 
fitted with Whatman 1 filter paper, and the filtered 
residue was washed several times with pure 
water. The leach residue was dried in an oven 
at 105 °C for 24 h and subsequently subjected 
to XRF analysis (Minipal 4, PANalytical). Metals 
dissolutions were calculated by the following 
equation (Equation 1):
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𝐷𝐷 % =
𝐶𝐶& − 𝐶𝐶(
𝐶𝐶)

∗ 100																																																		(1) 
 
where, Cf is the initial La and Ce concentrations in 

                                     (1)

where, Cf is the initial La and Ce concentrations in 
the feed (%), Cr the final La, and Ce concentrations 
in the residue (%).

In the leaching tests, analytical grades of 
hydrochloric acid, nitric acid, and sulfuric acid 
were used. In all leaching tests, the solid-to-
liquid ratio, stirring speed, and leaching time 
were kept constant at 1:5 (w/v), 300 rpm, and 1h, 
respectively. 

2. RESULTS AND DISCUSSION

2.1. Material Characterization

Figure 1 shows the particle size distribution of the 
ground ore. The results showed that 80% of the 
sample is smaller than 124 µm. Table 1 shows 
the elemental compositions of the rare earth ore 
by XRF and ICP analyses. The XRD pattern is 
given in (Figure 2) shows that the major peaks 
were from fluorite (card no: 04-0864) and barite 
(card no: 24-1035). The minor peaks were also 
determined as Ce-bastnasite (card no: 11-0340) 
and La-bastnasite (card no: 41-0595). According 
to Yorukoglu et al., (2003), the main host mineral 
in the pre-concentrated ore was determined 
as bastnasite, mica, fluorite, and barite. Kul et 
al., (2008) reported that fluorspar (CaF2), barite 
(BaSO4), and bastnasite (LnFCO3) were the main 
minerals in the pre-concentrated ore. Kursun et 
al. (2018) reported that fluorite (CaF2) and barite 
((Ba, Pb) SO4) were the main mineral phases 
and bastnasite could not be detected in the ore 
sample. A representative ore SEM-EDX mapping 
result is given in Figure 3. The presence of La, 
and Ce in the sample confirms that the XRD 

analysis is in good agreement with the findings of 
previous researchers (Yorukoglu et al., 2003; Kul 
et al., 2008; Kursun et al., 2018).

Table 1. Elemental composition of the rare earth ore

Main 
Elements Weight (%)

Rare Earths

Elements (mg/kg)

Ba 31.8 La 7248
Ca 26.8 Ce 11912
F 17.7
Fe 5.6
Si 4.0
S 3.6
Al 2.0
Mn 1.4
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Figure 1. The particle size distribution of the ground ore
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Figure 2. X-ray diffraction pattern of the bastnasite ore
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Figure 3. SEM-EDX mapping of the representative ore 
sample

2.2. Effects of Acid Concentration and Acid 
Type on Dissolution

A series of leaching tests were carried out using 
the ore sample with inorganic acids such as HCl, 
H2SO4 and HNO3 concentrations ranging from 
20% to 40% at 25 °C for 1 h. Figure 4 shows 
the effects of acid concentration and acid type 
on La and Ce dissolutions from the bastnasite 
ore. The dissolution of Ce and La fluctuated with 
increasing sulfuric acid concentration (Figure 4 
a, b and c). This might be due to the dissolution 
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in the bastnasite ore. 73.8% La and 83.1% Ce 
dissolutions were achieved by using 20% of 
sulfuric acid concentration at 25 °C within 1h 
of leaching time. In the case of HCl, La and Ce 
dissolutions slightly increased with increasing acid 
concentration (Figure 4b). 83.4% La and 95.4% 
Ce were taken into the leach solution using 20% 
of hydrochloric acid concentration at 25 °C within 
1h. It was determined that La and Ce dissolved 
together from the ore. In the HNO3 solution, La 
and Ce dissolutions showed a similar dissolution 
trend with (Figure 4c). 92.3% La and 97.2% Ce 
simultaneously dissolved by using 20% of nitric 
acid at 25 °C within 1 h. HNO3 was determined 
as the most suitable inorganic acids for the 
simultaneous dissolution of La and Ce from the 
bastnasite ore. The effect of acid concentration 
on dissolution efficiencies of Th, Nd, Ce, and La 
was investigated by Kursun et al., (2018). The 
researcher found that the optimum results were 
achieved at 60°C using 3.42 mol/L HNO3, solid–
to–liquid ratio of 35%, 120 min leaching time. 
Under these optimum conditions, 94% Th, 82% 
Ce, 77% Nd, and 70% La dissolved. After the 
leaching process, these rare earth metals could 
be selectively extracted from the pregnant leach 
solution (PLS) which are remained relatively mildly 
acidic conditions to prevent alkaline consumption. 
Thus, 20% of acid concentration was selected as 
optimum for further studies. Direct leaching of 
bastnasite ore with sulphuric acid is possible via 
the following chemical reaction (Equation 2).

2.3. Effects of Leaching Temperature on 
Dissolution
The leaching tests were carried out using 20% 
H2SO4, HNO3 and HCl at various temperatures 
ranging from 40-80 °C using the bastnasite ore 
for 1 h. Figure 5 shows the effect of temperature 
on La and Ce dissolutions over the studied 
temperature range.

An increase in operating temperature had a 
slightly positive effect on the dissolutions of La, 
and Ce. It is seen that high dissolution rates of 
La and Ce can be achieved at high temperatures 
under atmospheric conditions. 79.8% La and 
91.3% Ce were taken into the leach solution at 
80 °C using sulphuric acid (Figure 5 a, b and c). 

 
2LnFCO' + 3H+SO- = Ln+(SO-)' + 2HF + 2H+CO'					(2) 
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Figure 4. Effects of acid concentration and acid type on 
dissolution at 25°C for 1 h (a- leaching with H2SO4, b- 
leaching with HCl, c- leaching with HNO3)

of other rare earth metals and/or impurities such 
as iron, manganese, magnesium, and calcium 
which are the acid consuming mineral phases 
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In the case of HCl leaching, La and Ce dissolutions 
remained relatively constant until 60 °C and then 
La dissolution slightly increased with increasing 
leaching temperature up to 80 °C (Figure 5b). It 
was revealed that La and Ce could be extracted 
from the bastnasite ore at 40 °C. 89.6% La and 
97.8% Ce were extracted from the ore at 40 °C. 
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Figure 5. Effect of leaching temperature on dissolution 
using 20% acid for 1 h (a- leaching with 20% H2SO4, 
b- leaching with 20% HCl, c- leaching with 20% HNO3)

La dissolution gradually increased with increasing 
temperature while Ce dissolution remained 
relatively stable when HNO3 was used as a 
leaching solution (Figure 5c). 89.6% La and 
98.1% Ce dissolutions were achieved at 40 °C by 
using a 20% HNO3 solution under the conditions 
explored. Kursun et al., (2018) indicated that 
leaching temperature had a negligible effect on 
the dissolution of REEs by using sulphuric and 
nitric acid which is consistent with findings of 
current researchers’ results.

2.4. Proposed Flow Sheet for the Bastnasite ore 

Figure 6 shows the distribution of three species 
of oxalic acid at a concentration of 1 mol/L (i.e. 
H2C2O4, HC2O4 

-, and C2O4
2-), where the HC2O4

– 
and C2O4 

2- ions are the predominant species 
in the pH range 2.5-3 and 7.0-14.0, explains 
why the reaction rate increases over these pH 
ranges. During the solution purification and REEs 
precipitation with oxalic acid, oxalate ionization 
occurs at high pH, and also times of stoichiometric 
oxalic acid demand (TSD) theoretically decreases. 
The pH of the PLS is arranged by alkaline solution 
and then high purity mixed rare earth oxalate 
was precipitated, leaving a considerable amount 
of impurities in barren leach solution (BLS) for 
further treatment. The precipitation of REEs 
from the solution is expressed via the following 
reaction (Equaion 3):
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neutralization unit to remove impurities such as Al 
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the current experiments and considering a further 
experimental campaign, a possible flow sheet 
was proposed for the extraction and separation of 
rare earth metals from the bastnasite ore (Figure 
7). The main features of this flowsheet are that 
one stage leaching was used to extract La and Ce 
from the ore. After the extraction stage, a loaded 
leach solution was sent to the neutralization unit 
to remove impurities such as Al and Fe using 
NaOH, CaO, CaCO3, or MgO. The filtrate was 
then sent to the solvent extraction (SX) stage/
precipitation followed by the thermal 
decomposition stage to obtain individual rare 
earth metals or mixed rare earth oxides. 
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Figure 7. Possible flowsheet for the extraction and 
separation of rare earth metals from the bastnasite ore

CONCLUSIONS

La and Ce extractions from a bastnasite ore by 
using different inorganic acids were investigated. 
The effects of main parameters such as acid 
concentration and leaching temperature on 
dissolutions of the La and Ce were tested. It 
was determined that a 20% HNO3 is enough to 
dissolve La and Ce from the ore. More than 85% 
of La and Ce extractions was achieved at 25 °C 
within 1h. In the H2SO4 solution, less than 85% La 
and Ce dissolved using 20% solvent at 25°C for 
1 h. La dissolution was exceeded 90% by using 
20% HCl at 25 °C for 1 h; however, Ce dissolution 
remained below 85%. The results indicated 
that HNO3 could be used as a solvent for the 
maximum simultaneous extraction of La and Ce 
from the bastnasite ore. It was determined that 
the leaching temperature had no beneficial effect 
on the dissolution of La and Ce when HNO3 or HCl 
was used as a solvating agent. However, H2SO4 
had a slight positive effect on the dissolutions 
of La and Ce when the leaching temperature 
increased. By considering operation costs, the 
leaching temperature could be chosen as 25 
°C. Based on the experimental results obtained 
from the experiments and considering a further 
campaign, a possible flow sheet was proposed 
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for the extraction and separation of rare earth 
metals from the bastnasite ore. 
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