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Abstract

The weighted approximation of continuous functions by Bernstein-
Chlodowsky polynomials and their generalizations are studied.
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1. Introduction

The classical Bernstein-Chlodowsky polynomials have the following form

an msa =S (E) (-8)

where 0 < z < b, and b, is a sequence of positive numbers such that lim b, = oo,

n—o0

lim bT—? = 0. These polynomials were introduced by Chlodowsky in 1932 as a general-
n—oo

ization of Bernstein polynomials (1912) on an unbounded set. Although there have been
many studies of Bernstein polynomials to the present date (see [1], [2], [6] and [7]), the
Bernstein-Chlodowsky polynomials (1.1) have not been investigated well enough. The
aim of this article is to investigate the problem of weighted approximations of continu-
ous functions by Bernstein-Chlodowsky polynomials (1.1) (for a generalization of these
polynomials see [4]).
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2. Main Results
Let ¢(z) be a continuous and increasing function in (—oo, c0) such that

lim ¢(z) = o0

z—+oo

and
plx) =1+ ¢"(z).

Denote by C, the space of all continuous functions f, satisfying the condition
F(@) < Myp(z) —o0<a<oo.

Obviously C, is a linear normed space with the norm

_ e @)
Hf”r)— 1Y o(2) .

—oo<z <o

A Korovkin type theorem for linear positive operators L, acting from C, to C),, has
been proved in [3], where the following results have been established.

2.1. Theorem. (See [3]) There exists a sequence of positive linear operators L., acting
from C, to C,, satisfying the conditions

(21)  lim [|La(L@) = 1], =0
(22)  lim [[La(6.2) ~ 6], =0
(23)  lim |[La(¢",2) = ¢°[l, =0
and there ezists a function f* € C, for which
T (Lo~ £l > 0.
2.2. Theorem. (See [3]) The conditions (2.1), (2.2), (2.3) imply 71121’;0 |Lnf—fll, =0

for any function f belonging to the subset C’S of Cp for which

I(@)

im
|z —o0 p(T)
exists finitely.

Setting p(z) =1+ 2% and applying Theorem 2.2 to the operators

( Bu(f.r) #0<z<by
L"(f’””)—{ (@) it 2 ¢ [0, b]

we obtain,
2.3. Proposition. The assertion

. |La(f,2) — f(2)]
2.4 1 — L T2 =0
@4 lm sup —HT

holds for any function f € C) with p(z) =1+ 2® 2 > 0.

Note that conditions (2.1),(2.2) and (2.3) are fulfilled since
(2.5) B.(l,z)=1
(2.6) B.(t,z) ==z

(2.7)  Bn(t’,z) =2+ @
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and therefore

B 2 2 1 _
sup | Bn (1%, x) x|:_ sup z(bn x)gbn.

0<w<by 1+ 2? no<e<p, 1+2 n

In view of Theorem 2.1, the assertion (2.4) does not hold in general for an arbitrary func-
tion f € C,, p(x) = 14 x2. Moreover, the polynomials (1.1) are not able to approximate

even the analytic function z on the entire interval [0,b,] without weight, since (2.7)
gives
2 2 _ b
B _] =
o225, (00 = =
which does not converge to zero for some sequences (b,) as n — oo.

An affirmative solution of the problem of approximation of the function f(z) = =2 on

the unbounded interval may be obtained by considering the polynomials of Bernstein-
2
Chlodowsky with b, satisfying the condition % — 0 asn — oo in (1.1). That is,
@8) Bufn =Y s(En ) (2 oz oca<n
' D 71@:0 n ") "\ bn br, - =
b2
where lim -» = 0. Then

n— 00

2.9) Bz =2+ =2 g pcp,
n

and therefore

- bn
Jax [Bu(t',z) =) = 1+,
which tends to zero as n — oo.
We consider now the problem of the approximation of arbitrary continuous functions
by the polynomials (2.8).
Firstly we shall consider a special case.

2.4. Lemma. For any continuous function f vanishing on [a,00), where a > 0 is inde-
pendent of n,

lim sup |By(f,z)— f(z)| =0.

n—00 0<z<b,

Proof. Since by the given condition, f is bounded, say |f(z)] < M, 0 < z < a, we can
write for arbitrary small € > 0 the inequality

k 2M (k :
where z € [0,b,] and § = §(¢) are independent of n.
By the properties (2.5), (2.6) and (2.9)

S (Bb—a) ex(2 e\ albn—o)
P n "\ b, bn, n ’

Therefore

- 2M by,
su B.(f,x)— f(zx)|=e4+ ——,
s [Bu(fo) - fe)] = e G gt

which completes the proof. a
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2.5. Theorem. Let f be a continuous function on the semiazis [0,00), for which
wlLl“{)lo flz) =ky < 0.

Then
lim sup |B,(f,z) — f(z)| =0.

n—00 0<z<b,

Proof. Obviously it is sufficient to prove this theorem in the case of k; = 0. In this case,
for any £ > 0 there exists a point xo such that

(210) [f(z)| <&, =z =0
Consider the function g with properties: g(z) = f(z) if 0 < = < o, g(z) is linear on
xOSZES-’Eo+% andg(m):()ifxszJr%.

Then

sup |f(z) —g(x)| < sup |f(z) —g(z)|+ sup |f(z)|

0<z<bn m0§z§m0+% m210+%
and since

max  |g(x)| = [f(zo)

zo<e<wo+tg

we have

sup [f(z) — g(z) < 3e

0<z<by,
by the condition (2.10).

Now we obtain

sup |Bu(f,x) — f(z)| < sup Bu(lf — g, 2)+

0<z<by, 0<e<by

+ sup [Bn(g,z) — g(z)|+
0<x<bn

+ sup |f(z) —g(z)|

0<w<by

<6e+ sup |Bn(g,z) —g(x)].
0<w<bn

where g(z) vanishes in zo+ % <z < b,. By Lemma 2.4, we obtain the desired result. [

3. A Generalization

We now give a generalization of Bernstein-Chlodowsky polynomials, which can be
used to approximate continuous functions on more general weighted spaces.

Let w(z) > 1 be any continuous function for > 0. Let also

Fy(t) = f(t)lw%,

and consider the following generalization of the polynomials (1.1)
w(z) & k z\* a2\ "

3.1 Ln 5 = F 7bn CS 7 1—-— ’

B o= 5y (e )es(i) (1- 1)

where x € [0,b,] and b, has the same property as in (1.1). In the case of w(t) = 1 4 2
the operators (3.1) coincide with (1.1).
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3.1. Theorem. For a continuous function f satisfying the condition

f(z)

x
lim —= = Ky < oo,
oo w(x

(z)

the equality

lim sup
n—0 0<z<by, w(z)

holds.

Proof. Obviously

Ln(f,2) — §(@) = 122 {Z m(Yer(2) (- 2) - Ff(x>} ,

and therefore

Lo(f,z) — Bn(Fs,z) — F
sup | Ln(f,2) = f(x)] _ sup | Bn (Fy, ) u r(@)]
0<w<bn w(z) 0<z<by I+

Also, Fy(x) is a continuous function on [0, 00) satisfying |Fy(z)| < Ms(1 + 2?), = > 0,
since we have the inequality |f(z)| < Mjw(z) for f. Therefore, by Proposition 2.3 we
obtain the desired result. g

Note that similar statements may also be obtained for the generalization of Bernstein-

Chlodowsky polynomials considered in [5].

Acknowledgment. The author is thankful to Prof. Dr. Akif D. Gadjiev, who suggested
the problem.
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