hacettepe Journal of Mathematics and Statistics Volume 32 (2003), 13-15

SOME CHARACTERIZATIONS OF LIFTING MODULES IN TERMS OF PRERADICALS

Nil Orhan^{*}

Received 27.05.2003 : Accepted 24.10.2003

Abstract

Some results on the direct sum of two certain lifting modules are given in terms of left preradicals.

Keywords: Lifting modules, left preradicals. 2000 AMS Classification: 16D 99, 16D 99

1. Preliminaries

Throughout this paper, all rings will have identities and all modules will be unital right modules. Let M be a module. Any small submodule K of M is denoted by $K \ll M$. The socle of M is denoted by Soc(M), the Jacobson radical of M by Rad(M).

Let M be a module. M is called *lifting* if for every submodule N of M there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq N$ and $N \cap M_2 \ll M_2$. By [3, 41.12], M is lifting if and only if M is amply supplemented and every supplement submodule of M is a direct summand of M. Recall that any submodule N of M is called a *supplement* of any submodule K of M if M = N + K and $N \cap K \ll N$ (in this case, N is also called a *supplement* submodule of M) and the module M is called *amply supplemented* if for any submodules A and B of M with M = A + B, there exists a supplement X of A with $X \subseteq B$. M is called *supplemented* if every submodule of M has a supplement in M. It is well-known that a direct sum of lifting modules need not be a lifting module in general (see [1]). In this note we characterize the direct sum of two lifting modules in terms of left preradicals.

We begin by explaining left preradicals. A functor r from the category of right R-modules to itself is called a *left preradical* if it has the following two properties

- (i) r(M) is a submodule of M for every right R-module M,
- (ii) $f(r(M)) \subseteq r(M')$ for every homomorphism $f: M \longrightarrow M'$ between right R-modules M and M'.

^{*}Department of Mathematics, Hacettepe University, 06532 Beytepe, Ankara, Turkey E-mail: nilorhan@hacettepe.edu.tr

N. Orhan

It is clear that the socle and the Jacobson radical are left preradicals.

2. Lifting Modules in terms of Left Preradicals

2.1. Proposition. Let R be a ring, let r be a left preradical in the category of right R-modules and M a lifting module. Then M has a decomposition $M = M_1 \oplus M_2$ with M_1 and M_2 lifting modules, $r(M_1) = M_1$ and $r(M_2) \ll M_2$. In the case that $r(M_2) = 0$, M_2 is M_1 -projective.

Proof. Since r(M) is a submodule of M, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq r(M)$ and $r(M) \cap M_2 \ll M_2$. Now, $r(M) = r(M_1) \oplus r(M_2)$ implies that $r(M) \cap M_2 = r(M_2) \oplus (M_2 \cap r(M_1)) = r(M_2) \ll M_2$. Also, $r(M) \cap M_1 = M_1 =$ $r(M_1) \oplus (M_1 \cap r(M_2)) = r(M_1)$. By [2, Lemma 4.7], M_1 and M_2 are lifting. Hence the first part is proved.

For the second part, let N be a submodule of M with $M = N + M_1$. Since M is amply supplemented, there exists a submodule N' of M such that $M = N' + M_1$, $N' \cap M_1 \ll N'$ and $N' \subseteq N$. Note that N' is a direct summand of M. Assume $M = N' \oplus K'$ for some submodule K' of M. Now, $r(M) = r(M_1) = M_1 = r(N') \oplus r(K')$ and $r(N') = N' \cap M_1$. Therefore, $N' \cap M_1$ is a direct summand of M. On the other hand, $r(N') \ll M$. Thus r(N') = 0, namely $M = N' \oplus M_1$. Hence M_2 is M_1 -projective by [3, 41.14].

2.2. Corollary. Let M be a lifting module. Then $M = M_1 \oplus M_2$ is a direct sum of lifting modules M_1 and M_2 such that $\operatorname{Rad}(M_1) = M_1$ and $\operatorname{Rad}(M_2) \ll M_2$. In the case that $\operatorname{Rad}(M_2) = 0$, M_2 is M_1 -projective.

2.3. Corollary. Let M be a lifting module. Then $M = M_1 \oplus M_2$ is a direct sum of lifting modules M_1 and M_2 such that $Soc(M_1) = M_1$ and $Soc(M_2) \ll M_2$. In the case that $Soc(M_2) = 0$, M_2 is M_1 -projective.

Let M_1 and M_2 be modules. Then M_1 is small M_2 -projective if every homomorphism $f: M_1 \longrightarrow M_2/A$, where A is a submodule of M_2 and $\text{Im} f \ll M_2/A$, can be lifted to a homomorphism $\varphi: M_1 \longrightarrow M_2$ (see [1]).

A module M is said to have the *finite exchange property* if, for every finite index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$ for modules N and A_i , $i \in I$, then $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules B_i of A_i , $i \in I$ (see [2]).

2.4. Theorem. Let R be a ring, let r be a left preradical in the category of right R-modules, M_1 a module with the finite exchange property satisfying $r(M_1) = M_1$, and M_2 a module with $r(M_2) = 0$. Then $M = M_1 \oplus M_2$ is a lifting module if and only if M is amply supplemented, M_1 and M_2 are lifting, M_1 is small M_2 -projective and M_2 is M_1 -projective.

Proof. The necessity follows from [1, Proposition 3.3] and Proposition 2.1. The sufficiency follows from [1, Theorem 2.8]. \Box

2.5. Corollary. Let M_1 be a module with the finite exchange property satisfying $\operatorname{Rad}(M_1) = M_1$, and M_2 a module with $\operatorname{Rad}(M_2) = 0$. Then $M = M_1 \oplus M_2$ is a lifting module if and only if M is amply supplemented, M_1 and M_2 are lifting, M_1 is small M_2 -projective and M_2 is M_1 -projective.

2.6. Corollary. Let M_1 be a module with the finite exchange property satisfying $Soc(M_1) = M_1$, and M_2 a module with $Soc(M_2) = 0$. Then $M = M_1 \oplus M_2$ is a lifting module if and only if M is amply supplemented, M_1 and M_2 are lifting, M_1 is small M_2 -projective and M_2 is M_1 -projective.

Now, let us consider another preradical Z^* . Note that for a right *R*-module *M*, $Z^*(M) = \{m \in M : mR \ll E(mR)\}$, where E(mR) is the injective hull of *mR*. Then we have the following result.

2.7. Corollary. Let M_1 be a module with finite exchange property and $Z^*(M_1) = M_1$, M_2 be a module with $Z^*(M_2) = 0$. Then $M = M_1 \oplus M_2$ is a lifting module if and only if M is amply supplemented, M_1 and M_2 are lifting, M_1 is small M_2 -projective and M_2 is M_1 -projective.

Finally, we give the following fact:

2.8. Theorem. Let R be a ring, let r be a left preradical in the category of right R-modules and let $M = M_1 \oplus M_2$ have the finite exchange property and satisfy $r(M_1) = 0$. If M is lifting, then M_1 is $r(M_2) = r(M)$ -projective.

To prove the above theorem we need the following lemma.

2.9. Lemma. Let $M = M_1 \oplus M_2$ be a supplemented module. Then the following are equivalent.

- (i) M_2 is small M_1 -projective.
- (ii) M_2 is X-projective, for every small submodule X of M_1 .

Proof. (i) \Rightarrow (ii): Let $A \leq X \ll M_1$ and $f: M_2 \to X/A$ be a homomorphism. Clearly, $Imf \ll M_1/A$. By assumption, there exists a homomorphism $g: M_2 \to M_1$ such that $\pi g = if$, where $i: X/A \to M_1/A$ is the inclusion map and $\pi: M_1 \to M_1/A$ is the natural epimorphism. Since $g(M_2) \leq X$, f can be lifted to g.

 $\begin{array}{ll} (ii) \Rightarrow (i): \mbox{ Let } A \leq M_1 \mbox{ and } \alpha: M_2 \to M_1/A \mbox{ be a homomorphism such that } Im\alpha = T/A \ll M_1/A. \mbox{ Since } M \mbox{ is supplemented}, A \mbox{ has a supplement } B \mbox{ in } M_1. \mbox{ Let } B/(A \cap B) = (T \cap B)/(A \cap B) + L/(A \cap B) \mbox{ for any submodule } L/(A \cap B) \mbox{ of } B/(A \cap B). \mbox{ Then } M_1 = A + B = A + (T \cap B) + L = T + L. \mbox{ Since } T/A \ll M_1/A, M_1/A = (L + A)/A \mbox{ and hence } M_1 = L + A. \mbox{ By the minimality of } B \mbox{ in } M_1, L = B. \mbox{ Therefore } (T \cap B)/(A \cap B) \ll B/(A \cap B). \mbox{ Now } T \cap B \ll B. \mbox{ Let } X = T \cap B. \mbox{ Since } T = A + X, \mbox{ we define the epimorphism } \varphi: X \to T/A \mbox{ such that } \varphi(x) = x + A, \mbox{ where } x \in X. \mbox{ So there exists a homomorphism } i\beta, \mbox{ where } i: X \to M_1 \mbox{ is the inclusion map.} \end{tabular}$

Proof of Theorem 2.8:

By [1, Proposition 3.3], M_1 is small M_2 -projective. By Proposition 2.1, M_2 has a decomposition $M_2 = M_{21} \oplus M_{22}$ with M_{21} and M_{22} lifting modules, $r(M_{21}) = M_{21}$ and $r(M_{22}) \ll M_{22}$. By Lemma 2.9, M_1 is $r(M_{22})$ -projective. Also by Theorem 2.4, M_1 is M_{21} -projective. Thus M_1 is $r(M_{22}) \oplus M_{21} = r(M_{22}) \oplus r(M_{21}) = r(M_2) = r(M)$ -projective.

References

- [1] Keskin, D. On lifting modules, Comm. Algebra, 28 (7), 3427–3440, 2000.
- Mohamed, S.H. and Müller, B.J. Continuous and discrete modules, London Math. Soc. LNS 147 (Cambridge Univ. Press, Cambridge 1990).
- [3] Wisbauer, R. Foundations of module and ring theory, (Gordon and Breach, Philadelphia 1991).