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Abstract 

Although Internet of Things (IoT) networks are massively deployed in many different areas, there are significant problems regarding 

the network topology and capacity, due to low smartness level of IoT devices and cost matters. Congestion and queue management 

especially in an IoT network buffer is one of the most important subjects that need to be considered. In this paper, we propose a novel 

game-theoretical approach to manage the queue and avoid possible congestion, by adding a little intelligence to dumb nodes with a 

lightweight method called AQM-of-Things (AQMoT). Extensive-form game formulation is used for defining decision making criteria 

of both IoT nodes (when to send) and gateways (when to drop). We describe a game model according to the queue level as well as other 

network conditions. Thus, a novel congestion avoidance method is proposed, where senders care about the gateway’s current situtation 

with a very lightweight game theoretical algorithm. We also demonstrate a conceptual comparison with alternative queue management 

approaches, and conclude that the proposed AQMoT approach has important advantages especially in IoT domain.  

Keywords: Internet Of Things, Active Queue Management, Congestion Avoidance, Game Theory   

Nesnelerin Kuyruk Yönetimi: Nesnelerin İnternetine Özel Kuyruk 

Yönetim Yaklaşımı 

Öz 

Birçok farklı alanda Nesnelerin İnterneti (IoT) kullanımının giderek yaygınlaşmasına rağmen, günümüzde hala cihazların düşük işlem 

yetenekleri ve maliyet endişeleri sebebiyle ağ topolojisi ve kapasitesiyle ilgili büyük problemler bulunmaktadır. Farklı öncelik 

seviyelerine sahip çok fazla veri trafiği oluşturan düşük işlem yetenekli sensörlerin ağ topolojisi içerisinde sayısı artırılırken genelde 

ağın kısıtları IoT’de göz ardı edilmektedir. Bu makalede, kuyrukları yönetebilmek ve ağdaki olası tıkanmaları engellemek için bu ağ 

noktalarına oyun teorisi yaklaşımlı bir aktif kuyruk yönetimi yaklaşımı önerilmiştir. AQM-of-Things (AQMoT) adı verilen bu 

yaklaşımda, ağ düğümlerine az miktarda ama etkili bir zeka kazandırılması önerilmektedir. Genişletilmiş bir oyun modeli formülize 

edilerek hem IoT cihazlarının ne zaman veri göndereceklerine dair, hem de haberleşme ünitelerinin ne zaman verileri düşüreceklerine 

dair karar verme mekanizmaları belirlenmiştir. Oyun modelinde kuyruk uzunluğu ve diğer ağ durumları dikkate alan bir yöntem 

geliştirilmiştir. Bu şekilde, diğer algoritmaların aksine haberleşme ünitelerinin durumunu hafif ve oyun teorisini baz alarak gözeten 

yenilikçi ve tıkanıklıktan kaçınan bir yaklaşımı öne sürüyoruz. Ayrıca AQMoT yaklaşımı alternatif kuyruk yönetim yaklaşımları ile 

kavramsal olarak karşılaştırılmış ve özellikle IoT alanında önemli avantajları olduğu sonucuna varılmıştır. 
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1. Introduction 

In IoT world, there are many nodes with different sizes 

including sensors, actuators, gateways or some middle-nodes 

such as routers, access points, extenders, relays which create a 

crowded network area as a result. According to a survey, there are 

50 billions of devices are connected to the Internet by 2020 where 

it will exponentially increase to 500 billions of devices as of 2030 

(Ataç et al. 2019). Within these nodes, there are lots of data 

traversing, where important portion of them are possibly 

redundant or have low-priority. An IoT network is typically 

considered as constrained node networks (which is an IETF 

definition) as it includes many constrained dumb endpoints. These 

endpoints produce lots of data which they sense and send them to 

related destinations. Many of them have no intelligence or any 

idea about when or how frequently to send their sensed data. They 

do not care if a network node is congested or not. 

There are many protocols suitable for IoT such as MQTT 

(Message Queuing Telemetry Transport) or AMQP (Active 

Message Queueing Protocol) which are lightweight but reliable 

protocols. These protocols stand on TCP/IP. Both of them uses 

queueing methodology to satisfy reliability and to avoid data loss 

during offline or communication failure states. On application 

layer, MQTT works with subscription/publish methodology 

which queues the messages before leaving the system and 

publishes to a specified topic which is considered also as 

application layer (Naik, 2017). MQTT does not implement a 

specific congestion control per se, but underlying TCP can handle 

this congestion control. Moreover, HTTP is still an irreplaceable 

protocol which is also used in IoT world even it is not lightweight 

like MQTT. Regardless of what is used, all of them relies on 

TCP/IP protocol and all of them needs a TCP congestion control. 

Recently new TCP congestion control algorithms are proposed for 

IoT networks (Verma et al. 2020). In addition to TCP-congestion 

control, Active Queue Management methodologies also used to 

maintain end-to-end non-congested network. One difference is 

that they reside at different layers where TCP-Congestion is 

handled in transport layer and Active Queue Management (AQM) 

is handled in network layer (Baker et al. 2015). Security is also a 

critical point over MQTT as there is always an option to use the 

non-secure MQTT which works on 1883 port as default. Applying 

a security over MQTT level, will also affect to lower levels, such 

as transport layer or network layer. There will be some impacts 

while implementing an algorithm at network layer. For example, 

a related work proposed an algorithm to authenticate and encrypt 

communication between the gateway and MQTT broker by also 

approaching from a new aspect to provide simultaneous 

encryption and MQTT-based communication by utilizing 

physical I2C property of the ARM Cortex M3 (Toğay et al. 2019). 

As this approach encrypts the message by starting from 

authentication phase, it should have some impacts while 

implementing some AQM algorithms which will be discussed 

later in this paper. 

Another vital part of IoT are the gateways which act as 

bridges between sensors and the server/cloud layer. Lots of nodes 

send data to same gateway, and gateway should handle this load, 

otherwise a congestion may occur and all the communication 

between nodes will be down. Most sensor nodes are so dumb that 

they cannot be configured generically, flexibly. They are aimed to 

send what they sense within pre-configured time intervals. One 

can’t tell them to stop while there is a huge load on a gateway or 

a main node. Even if we can tell them to stop, One need to speak 

in their different and separate languages. Thus, implementing a 

common interface would not be easy and efficient. So, instead of 

implementing on application layer, implementing on network 

layer would be easier and extendable. 

Another method to handle TCP congestion on IoT network is 

to use Explicit Congestion Notification (ECN) (Gomez, 2019). In 

this approach, they define dumb devices such as sensors, actuators 

as constrained nodes, and clouds as unconstrained nodes. There 

might be direct connection between constrained and 

unconstrained nodes where there might be a middleware between 

them as well. ECN allows a node to signal via the IP header of a 

packet to notify whether congestion is about to happen, for 

instance, when a queue size reaches a certain threshold. 

In aspect of AQM, the well known approach is Random Early 

Detection (RED) (Floyd et al. 1993) which calculates the average 

size of queue and drops the packets with defined possibilities 

between specific minimum and maximum queue thresholds. This 

satisfies proactive queue congestion control. This method is too 

simple but also generic. This approach inspires the researchers to 

create more RED-based AQM approaches to fit specific domains. 

In the literature, there are several extensions of RED. 

Weighted RED (WRED) defines different queue thresholds for 

different traffic classes and it is likely better at applying QoS-

Sensitive congestion avoidance. It has reasonable approach to 

drops and marks packets. Although WRED is limited in terms of 

number of traffic flow types, it is still more viable for some routers 

(Freed et al. 2006). Another extension of RED is Adaptive RED 

(ARED) (Feng et al. 1999) which tries to adapt itself to be more 

or less aggressive according to the observation of the average 

queue length. Caring with the content, another extension of RED 

is XRED which is a content aware approach (Hassan et al. 2003). 

This approach is similar to our proposed approach which 

contributes to IoT networking. The similarity and differences will 

be defined in Section III in detail. 

GREEN (Generalized Random Early Evasion Network) 

(Feng et al. 2002) is another congestion avoidance solution. A 

proactive queue management algorithm is proposed to ensure 

higher degree of fairness between flows. This algorithm uses 

more intelligent drop possibility calculation. It considers some 

network conditions like 𝑀𝑆𝑆, 𝑅𝑇𝑇 or outgoing link capacity. So 

that, it calculates more adaptive drop possibilities rather than 

random calculated possibilities and thus, can create fairness 

between flows. PIE (Proportional Integral controller Enhanced) 

(Pan et al. 2013) is robust and optimized for various network 

scenarios which does not require per-packet extra processing, so 

that causes very small overhead and ease of implementation and 

deployment at both device and software side. This algorithm uses 

different approach of drop probability calculation by not only 

using the current estimation of the queuing delay, but also sensing 

the direction of where the delay is shifting, which is not a simple 

random drop possibility. 

Grazia et al (Grazia et al. 2017) provides a simulation-based 

comparison of the selected ones of these algorithms in terms of 

goodput, throughput, RTT variation, fairness, etc. in order to study 

suitability of these algorithms for an IoT environment. They 

conclude that although some algorithms have no advantages over 

IoT network, ARED has a good performance over specifically 

high congested IoT networks. PIE seems to be the winner in any 

aspect of stress levels. 
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Another related approach is to provide fairness by penalizing 

unresponsive (or aggressive) traffic in case of network 

congestion. CHOKe algorithm is widely researched fairness-

oriented AQM algorithm which effectively punishes unresponsive 

traffic, although it is stateless and easy to implement. In order to 

improve the performance of CHOKe (Pan et al. 2000) (Eshete et 

al. 2013), numerous extensions are proposed, such as CHOKeR 

(Lu et al. 2013), CHOKeH (Abbas et al. 2018), D-PAC (Hu et al. 

2018), etc. These approaches further reduce the ratio of 

unresponsive traffic by making more match-and-drop 

comparisons. There is also another recent study which provides a 

fairness-oriented AQM algorithm called Hash Table and Circular 

Buffer (HTCB) that is inspired from CHOKe. This approach 

utilizes a hash table to identify aggressive traffic and aims to 

improve performance in network nodes with low buffer space. 

(Hu et al. 2020) 

Although all the mentioned approaches are valuable, they 

have still some limitations and deficiencies for IoT domain as we 

will discuss in Section III. In this paper, we will adopt a very 

simple but powerful intelligence on network layer of IoT nodes to 

use network fairly and feasible, moreover to handle a congestion 

and queue management. The main contribution of this paper can 

be summarized as follows. We propose an approach where any 

part of network (including source nodes) will give a hand to 

handle the congestion and queue management. We propose a 

novel decision-making mechanism for both the sender (whether 

to send a packet or not) and the receiver (whether to drop a packet 

or not) based on an extensive-form game model. In the game 

model, we take account of priority and size of packets, network 

conditions in the network side and also network conditions 

between the sender and the destination. On the contrary of most 

AQM algorithms, we avoid most of the packet drops in gateway 

by a light-weight decision making mechanism and we avoid dumb 

sensors to exploit network nodes with sending too much 

redundant data. 

Rest of the paper is organized as follows. Next section 

describes a general problem definition and detailed explanation of 

proposed novel AQM implementation. Section III decribes the 

efficiency of the proposed implementation by comparing with 

existing methods in various performance metrics. Finally, Section 

IV concludes the paper. 

2. Background and Algorithm Proposal 

2.1. Background 

In IoT, many kinds of topologies can be encountered. Within 

a simple network, there might be thousands of devices connected 

to each other. In some topologies, only one gateway takes care all 

the sensors. Where in some topologies there are some mid-

gateways that are responsible from a portion of sensors and collect 

the data and process to another main gateway to push the data to 

Internet as shown in Figure 1. 

MQTT protocol is the most common way to communicate. It 

uses the advantage of having a queue mechanism which keeps the 

messages in the queue when there is a connectivity problem, 

bottleneck, low-rates etc. When possible, it tries to consume the 

queue and send the messages to the destination. As IoT 

environments are prone to weak networks, there are many things 

to consider. Such as, if sender fills up its queue with message 

containing sensed values, and when a connection is up, it bursts 

all the messages in a dummy way. Sensors never consider if a 

gateway is tired or not. They always send over and over. They like 

exploiting the network, they do not recognize what a fairness is. 

So, they are such dumb that no gateway can tell them to stop. In 

an IoT environment, all the sensors vary, thus not identical. So, 

while a dumb sensor exploiting the network, some important 

sensors cannot send their important values which might cause an 

alert due to congestion. At these times, we wish to implement a 

fairness amongst sensors considering duplicate, unimportant or 

malfunctioned values. So, to satisfy all the requirements 

mentioned, we propose a novel AQM method which is called 

AQM of Things (AQMoT). Using this AQM approach, we try to 

handle the congestion within a network while satisfying some 

fairness and also a little intelligence for sensors or gateways in the 

network layer. 

 

 

Figure 1. An IoT Sample Environment where sensors 

directly connected to one and main gateway which tunnels to 

internet 

 

2.2. AQM-of-Things 

2.2.1. Concept 

The main concept is to think from the angle of sensors and 

gateways. A source (sensor, mid-gateway) will send message to a 

destination (gateway, communication node, mid-gateway). A 

sensor should consider the possibility of a congestion at the 

destination and also consider whether its message is important or 

not, whether it is big or small, and also consider the network status 

if it is weak or strong. So, if we impersonate as sensor, we’d not 

send our messages if they are not important and the network is 

weak and destination possibly in critical queue levels. We’d keep 

the message in the queue or drop it. Because our message will be 

dropped without enqueued or lost in network, why should we lose 

effort intentionally. Moreover, we’d try our chance sending the 

message if it is important even if destination queue is possibly 

congested. We can increase the number of examples. We’d also 

send our messages if it is big and unimportant, but destination has 

empty buffer, because the road is fully open and destination will 

accept, why not using it. It also keeps a good utilization over 

network. Many AQM algorithms have some important thresholds 

for deciding what to do with the packet. For example, accepting it 

or dropping it with a defined possibility according to the average 

queue. Calculation of average queue length also differs from 

method to another method. Such as, RED uses a simplistic 

average calculation like moving average where WRED depends 

on the previous average as well as the current size of the queue. 

Moreover, all of them define a different drop function beyond a 

defined threshold named as 𝑄𝑚𝑖𝑛. A drop function defines the 

possibility to drop a packet when it tries to enqueue itself to the 

queue. It is not more than a spinning a roulette to decide whether 
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to drop or not. It is not actually intelligent way to drop these 

packets. Moreover, what if sender is aware of the occupancy at 

the destination; would it still send the packet if its packet was 

going to be dropped or possibly not accepted? Why should 

destination always try to orchestrate everything where sender can 

be pushed for a cooperation easily? Let us give an analogy. In an 

online meeting there is a teacher and some students isolated from 

each other around him/her. In a traditional way, when students are 

talking at the same time, teacher tries to understand the 

conversations one by one. If he/she cannot understand some of 

them, ignore and focus other students to get the point. And then 

change the focus to another student who was ignored before, so 

on so forth. Now let us try this approach. Teacher notifies the 

students about his/her condition that there are some students 

already speaking. So, a student will understand that their teacher 

is already occupied with another conversations, and if it is not 

important, student may wait to speak or give up. Thanks to 

cooperation, teacher will understand and reply to everyone 

efficiently. So, how are we supposed to implement such an 

intelligent but also simplistic approach briefly mentioned above? 

Using some artificial intelligence or machine learning approaches 

may not be better as they will be heavy for our layer. Here we 

introduce a game theoretical approach which is very light and 

easy to implement and scalable. 

2.2.2. Implementation 

In this section we will describe details of the proposed 

AQMoT algorithm. We consider a two-player game, where the 

first player (player 1) is the sender and the second player (player 

2) is the destination which can be gateway, a communication node 

or a mid-gateway etc. In this game, player 1 will not be waiting 

for a possible signal from player 2 saying that “I’m congested, 

please stop!”. We will try to figure out how possibly player 1 is 

congested or congestion-candidate using some simple 

information such as 𝑅𝑇𝑇, time-outs, dupacks etc. Moreover 

player 2 will be transparent to player 1 in terms of queue status so 

that player 1 will be able to understand if its packet will be 

dropped at player 2 side if the packet manages to reach. We will 

be touching these details further later. The game is quite simple. 

We will try to reduce the following story to game theory payoff 

tables (Aumann et al. 1985). 

 

Figure 2. Extensive-form game formulation, where 

destination is Player 2 and source is Player 1 

 

In Figure 2, an extensive form game model (Kuhn et al. 2016) 

is illustrated where the first action (Send, Not Send) is played by 

the player 1 (P1 - sender), and the second action (Drop, Accept) 

is performed by the player 2 (P2 - receiver). The payoff values of 

the players in the game outcomes depend on the variables defined 

in Table 1. Both sides are focused to grant the greatest payoff by 

their action. Player 1 has the advantage of observing the latest 

status of Player 2. 𝑄 is the percentage of occupancy (busyness) of 

queue at the destination illustrated as in Figure 3. This function is 

similar to the drop function for other AQM algorithms like RED 

and WRED. 𝑄𝑚𝑖𝑛  is a minimum threshold for the destination to 

define itself as empty. Until this threshold in terms of Queue 

Average (𝑄𝑎𝑣𝑔), destination is not tended to drop any packet, but 

accept all. 𝑄𝑚𝑎𝑥  is another threshold which is close to maximum 

possible queue length of destination (buffer size). Beyond this 

threshold, destination is fully tended to drop all packets to keep 

its buffer at ease not to cause overflown buffer or some network 

problems. Between 𝑄𝑚𝑖𝑛  and 𝑄𝑚𝑎𝑥  thresholds, destination defines 

its occupancy as linear and tended to drop some of the packets by 

evaluating the packet size and its priority. In this implementation, 

without loss of generality, we will set our occupancy function as 

linear, while other functions (quadratic, exponential, etc) can also 

be used as desired. 𝑄𝑚𝑖𝑛  and 𝑄𝑚𝑎𝑥  are pre-set and static values 

just after the network is up and shared with any source via 

handshake process. Current occupancy percent (𝑄) is also shared 

by gateway (the destination) to sensors (the sources) when a 

sensor establishes a new connection via handshake, and with any 

acknowledge packets for incoming packets as illustrated in Figure 

4. 𝑄2  is another information used at the side of sender. This is 

based on 𝑄 plus other circumstances like timeouts, dupacks. If 𝑄2  

is tended to be greater than 100% which is not feasible, than it is 

assumed as 100%. The calculation methodology will be handed 

over in the next section. If player 1 (the sender) doesn’t see any 

possible overhead at its own side and find out the possible action 

of player 2 (the destination) which is an “accept” for a low-

prioritized, small sized packet under normal circumstanced 

network, both player 1 and player 2 will receive a good amount 

of payoff. The more prioritized packet is, the more payoff will be 

received by sensor and gateway. We will try both sides to boost to 

complete a transfer with high-prioritized packets. But also, sender 

will pay the cost of size of packet and average 𝑅𝑇𝑇. If packet is 

big and average 𝑅𝑇𝑇 is high, then player 1 needs to pay more from 

earnt payoff. It is assumed as an effort which should be reduced 

from total award. On the other hand, if there is a possible high 

occupancy at player 2 (the destination), and there is some network 

issues which is sensed from timeouts or dupacks and still player 

1 tries to send a packet, as player 2 may not receive it or drop it 

even if received, there will be futile effort at the side of Player 1. 

So, there will be no awards, but effort is lost in terms of 𝑆 and 

𝑅𝑇𝑇. 

        

Table 1.  Variables of the proposed game model 

pr Priority of packet from 0 to 1. 

S Size of packet from 0 to 1. It is calculated as the 

ratio of the packet size to the Maximum Segment 

Size (MSS).  

RTT Moving average of RTT occurred till then. 0 means 

low RTT, 1 means very high RTT.  

A An award. (-A stands for a penalty.) It should be 

greater than sum of maximum possible value of S 

and RTT. 

Q The percentage of busyness of queue at destination 

according to defined function. 

Q2 Drop probability at source. It is based on Q and 

additionally some other decision inputs (like 

timeouts, dupacks). 
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Figure 3. Queue occupancy function by queue average 

 

 

 

Figure 4. Flow diagram of queue information sharing from 

gateway to sensor 

 

Now let us describe the rationale behind the formulated game 

illustrated in Figure 2. If receiver has low or no occupancy (𝑄 is 

nearly 0), sending a packet will grant a payoff correlated with the 

priority of the packet. Low-prioritized packet grant low payoff 

etc. Player 1 always pay for the size of packet and packet delay 

𝑅𝑇𝑇 from its award. An award 𝐴 will be deterministic for our 

players behavior. Increasing 𝐴 will make both sides greedy and to 

grant it both sides will try to complete a packet transfer even in an 

occupied destination and loose network. Decreasing 𝐴 will make 

them to be at the safe side. They will take less risk. Accepting the 

packet for player 2 will give same amount of award excluding 

𝑅𝑇𝑇 as 𝑅𝑇𝑇 does not matter at the gateway side. It is the round 

trip delay experienced by the sender (sensor, in our scenario). 

Now let us consider the outcome where player 1 sends and 

player 2 drops in a non-occupied queue. Player 1 will get the same 

reward mentioned above, but player 2 will receive a penalty 

correlated with the priority of packet. This action is actually 

undesired. We try to avoid player 2 not accepting packets while 

available to keep the system utilized. Last action for Figure 2, not 

sending the packet in an available system which makes no 

difference at gateway side. So that gateway will not be granted or 

fined any payoff. Player 1 also never receives anything. We want 

to keep them away from this lazy action by zero-grants as much 

as not needed. But if needed, they would profit from loss. 

Let us examine the scenario where player 2 is occupied. If 

player 1 sends the packet to occupied player 2, then player 1 must 

pay for the futile effort (−𝑆 − 𝑅𝑇𝑇). In all payoffs, according to 

the 𝑄 value, left-hand side or right-hand side will be dominant. If 

𝑄 is high, then the side which is multiplied with 𝑄 is dominant, if 

𝑄 is low then the side which is multiplied with (1 − 𝑄) is 

dominant. If the packet is too prioritized, then the punishment 

aimed to be less due to the left-hand side. We do not want to blame 

too much if player 1 wants to send a very prioritized packet to an 

occupied destination. Trying to accept a packet for player 2, will 

make it lose in the same way excluding 𝑅𝑇𝑇. So, for the next 

scenario, player 1 sends to occupied player 2 and player 2 drops; 

player 1 will be fined for the efforts done, but player 2 will be 

granted with an award of 𝐴 by dropping the packet. This is also 

correlated with the unimportance of packet. Not accepting a low-

prioritized packet will grant more as usual. 

2.2.3. Numerical Results 

In this title, we will simulate how AQM algorithm works with 

real life use cases. We will instantiate some environments to have 

better understanding about the proposed AQM algorithm. Now let 

us give some example environments and analyze the 

corresponding game models. Let us imagine an environment 

where the sensor wants to send a medium sized packet (𝑆 =0.5) 

with medium priority (𝑝𝑟 =0.5) on a high-speed link with low 

𝑅𝑇𝑇 value. Award is set to 4 which is a moderate incentive value 

and there is no occupancy at the destination and no recent 

timeouts or dupacks, thus 𝑄 = 𝑄2 = 0. The normal-form 

representation of the extensive form game for this scenario is 

illustrated in Table 2. In this game, Send, Accept is a Nash 

Equilibrium (Kuhn et al. 2016), because both do not gain more by 

changing their actions. For the sender, it would be OK to send the 

packet, because it will be awarded with a reward of 1.4 and also 

it obviously knows that destination will accept the packet. 

Table 2.  Payoff Table for given environment 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (1.4 , 1.5) (-0.6 , -1.5) 

Not Send (0 , 0) (0 , 0) 

pr: 0.5   S: 0.5   RTT: 0.1   A:4   Q:0  Q2:0 

Now, let us imagine the same environment, but we would like 

to send very prioritized packet such as 𝑃𝑟 = 0.9. The 

corresponding payoff table is shown in Table 3. Sending the 

packet will reward both side 3 and 3,1 respectively with Send, 

Accept action which has greater payoffs than the previous one. 

Another identical environment but with highly occupied 

destination (𝑄 = 0.7), with some timeout and dupack scenarios, so 

that 𝑄2  is 0.8. Table 4 shows the corresponding game. Here, there 

is a considerable occupancy at the destination, but also there is a 

high prioritized packet. So, still sending it will be the best 

selection although the rewards are lower than the previous cases. 
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Table 3.  Payoff Table for given environment for high 

prioritized packet 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (3 , 3.1) (-0.6 , -3.1) 

Not Send (0 , 0) (0 , 0) 

pr: 0.9   S: 0.5   RTT: 0.1   A:4   Q:0  Q2:0 

 

Table 4.  Payoff Table for given environment for high 

prioritized packet in a highly occupied destination with some 

network issues at sender 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (0.12 , 0.3) (-0.6 , -0.3) 

Not Send (0 , 0) (0 , 0) 

pr: 0.9   S: 0.5   RTT: 0.1   A:4   Q:0.7  Q2:0.8 

 

Now, let us consider an environment where the sender 

realizes more timeouts and dupacks compared to the previous 

cases, and the 𝑄2  value is 0.9 at sender side. The payoff values are 

now shown in Table 5. 

 

Table 5.  Payoff Table for given environment for high 

prioritized packet in a highly occupied destination with more 

network issues at sender 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (-0.24 , 0.3) (-0.6 , -0.3) 

Not Send (0 , 0) (0 , 0) 

pr: 0.9   S: 0.5   RTT: 0.1   A:4   Q:0.7  Q2:0.9 

Here when we consider destination, it seems to accept the 

packet, if the packet can make through its way to destination. 

However, sending the packet will give a negative payoff to the 

sender. So, here not sending the packet would be the best choice 

as there is no loss in this action for sensor. This scenario can be 

commented as there is some network issues and the destination is 

highly occupied, so no need to take risks on the network for this 

packet and it might be better to relax destination side by not 

sending this packet. The flow after “not send” action will be 

revealed in the next section. Now, we consider another scenario 

where a medium-low priority packet is sent to a medium-low 

occupied destination and there exists some network issues. In the 

resulting payoff table shown in Table 6, it is clearly seen that 

Player 2 will drop the packet if player 1 sends. So here, it is not 

possible to collect 0.36 payoff in the action Send, Accept. If player 

1 sends the packet, player 2 drops it and player 1 gets –0.6. So 

that, not sending the packet will make it profit from the loss with 

zero-grant, in other words, zero-loss. 

 

 

Table 6.  Payoff Table for given environment for mid-low 

prioritized packet in a mid-low occupied destination with 

medium packet in a high-speed link network with some network 

issues. 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (0.36 , -0.1) (-0.6 , 0.1) 

Not Send (0 , 0) (0 , 0) 

pr: 0.4   S: 0.5   RTT: 0.1   A:4   Q:0.3  Q2:0.4 

 

However, this does not mean that this packet will be vanished 

and never be sent to destination again. Not sending a packet which 

is going to be dropped would result in a high utilization and effort. 

Waiting for a better time to send it will be a better and efficient 

choice. If award is increased, let us say 𝐴 = 8, then both sides will 

have more dare to fulfill their mission. Source will force itself to 

send the message to destination no matter what and the destination 

will force itself to accept the packet unless there are extraordinary 

situations. This scenario can be observed in Table 7. 

 

 

Table 7.  When award increased, both sides observe that they 

resist to extraordinary situations. 

P
la

ye
r 

1
 

Player 2 

  Accept Drop 

Send (1.32 , 0.3) (-0.6 , -0.3) 

Not Send (0 , 0) (0 , 0) 

pr: 0.4   S: 0.5   RTT: 0.1   A:8   Q:0.3  Q2:0.4 

 

 

2.2.4. Deep Diving 

So far, we explained the proposed method in general terms 

and try to give a better understanding on what we are aiming to 

do, briefly. Now we will deep dive into the proposed algorithm to 

describe the details of the variables used in the game model, and 

how to determine them. First struggle is how to determine the 𝑄2  

which is based on 𝑄 and increased with some dupack and 

timeouts. The value of increment is called 𝑄𝑎, hence 𝑄2 = 𝑄 +
𝑄𝑎. The value of 𝑄𝑎  is proportional to some score 𝛼 which is 

between 0 and 100. Actually, 𝛼 is sum of two non-negative scores, 

one is 𝛼𝑡  which is related to timeout events, and the other is 𝛼𝑑   

which is related to dupacks. Hence 𝛼 = 𝛼𝑡 + 𝛼𝑑. If there is no 

congestion and all the ACKs are received in time, then 𝛼 = 0 and 

there is 100 score to fill up. When a timeout occurs for a sent 

packet, 𝛼𝑡  would be incremented by 2𝑛  where 𝑛 is the number of 

consecutive timeouts. However maximum value of 𝛼 cannot 

exceed 100. When an ACK of a packet is received successfully 

after a timeout event, 𝛼𝑡  is reset to 0 (but 𝛼𝑑  stays as is). Moreover, 

any dupacks will add 1 to 𝛼𝑑  and normal ACKs will subtract 1 

from the score granted from dupacks. 𝛼𝑡   and 𝛼𝑑  are separate 

scores that do not affect each other, however their sum, 𝛼, cannot 

exceed 100. Then, 𝑄𝑎  is determined based on 𝛼. In our model, 

𝑄𝑎 = 𝛼/100 ∙ 𝑄/2, hence the maximum value of 𝑄𝑎  cannot 
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exceed 𝑄/2. To be more specific what we are trying to do that 

here; we actually do not want this part to strongly affect 𝑄2  as 𝑄 

itself is already robust and decision-maker. That’s why we wanted 

its effect as half of what 𝑄 is. This is still open for discussion and 

will be fine-tuned in the future works. For example, if 𝑄 is 0.3, 

then 𝑄2  can be as much as 0.45. If 𝛼 = 50, then 𝑄2 = 0.3 +
0.075. 

Another struggle is to determine packet priority. This can be 

set at application layer where we will determine this at the 

transport layer. A packet priority can be overridden by any higher 

layers at sensor side. But this priority should be used cautiously. 

Setting all the priorities as the highest will incur the general 

system to determine which packet is important or not. Besides of 

overriding the priorities, as default approach the payload is read 

within a TCP envelope. Sensors usually create same values within 

a specific time interval. Thus, if a sensor value is the same with 

the previous one, this will decrease the importance of packet. Any 

identical value will decrease 0.1 score over 1 as priority. Any 

different value will reset this priority to important state with score 

1. Now, “not send” actions require special care where we will 

touch in detailed here. Let us think from the aspect of MQTT 

level. There are lots of values that are queued to be sent. MQTT 

can use priority in its queue itself. When a value desired to be sent, 

a TCP packet shows up to wrap this value in transport layer and 

transfers to network layer. In this layer, it can also be accessed to 

payload of TCP packet. The game theoretical decision is 

implemented here, if it happens to decide not to send the packet, 

a waiting period for this packet appears. This waiting period 

depends on the absolute value of the greatest negative payoff of 

source or destination in Send action. For example, in Table 6, it is 

0.1 which comes from Send, Accept action. In Table 5, it is 0.24. 

This represents the value how easily source picked this action if it 

decided not to send due to 𝑄2, or how easily destination picked 

this action if it decided to drop due to 𝑄. This extracted value is 

multiplied by Award 𝐴 to find how much to wait in terms of 

seconds, such as 4 ∗ 0.24 = 0.96 sec. After this waiting period, 

transport layer will be notified as the packet refused. So that, TCP 

would learn that specific packet was unable to be sent. As it has 

retransmission policy this packet will be resent, or it will be 

discarded if maximum retransmission count has been reached. If 

the packet is resent, then its priority will be increased by 0.1 and 

decisions would be re-evaluated using game theory. An overview 

of the algorithm is revealed in the pseudocode given in Figure 5.  

The last, but not the least variable is award 𝐴. This award can 

be set static which should not be a problem and it is 3 as default. 

But customizing this award according to senders will provide 

many advantages. Awards boosts the source and destination to 

send and accept the packet. If award is high enough, and if a 

packet is decided to be sent, the more payoffs will be granted for 

sender. Award can be determined by receiver and sent to the 

sender with an ACK packet using "option" header in TCP. 

Receiver such as gateway can store the senders and can find their 

value time intervals or their importance of values by reading the 

payload. So, frequent message senders can be awarded less than 

rare message senders. Assume that a temperature sensor sends 

value within 5 second cycles, but an anomaly detector camera 

sends value only when an intrusion or suspected actions happens 

which rarely occurs only per 6 hours averagely. So, gateway can 

give high award to camera, on the contrary low award to 

temperature sensor which will throttle it. Moreover, sensors can 

override award value on their own and share it with destination 

via handshake process if it is a reliable device. But it should be 

overridden with caution, otherwise that device might turn into a 

zombie exploiting the network and destination. 

 

 

 

Figure 5. Pseudocode of the proposed approach. 

 

3. Comparison and Discussion  

3.1. Comparison 

AQMoT is an IoT specific scalable AQM implementation 

algorithm to cope with queue and congestion effectively. Out of 

scope of IoT, it might not be appropriate. But, in a contemporary 

world circumstances IoT is a must and widely spread. So, this 

algorithm may have a remarkable acceptance comparing other 

IoT-domained AQM implementations. 

AQMoT has also some limitations. Firstly, it may not work 

as proposed above in an environment with end-to-end encryption. 

If security is applied at the application layer, such as MQTTS 

(MQTT secure), the content will be encrypted which disallow us 

to read the content, and leads us to a problem of determination of 

priority. In this case, priorities should be defined at application 

layer and should be passed to transport layer and network layer in 

the end. Otherwise, the priority determination approach can be 

renewed such that all the packet priorities are defined as 0.5 for a 



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  178 

specific packet, and the priority is incremented by 0.1 if it is not 

sent and dedicated to re-send process. Packets can be 

distinguished by their sequence numbers reside in TCP headers. 

The second limitation of AQMoT is that it requires space in TCP 

headers to share some information between sender and destination 

(such as Queue information, Award amount, etc.). Moreover, 

some packet processing and memory issues are added such as 

reading and comparing the contents and the priorities. However, 

these requirements are minimal and it would not be a big deal for 

the nowadays devices. 

Now, we will provide a conceptual comparison of AQMoT 

and alternative queue management methods that can be applied in 

IoT environment. The first method to be considered is ECN 

although it may not be counted as an active queue management 

approach. In ECN method, a node can notify another node if it 

arises a congestion or not by using IP headers. In this 

implementation, An ECN-enabled TCP receiver node will return 

with a congestion signal to this notification signal by setting a flag 

in its next TCP Acknowledgment. ECN is also able to reduce 

packet losses thanks to proactive congestion control; this leads to 

an energy and bandwidth save which is crucial for IoT network 

called Constrained Node Networks. This method can contribute 

any AQM algorithm to satisfy comfort at the network buffer. But 

this implementation is too general and it has no specific features 

for IoT environment. There are plenty of types of nodes within an 

IoT network where generalization might not work very well. All 

the nodes require special assistance and individual interest. Some 

resource-exploiting nodes can cause a general outage as there is 

no specific throttling mechanism as we proposed. 

RED is a generic AQM approach to handle queues in any 

domain. Although it has an ease of deployment, it is not adaptive 

to different types of network domains and it might not fit well to 

IoT domain. However, this approach has inspired researchers to 

develop many novel approaches. One of the mentioned 

approaches based on RED is WRED that has different calculation 

way of average queue and drop function for different traffic 

classes. WRED, is likely better at applying QoS-Sensitive 

congestion avoidance. It has reasonable approach to drop and 

mark packets compared to RED but it is still not fully suitable to 

IoT network. Because it does not value the content and the sender. 

It fully focuses on the destination.  

Another mentioned variance of RED is ARED. In this 

approach, the queue average is observed and decided to be more 

or less aggressive while marking and dropping the packets even 

though a queue is more or less busy. It adapts itself in accordance 

to current status. Similar to RED, ARED has two thresholds 

𝑚𝑖𝑛𝑡ℎ and 𝑚𝑎𝑥𝑡ℎ where queue average may oscillate around 

these limits so that it can define its behavior such as being 

aggressive or conservative. It also adapts drop probability in these 

times to maintain more adaptive approach for the variable 

network conditions. This is also a desired thing in IoT domain. 

ARED shows up with the best performance in a highly congested 

environment, however it diminishes its performance when it 

encounters with an environment with multiple RTT flows. It is 

also good at fine-tuning the trade-off between goodput and delay 

performance (Grazia et al. 2017). However still as it does not 

value the content and network exploiting nodes, and since sender 

nodes do not cooperate as they do in AQMoT approach, it may 

not be fully “adaptive” to IoT environment.  

XRED which values the content is a good approach. Because by 

valuing the content, all arriving packets are assigned to some 

priorities and these priorities are used in the packet drop decision. 

This aims to maintain the network by handling important packets 

and getting rid of useless packets. This work has a commonality 

with our AQMoT approach which cares about content as well. In 

IoT networks, significance of the content is very important and 

for fair and effective queue management, it should be considered. 

However, this approach has the same disadvantages of ours in 

aspect of content reading. In addition, still there is no cooperation 

between sender and destination, many packets can fade away due 

to drop possibilities causing packet losses. 

GREEN uses some network conditions such as 𝑀𝑆𝑆, 𝑅𝑇𝑇, 

outgoing link capacity, and number of active flows. Using such 

kind of terms to define the drop possibility makes it more 

reasonable. Moreover, this algorithm proposes a good fairness 

index between flows (Feng et al. 2002). According to (Grazia et 

al. 2017), PIE, which also overcomes GREEN, has a resistance to 

all the stress factors, and it has one of the best trade-offs between 

channel exploitation and delay. Coping with channel exploitation 

is actually a big part of coping with the whole IoT network. It has 

also latency-based drop possibility calculation which is not fully 

random and can be considered as smart dropping. This approach 

also has a goal to guarantee high-link utilization. However, still it 

has no cooperation between sender and destination and content 

awareness which may cause some overhead in IoT network. This 

still does not avoid sending packets which possibly will be 

dropped by destination or within network which may cause a 

futile effort in such an IoT dumb data traffic.  

CHOKe and its variants provide fairness by penalizing 

unresponsive traffic. Since these approaches are stateless, they are 

simple to implement and require less resources. AQMoT differs 

from these studies by adding a little intelligence to sensor nodes 

to avoid them sending data aggressively, instead of penalizing 

them after the congestion occurs.  

3.2. Discussion 

In Table 8 algorithms are compared in terms of many aspects. 

"Content Awareness" points to intelligent actions taken according 

to the packet content, which is a feature satisfied by XRED and 

AQMoT. Both algorithms run some logic according to content 

located in the packet. Others operate regardless of what the 

content is. "Ease of deployment" mentions about ease of 

implementation and deployment to the plenty of network nodes. 

AQMoT has medium level in this category, because some nodes 

sometimes need to override some priority values which requires 

extra development at the nodes. Moreover, it requires an update 

in the devices in Operating System level. Well-known and base 

algorithms like ECN, RED has a high level of ease of deployment 

as they are general approaches in this topic. The more complicated 

algorithms they run, the harder to deploy them. Adaptive 

approaches like ARED has some struggles to deploy as the logics 

and algorithms they run may not be compatible for some kinds of 

nodes. "Fully IoT compatible" means whether an algorithm is 

developed specifically, efficiently, optimized, and compatibly for 

many IoT environments. Here, AQMoT is specifically designed 

for IoT so that it has the highest score in this scope. "Other 

domains" points to the capability of the algorithm to be efficiently 

and compatibly used in other domains. Many of the algorithms 

can be used in different domains other than IoT, but AQMoT can 

cause overhead. For example, if it is used in streaming services, 

the system suffers from content reading and tracking. General 

approaches like RED and ECN has a huge implementation area 

within many kinds of domains. "Complexity" points to algorithm 
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complexity. RED is the simplest and the ancestor for many of 

them. The others actually extended the implementation to do 

some specific things, such as drop function calculation etc. which 

adds extra complexity to algorithms. Although AQMoT has a 

decision-making algorithm within its nature, it is as simple as 

possible. So the complexity should not be assumed more than a 

normal level. "E2E semantics (End to End semantics)" points to 

compatibility throughout all the nodes within network regardless 

of whether it uses secure channel or different implementations in 

mid-nodes. AQMoT and XRED can be affected if a secure 

channel preferred which blocks both algorithms to read the 

content as it is encrypted. "Coop" means cooperation between 

source (sender) and destination where they both value current 

conditions of each other. Besides AQMoT, ECN has also 

cooperative approach where it signals the sender if it feels itself 

as congested and sender behaves according to this signal. 

Destination is clear about its condition to sender in order to push 

it to coordinate. Other algorithms do not have such kind of 

approach, they do not care about the opposite side. "Intelligence" 

means that if algorithm runs some intelligent operation to save 

itself from randomness, adapts itself to some conditions. For 

example, PIE uses different approach at calculation drop function 

by using queueing delay and its tendency to more or less. XRED 

also uses content tracking to determine priority which is a simple 

intelligence. ECN and RED algorithms are simple and constant 

algorithms which do not change in any condition. On the other 

hand, AQMoT has different decisions and results with respect to 

many kinds of conditions as described before. 

4. Conclusions 

In this study, we propose a novel AQM algorithm which 

specifically, efficiently and compatibly works in IoT domain. The 

main aim is to avoid futile efforts of dumb IoT nodes, by throttling 

them if they are exploiting too much resources by sending a lot of 

low-priority data. For this purpose, we describe a novel light-

weight decision-making process based on game theory, where 

senders (sensors) get feedback from gateways, and make sending 

decisions accordingly. In this process, senders and receivers are 

also aware of priorities and contents of the packets. Thus, the 

proposed approach has a potential of providing better quality of 

service and fairness. To the best of our knowledge, this is the first 

AQM approach based on game theory, which is specifically 

designed for IoT networks. Although the proposed algorithm is 

candidate to good results, it is still open to further development. 

There are several operations that should be adjusted to find the 

best practice, such as determining the 𝑄 values, the variables used 

in game model and the occupancy function. Occupancy function 

can be exponential or adaptive rather than linear which will be 

further examined as a future work. Moreover, a detailed 

experimental study is planned in an active IoT environment. 
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