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Abstract: In this study, at first we provide a general overview of 
   p x

L  spaces, also known as 

variable exponent Lebesgue spaces. They are a generalization of classical Lebesgue spaces
pL  in the 

sense that constant exponent replaced by a measurable function.  Then, based on classical Lebesgue 

space approach we prove a reverse of Hölder inequality in
   p x

L  . Therefore, our proof in variable 

exponent Lebesgue space is very similar to that in classical Lebesgue space. 
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1. Introduction  

Variable exponent Lebesgue spaces 
   p x

L   are certain cases of  Orlicz–Musielak spaces, and 

at this point of view investigation of 
   p x

L   date back to Hudzik [1] and Musielak [2].  But 

historically a paper by W. Orlicz can be considered as the originating paper in this field [3].  These 

important spaces are also known as generalized Lebesgue spaces. Since 
   p x

L   space is a natural 

generalization of the classical  pL   space , therefore, the first question which comes to mind is: 

what types of properties  pL  space can be transferred to
   p x

L   space?  Variable exponent 

Lebesgue spaces have found applications in many areas of mathematics, physics and differential 

equations.  To name few of those applications areas: modeling electrorheological fluids, image 

restoration, the calculus of variations, the analysis of quasi-Newtonian fluids, partial differential 

equations, fluid flow in porous media,  For various and concrete applications of these spaces we refer 

to [4-9].  For further, and more detailed properties of 
 p x

L  spaces  we refer to  [10-12].  Next we 

introduce some notations, present some fundamental definitions and recall some basic results of 
 xpL  

spaces.  In this paper, a variable exponent function means a measurable bounded function such that 

   . : 1,p   .  p
 and p

 notations stands for  

  sup :p ess p x x   ,     inf :p ess p x x   . 

We give modular functional          :
xp

p x
L     

 
such that  
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.
p x

x dx  


   

The space 
   p x

L   is defined in the following way: 

     
 

 :  measurable : <  holds  .
p xxpL x dx 



 
    

 
  

Then 
   xpL   is a Banach space under the Luxemburg norm 

 

             (1) 

If <p  , then in 
   xpL   space, the following inequality estimates  a strong relationship between 

the modular functional and the norm 

       
     

1 1 1 1

min ,  max ,p p p p
p x

           
   

    
   

. 

If  p x p (constant) for all x , then space 
   xpL   agree with the classical Lebesgue 

space  pL   and these two norm values are equal.  The topology of the function space 
   xpL   

supplied with the norm (1) is equivalent to the topology of modular    convergence if and only if

<p  .  Notion of conjugate exponent from the classical case can be generalized to variable case by 

the similar formula  

   
1 1

1
p x q x

   

 

For any measurable function 
   .pL   and

   .qL  the Hölder like inequality 

     
 

 
 p x q x

x x dx x x    


  

holds.  

We use the sign   to indicate the Lebesgue measure of a  set 
n . Following shows us 

that when the exponent  p x   is bounded then almost every 
nx  is a Lebesgue point. This is 

shown in [13].  For 
nx  and >0t ,   ,B x t  stand for the open ball having center x  and radius t .  

Let <p  .  
   p x nL  then   

     

 
 

inf > 1 . 0 :xp

p x

L p x

x
dx
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0

, 

1
lim 0

,  

p y

t

B x t

y x dy
B x t

     

for almost every 
nx . 

For two functions  and    defined in
n

, the convolution of  and , denoted by    , 

given by the formula: 

     
n

x x y y dy       

A useful inequality for convolution is Young's inequality.  The Young's inequality is not true 

with full generality in 
 .pL : 

    1p x p x
       

the inequality is valid if and only if  p x  is constant. 

2. Methods 

Since the result that we wanted to prove  was proved in general measure space rather than 

Lebesgue measure in classical Lebesgue spaces ,  we also state and prove our result in general measure 

space.  Thus, by means of classical the  pL  approach we prove the following theorem.  

 

Lemma 2.1. Let   , ,X M   be a  - finite measure space such that  X   .  Then there 

exists a measurable function  1 , ,L X M   and 
   , ,

q x
L X M   for all measurable variable 

exponent  q x  satisfies  >1q
 and < q   conditions. 

 

Proof.  There exists disjoint sets  1A ,  2A ,  3A , … in M  such that  1 <kA  for each k  

and
1

k
k

X A




 .  Define  
 
1

. k

x
k A




  on each  kA . 

 Now we have  

1 1

1

k
k kX A

d d
k

   
 

 

       

This means that  1 , ,L X M  . 

For   1 q q x q     , also we have 
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This means that 
   .

, ,
q

L X M  . 

3. Results 

Theorem 3.1.  Let   , ,X M   be a  - finite measure space such that  X   .  Assume a 

measurable variable exponent  p x  satisfies  >1p
,  < p   conditions and   is finite - a.e. on 

X .  If  1 , ,L X M   for each
   , ,

q x
L X M   then 

   , ,
p x

L X M  . 

 

Proof.   By the method of contradiction, let us assume the opposite, namely that 
   .

, ,
p

L X M  . Let us, now, obtain a new measure on  ,X M  as follows 

 
 .p

A

A d      for A M . 

Then    is also a  - finite measure due to  , ,X M  ,  - finite and 
 .p

  finite a.e.,  -on X . 

Also, by Radon–Nikodym derivative we have  
 .p

dv f d .  It is important to be aware  

 
 .p

X

X d     , since we assume
   .

, ,
p

L X M  .  By Lemma 2.1. there is a measurable 

function  satisfying  1 , ,L X M   and 
   .

, ,
q

L X M  .  Let us consider  a function   on 

X  as follows, 
 . 1p

  


 . 

       . . . .q q p q

X X X

d d dv            

This gives us  , ,qL X M  .  We have also  

 .p

X X X

d d d             

This gives us  1 , ,L X M  .  Hence our assumption led to a contradiction, since we have 

assumed  1 , ,L X M  , and thus   must be an element of 
   .

, ,
p

L X M  space. 
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4. Discussion 

 

By applying the classical methods of constant case, we obtained  a reverse of Hölder inequality  

in
   p x

L   space. However, the case 1p   still remain open in this context. 

 

The compliance to Research and Publication Ethics: This work was carried out by obeying research 

and ethics rules. 
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