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Abstract

A related fixed point theorem for two pairs of set valued mappings on
two complete metric spaces is proved..
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1. Introduction

In the following we let (X,d) be a complete metric space and B(X) the set of all
nonempty subsets of X. As in [1] and [2] we define the function (A, B) with A and B in
B(X) by 6(A, B) =sup{d(a,b) : a € A, b € B}. If A consists of a single point a we write
0(A, B) = d0(a, B). If B also consists of single point b we write 6(A, B) = d(a, B) = d(a, b).
It follows immediately that (A, B) = §(B,A) > 0, 6(A, B) = 0 implies A = B and this
set is a singleton, and §(A4, B) < §(A,C) + §(C, B) for all A, B in B(X).

If now {4, : n =1,2,...} is a sequence of sets in B(X), we say that it converges to
the closed set A in B(X) if

(i) each point a € A is the limit of some convergent sequence {a, € A, : n =
1,2,...}, and

(ii) for arbitrary € > 0, there exists an integer N such that A, C Ae for n > N,
where A, is the union of all open spheres with centres in A and radius e.

The set A is then said to be the limit of the sequence {A,}.

The following lemma was proved in [2].

1.1. Lemma. If {A,} and {Bn} are sequences of bounded subsets of a complete met-
ric space (X, d) which converge to the bounded subsets A and B, respectively, then the
sequence {0(An, Bn)} converges to (A, B).
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Now let F' be a mapping of X into B(X). We say that the mapping F' is continuous
at a point x if whenever {x,} is a sequence of points in X converging to z, the sequence
{Fz,} in B(X) converges to Fz in B(X).

We say that F is a continuous mapping of X into B(X) if F is continuous at each
point z in X. We say that a point z in X is a fized point of F' if z is in Fz.

If Aisin B(X) we define the set FA ={J,., Fa.

The following theorem was proved in [4].

1.2. Theorem. Let (X,d1) and (Y,d2) be complete metrics spaces, let F' be a mapping

of X into B(Y) and G a mapping of Y into B(X) satisfying the inequalities
§1(GFz,GFz") < cmax{di(z,z"), 61(x, GFx), 61(x’,GFx"), d2(Fa, Fx')},
82(FGy, FGy') < cmax{dz(y,y"), 82y, FGy), &2y, FGY'), 61(Gy, Gy')}

for all z,x’" in X and y,y’ inY, where 0 < ¢ < 1. If F is continuous, then GF has a
unique fized point z in X and F'G has a unique fized point w in Y .

2. Results

We now prove the following generalization of Theorem 1.2.
2.1. Theorem. Let (X,d1) and (Y,d2) be complete metrics spaces, let F and G be map-
pings of X into B(Y) and P and Q mappings of Y into B(X) satisfying the inequalities
(1) §1(PFz,QGx") < cmax{di(z,z"), 61(z, PFx), 61(x',QGz"), 62(Fz,Gx")},
(2)  0(GPy, FQy') < cmax{da(y,y), 62(y,GPy), da2(y', FQy), 61(Py,Qy")}
for all z,z" in X and y,y inY, where 0 < c < 1. If F and G are continuous,then PF

and QG have a unique fixed point z in X and GP and FQ have a unique fized point w
mnY.

Proof. Let z1 be an arbitrary point in X. Define sequences {z,} and {y,} in X and YV’
respectively as follows. Choose a point y1 in Fx1, a point x2 in Py, a point y2 in Gx2
and then a point z3 in Qy2. In general, having chosen z, in X and y, in Y, choose a
point y2,—1 in Fre,_1, a point x2, in Pys,_1, a point ya, in Gxa, and then a point
Zont1 In Qyan for n =1,2,.... Then, using inequality (1), we have
d1(z2n+2, Tan+1) < 01 (PFxont1, QGxan)
< cmax{di(T2n+1,Z2n), 01(T2ny1, PFTont1),
01(x2n, QGx2n), 02(Fxony1, Gran)}
< emax{61 (QGzan, PFr2n—_1), 61(QGx2n, PFT2n41),
01(PFzon—1,QGx2,), 62(Front1,Gran)}
(3) = cmax{51 (PF:I'Qn_l, QGl‘Qn), 52(pr2n_1, FQan)},
since
(52(F:E2n+1, G.Tgn) S 52(pr2n—1: FQy2n)-
Similarly, using inequality (1) again, we have

di(x2n+2, Tonts) < 01 (PFrant1, QGxany2)
(4) < cmax{61 (PFz2n+1, QGx2r), 92(GPY2n+1, FQy2:)}.
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Using inequality (2), we have
d2(Y2n+1, Yan+2) < 62(FQy2n, GPyY2n+1)
< cmax{d2(Y2n, Y2n+1), 02(Y2n+1, GPY2n+1),
02 (y2n, FQyan), 01(Pyant1, Qyzn)}
< cmax{d2(GPyan—1, FQy2n), 02(FQy2n, GPY2n+1),
62(GPy2n—1, FQuan), 61(Pyan+t1,Quzn)}
(5) < cmax{d2(GPy2n—1, FQy21), 61(PFTan+1,QGx2,)},
since
61(Py2nt1,Qy2n) < 01 (PFxoni1, QGran).
Similarly, using inequality (2) again, we have

d2(Y2n+2, Yon+3) < 02(GPyYant1, FQyani2)

(6) < ecmax{d2(GPy2n+1, FQy2n), 01(PFzon+1, QGTani2)}-
‘We will now prove that

(7) 51 (PFzant1, QGr2,) < 'K,

(8) 51 (PFz2nt1, QGTon42) < K,

9) 82(FQy2n, GPyant1) < 'K,

(10)  02(GPy2nt1, FQy2n+2) < K,

where

K= max{&l(Ple,QGmg), 51(PFLE3,QG.Z‘2),61(PF$3,QGZIZ’4),
02(GPy1, FQyz2), 62(GPys, FQy2)},
forn=1,2,....

Inequalities (7) to (10) clearly hold when n = 1. Suppose inequalities (7) to (10) hold
for some n. Then it follows from inequality (3) that

01(PFxon+3, QGrany2) < cmax{d1(PFx2nt1, QG%2n42), 02(GPyan+1, FQyan+2)}
S Cn+1[(

on using our assumptions on inequalities (8) and (10). Inequality (7) now follows by
induction.
Using inequality (5), we have
82 (FQy2n+2, GPy2nt3) < cmax{d2(GPy2n+1, FQyan+2), 61(PF2an+3, QG22n+2)}
< cn+1 K,

on using inequality (7) and our assumption on inequality (10). Inequality (9) now follows
by induction.

Using inequality (4), we have
01(PFx2nt3, QGTanta) < cmax{01(PFrants, QGTan+2), 02(GPyants, FQyant2)}
< "MK,
on using inequalities (7) and (9). Inequality (8) now follows by induction.
Finally, using inequality (6), we have
02(GPy2n+3, FQyan+a) < cmax{d2(GPy2nts, FQy2n+2), 01(PFT2n43, QGT2n+4)}
< "MK,
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on using inequalities (8) and (9). Inequality (10) now follows by induction.
It follows that, for r =1,2,...,
d1(2n+1, Tongrt1) < di(@ont1, Tant2) + di(Tant2, Tants) + ...
+ di(T2ntr, Tantri1)
< 61(QGxan, PFxont1) + 01(PFxont1, QGrany2) + -
<@+ MM T 4O
<€,

for n greater than some N, since ¢ < 1. The sequence {z,, } is therefore a Cauchy sequence
in the complete metric space X, and so has a limit z in X. Similarly the sequence {y,}
is a Cauchy sequence in the complete metric space Y and so has a limit w in Y.

Further, with m > n, we have
01(QGx2n, PFxom+1) < 01(QGx2n, PFxant1) + 61 (PFzant1, QGTon42)+
+ -+ 61(QGr2m, PFr2my1)
<+ MM T 4K

(11) <e€
for n > N. Next, we have

01(2, QGx2,) < di(z, Tam+2) + 01(T2m+2, QG2n)

< di(2, 22m+2) + 61 (PFT2m+1, QGr2n),

since Tam+2 € PFT2m41. Thus, on using inequality (11), we have

01(z, QGx2n) < di(z, Tam+2) + €
for m > n > N. Letting m tend to infinity it follows that

01(z,QGx2n) < €
for n > N, and so
(12) nILH;o QG2 = {2z},
since € is arbitrary.

Similarly,
(13) HILH;O PFzoni1 = {2z},
(14) nllrr;o GPyoni1 ={w} = nan;Q FQuyan.-
From the continuity of F' of GG, we have
(15) nlirréo Fxony1 = Fz = {w},
(16) nlingo Gzan, = Gz = {w}.
Using inequality (1), we now have
01(PFz,QGx2y,) < cmax{di(z,x2n), 01(z, PFz2),01(x2n, QGx2n), 62(Fz, Gran)}.
Letting n tend to infinity, and using equations (12) and (16), we have
01(PFz,z) < cdi(PFz,z).

Since ¢ < 1, we must have
(17) PFz = {z} = Pw,
on using equation (15), proving that z is a fixed point of PF.
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Using inequality (1) again, we now have
01(x2nt2, QGz) < 61(PFzan+1, QG2)
< emax{di(z2n+1, 2), 01(T2n+1, PFTant1),
01(2,QGz), 02(Fxont1,Gz2)}.
Letting n tend to infinity, and using equations (13), (15) and (16), we have
01(z,QGz) < ¢d1(z, QGz).
Since ¢ < 1, we must have
(18)  QGz={z}=Qu,
on using equation (16), proving that z is also a fixed point of QG.
It now follows from equations (15) and (18) that
FQuw = Fz = {w},
and it follows from equations (16) and (17) that
GPw = Gz = {w}.
Therefore, w is a fixed point of F'(Q and GP.

To prove uniqueness, suppose that PF and QG have a second common fixed point z’.

Then using inequalities (1) and (2), we have
max{61(z',QGz"), 61(z', PF2")} < 51(PF2',QG?")
< cmax{di(?',2"), 61(z', PF2"), 6:1(2',QG?2"), 82(F2',G2')}
= cbo(F2',G2")
< c02(GPFZ, FQGZ')

< Emax{6:(Fz',G7)), 62(F2' ,GPFZ), §:(GZ', FQG?'), 6:(PFz,QG%")}

< & max{6:(GPFZ , FQGZ)}, 6,(PFz QG
= 26,(PFZ, QG2
and it follows that

max{d1 (', QG7"), 61(¢, PFz )} = 61(PF% ,QGz%) = 62(F% ,Gz') = 0,
{

since ¢ < 1. Thus Fz' and G2’ are singletons and
PFZ = QGZ = {'}.
Using inequalities (1) and (2) again, we have
di(z, z/) =61 (PFz, QG2
< cmax{di(z,2"), 61(z, PFz2), 61(z',QG2"),62(Fz,Gz")}
cdz2(Fz,G2)
cd2(Gz, F2')
< ¢82(GPFz, FQG?")

IN

& max{ds(Fz, Fz'),di(z,2)}
=c2di(z, 7).

Since ¢ < 1, the uniqueness of z follows.
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A max{ds(Fz, G2'), 62(Fz, GPFz), §2(Gz', FQG?'), 61(PFz QGz')}
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Similarly, w is the unique fixed point of GP and F'Q). This completes the proof of the
theorem. O

If we let ' and G be single valued mappings of X into Y and let P and @ be single
valued mappings of Y into X, we obtain the following corollary, which generalizes a result
given in [3].

2.2. Corollary. Let (X,d1) and (Y,d2) be complete metric spaces. If F and G are

continuous mappings of X into Y and P and Q are mappings of Y into X satisfying the
inequalities

di(PFz,QGx") < cmax{di(x,2"), di(z, PFz), di(z',QGx"), d2(Fzx,Gz")},
d2(GPy, FQy') < cmax{dz(y,y"), d2(y,GPy), d2(y', FQY'), di(Py,Qy’)}

for all z,x’ in X and y,y’ inY, where 0 < c < 1, then PF and QG have a unique fized
point z in X and GP and FQ have a unique fized point w in Y.
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