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Abstract

A new related fixed point theorem for two pairs of mappings on two
complete metric spaces is obtained.
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1. Introduction

The following related fixed point theorem was proved in [1].

1.1. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be mappings of

X into Y and let S, T be mappings of Y into X satisfying the inequalities

d(SAx, TBx
′) ≤ cmax{d(x, x′), d(x, SAx), d(x′, TBx

′), ρ(Ax,Bx
′)},

ρ(BSy,ATy
′) ≤ cmax{ρ(y, y′), ρ(y,BSy), ρ(y′, ATy′), d(Sy, Ty′)}

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. If one of the mappings A,B, S and T is

continuous, then SA and TB have a unique common fixed point z in X and BS and AT

have a unique common fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.
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2. Main Result

We now prove the following related fixed point theorem.

2.1. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces. Let A,B be mappings

of X into Y and let S, T be mappings of Y into X satisfying the inequalities

d(SAx, TBx
′) ≤ c

f(x, x′, y, y′)

h(x, x′, y, y′)
,(1)

ρ(BSy, ATy
′) ≤ c

g(x, x′, y, y′)

h(x, x′, y, y′)
(2)

for all x, x′ in X and y, y′ in Y for which h(x, x′, y, y′) 6= 0, where

f(x, x′, y, y′) = max{d(x, x′)ρ(Ax,Bx
′), d(x, x′)d(Sy, Ty′),

d(x, Ty′)ρ(Ax,ATy′), d(x′, Sy)ρ(Bx
′
, BSy)},

g(x, x′, y, y′) = max{ρ(y, y′)d(Sy, Ty′), ρ(y, y′)ρ(Ax,Bx
′),

ρ(y,Bx
′)d(Sy, TBx

′), ρ(y′, Ax)d(Ty′, SAx)},

h(x, x′, y, y′) = max{ρ(Ax,Bx
′), d(SAx, TBx

′), d(Sy, Ty′), ρ(BSy,ATy
′)}

and 0 ≤ c < 1. If one of the the mappings A,B, S and T is continuous, then SA and

TB have a unique common fixed point z in X and BS and AT have a unique common

fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.

Proof. Let x = x0 be an arbitrary point in X. We define the sequences {xn} and {yn}
in X and Y inductively by y2n−1 = Ax2n−2, x2n−1 = Sy2n−1, y2n = Bx2n−1 and
x2n = Ty2n for n = 1, 2, . . ..

We will first of all suppose that for some n,

h(x2n, x2n−1, y2n−1, y2n) = max{ρ(Ax2n, Bx2n−1), d(SAx2n, TBx2n−1),

d(Sy2n−1, T y2n), ρ(BSy2n−1, ATy2n)}

= max{ρ(y2n+1, y2n), d(x2n+1, x2n),

d(x2n−1, x2n), ρ(y2n, y2n+1)}

= 0.

Then putting x2n−1 = x2n = x2n+1 = z and y2n = y2n+1 = w, we see that

SAz = TBz = z, ATw = w, Az = Bz = w, Tw = z

from which it follows that

Sw = z, BSw = w.

Similarly, h(x2n, x2n+1, y2n+1, y2n) = 0 for some n implies that there exist points z in X

and w in Y such that

(3) SAz = TBz = z, BSw = ATw = w, Az = Bz = w, Sw = Tw = z.

We will now suppose that h(x2n, x2n−1, y2n−1, y2n) 6= 0 6= h(x2n, x2n+1, y2n+1, y2n) for
all n. Applying inequality (1), we get

d(x2n+1, x2n) = d(SAx2n, TBx2n−1)

≤ c
f(x2n, x2n−1, y2n−1, y2n)

h(x2n, x2n−1, y2n−1, y2n)

= c
max{d(x2n, x2n−1)ρ(y2n+1, y2n), [d(x2n−1, x2n)]

2}

max{ρ(y2n+1, y2n), d(x2n+1, x2n), d(x2n−1, x2n)}
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from which it follows that

(4) d(x2n, x2n+1) ≤ cmax{d(x2n−1, x2n), ρ(y2n, y2n+1)}.

It follows similarly on using inequality (1) again that

(5) d(x2n−1, x2n) ≤ cmax{d(x2n−2, x2n−1), ρ(y2n−1, y2n)}.

Similarly, on using inequality (2), it follows that

(6) ρ(y2n, y2n+1) ≤ cmax{d(x2n−1, x2n), ρ(y2n−1, y2n)}

and

(7) ρ(y2n, y2n−1) ≤ cmax{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1)}.

It now follows from inequalities (4) and (6) that

d(x2n, x2n+1) ≤ cmax{d(x2n−1, x2n), cd(x2n−1, x2n), cρ(y2n−1, y2n)}

≤ cmax{d(x2n−1, x2n), ρ(y2n−1, y2n)}.

It follows similarly from inequalities (5) and (7) that

d(x2n−1, x2n) ≤ cmax{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1)}

and so

(8) d(xn, xn+1) ≤ c
n−1 max{d(x1, x2), ρ(y1, y2)}.

Similarly,

(9) ρ(yn, yn+1) ≤ c
n−1 max{d(x1, x2), ρ(y1, y2)}.

Since c < 1, it follows from inequalities (8) and (9) respectively that {xn} is a Cauchy
sequence in X with a limit z and {yn} is a Cauchy sequence in Y with a limit w.

Now suppose that A is continuous. Then

w = lim
n→∞

y2n+1 = lim
n→∞

Ax2n = Az(10)

and

lim
n→∞

f(z, x2n−1, w, y2n) = d(z, Sw)ρ(w,BSw),(11)

lim
n→∞

g(z, x2n−1, w, y2n) = ρ(w,Az)d(z, SAz),(12)

lim
n→∞

h(z, x2n−1, w, y2n) = max{d(Sw, z), ρ(BSw,w)}.(13)

If

(14) max{d(Sw, z), ρ(w,BSw)} = 0,

then

(15) Sw = z, BSw = w, Bz = w.

If it were possible that

(16) max{d(Sw, z), ρ(w,BSw)} 6= 0,

then we have on using inequality (1) and equations (11) and (13)

d(Sw, z) = lim
n→∞

d(SAz, TBx2n−1)

≤ lim
n→∞

c
f(z, x2n−1, w, y2n)

h(z, x2n−1, w, y2n)

= c
d(z, Sw)ρ(w,BSw)

max{d(Sw, z), ρ(w,BSw)}

≤ cd(Sw, z)
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and so Sw = z since c < 1.

Further, using inequality (2) and equations (12) and (13), we have

ρ(BSw,w) = lim
n→∞

ρ(BSw,ATy2n)

≤ lim
n→∞

c
g(z, x2n−1, w, y2n)

h(z, x2n−1, w, y2n)

= 0,

contradicting equation (16). Equations (14) and (15) must therefore hold.

Now suppose that Tw 6= z. Then

lim
n→∞

f(x2n, z, w,w) = d(z, Tw)ρ(w,ATw),(17)

lim
n→∞

h(x2n, z, w,w) = max{d(z, Tw), ρ(w,ATw)} 6= 0.(18)

Then we have on using inequality (1) and equations (17) and (18)

d(z, Tw) = lim
n→∞

d(SAx2n, TBz)

≤ lim
n→∞

c
f(x2n, z, w,w)

h(x2n, z, w,w)

= c
d(z, Tw)ρ(w,ATw)

max{d(z, Tw), ρ(w,ATw)}

≤ cd(z, Tw),

giving a contradiction, since c < 1. We must therefore have Tw = z and equations (3)
again follow.

By the symmetry, the same results again hold if one of the mappings B,S, T is con-
tinuous, instead of A.

To prove the uniqueness, suppose that TB and SA have a second distinct common
fixed point z′. Then, using inequality (1), we have

d(z, z′) = d(SAz, TBz
′)

≤ c
f(z, z′, Az,Bz′)

h(z, z′, Az,Bz′)

= c
max{d(z, z′)ρ(w,Bz′), [d(z, z′)]2, d(z, z′)ρ(w,Az′)}

max{ρ(w,Bz′), d(z, z′), ρ(w,Az′)}

≤ cd(z, z′),

a contradiction since c < 1. The fixed point z must therefore be unique.

We can prove similarly that w is the unique common fixed point of BS and AT. This
completes the proof of the theorem. ¤

2.2. Corollary. Let A,B, S, T be selfmappings on the complete metric space (X, d) sat-
isfying the inequalities

d(SAx, TBy) ≤ c
f(x, y)

h(x, y)
,

d(BSx,ATy) ≤ c
g(x, y)

h(x, y)



A Related Fixed Point Theorem 11

for all x, y in X for which h(x, y) 6= 0, where

f(x, y) = max{d(x, y)d(Ax,By), d(x, y)d(Sx, Ty),

d(x, Ty)d(Ax,ATy), d(y, Sx)d(By,BSx)},

g(x, y) = max{d(x, y)d(Sx, Ty), d(x, y)d(Ax,By),

d(x,By)d(Sx, TBy), d(y,Ax)d(Ty, SAx)},

h(x, y) = max{d(Ax,By), d(SAx, TBy), d(Sx, Ty), d(BSx,ATy)}

and 0 ≤ c < 1. If one of the mappings A,B, S and T is continuous, then SA and TB

have a unique common fixed point z and BS and AT have a unique common fixed point

w. Further, Az = Bz = w and Sw = Tw = z.
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