Hacettepe Journal of Mathematics and Statistics Volume 32 (2003), 7 – 11

A RELATED FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS ON TWO COMPLETE METRIC SPACES

R. K. Namdeo[∗] , Sarika Jain[∗] and Brian Fisher†

Received 29. 07. 2002 : Accepted 14. 10. 2003

Abstract

A new related fixed point theorem for two pairs of mappings on two complete metric spaces is obtained.

Keywords: Complete metric space, Common fixed point, Related fixed point mappings.

2000 AMS Classification: 54 H 25.

1. Introduction

The following related fixed point theorem was proved in [1].

1.1. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S , T be mappings of Y into X satisfying the inequalities

 $d(SAx, TBx') \leq c \max\{d(x, x'), d(x, SAx), d(x', TBx'), \rho(Ax, Bx')\},$ $\rho(BSy, ATy') \leq c \max\{\rho(y, y'), \rho(y, BSy), \rho(y', ATy'), d(Sy, Ty')\}$

for all x, x' in X and y, y' in Y, where $0 \leq c < 1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y. Further, $Az = Bz = w$ and $Sw = Tw = z$.

[∗]Department of Mathematics, Dr H. S. Gour University, Sagar, (M.P.), India.

[†]Department of Mathematics and Computer Science, University of Leicester, LE1 7RH, U.K. E-mail: fbr@le.ac.uk

2. Main Result

We now prove the following related fixed point theorem.

2.1. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces. Let A, B be mappings of X into Y and let S , T be mappings of Y into X satisfying the inequalities

$$
(1) \qquad d(SAx, TBx') \le c \frac{f(x, x', y, y')}{h(x, x', y, y')},
$$

$$
(2) \qquad \rho(BSy, ATy') \le c \frac{g(x, x', y, y')}{h(x, x', y, y')}
$$

for all x, x' in X and y, y' in Y for which $h(x, x', y, y') \neq 0$, where

$$
f(x, x', y, y') = \max\{d(x, x')\rho(Ax, Bx'), d(x, x')d(Sy, Ty'),\nd(x, Ty')\rho(Ax, ATy'), d(x', Sy)\rho(Bx', BSy)\},\ng(x, x', y, y') = \max\{\rho(y, y')d(Sy, Ty'), \rho(y, y')\rho(Ax, Bx'),\rho(y, Bx')d(Sy, TBx'), \rho(y', Ax)d(Ty', SAx)\},\nh(x, x', y, y') = \max\{\rho(Ax, Bx'), d(SAx, TBx'), d(Sy, Ty'), \rho(BSy, ATy')\}
$$

and $0 \leq c < 1$. If one of the the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y. Further, $Az = Bz = w$ and $Sw = Tw = z$.

Proof. Let $x = x_0$ be an arbitrary point in X. We define the sequences $\{x_n\}$ and $\{y_n\}$ in X and Y inductively by $y_{2n-1} = Ax_{2n-2}$, $x_{2n-1} = Sy_{2n-1}$, $y_{2n} = Bx_{2n-1}$ and $x_{2n} = Ty_{2n}$ for $n = 1, 2, ...$

We will first of all suppose that for some n ,

$$
h(x_{2n}, x_{2n-1}, y_{2n-1}, y_{2n}) = \max\{\rho(Ax_{2n}, Bx_{2n-1}), d(SAx_{2n}, TBx_{2n-1}),
$$

\n
$$
d(Sy_{2n-1}, Ty_{2n}), \rho(BSy_{2n-1}, ATy_{2n})\}
$$

\n
$$
= \max\{\rho(y_{2n+1}, y_{2n}), d(x_{2n+1}, x_{2n}),
$$

\n
$$
d(x_{2n-1}, x_{2n}), \rho(y_{2n}, y_{2n+1})\}
$$

\n
$$
= 0.
$$

Then putting $x_{2n-1} = x_{2n} = x_{2n+1} = z$ and $y_{2n} = y_{2n+1} = w$, we see that S_A and S_B = S_A = S_B = S

$$
SAz = T Bz = z, \quad ATw = w, \quad Az = Bz = w, \quad Tw = z
$$

from which it follows that

$$
Sw = z, \quad BSw = w.
$$

Similarly, $h(x_{2n}, x_{2n+1}, y_{2n+1}, y_{2n}) = 0$ for some *n* implies that there exist points z in X and w in Y such that

(3) $SAz = TBz = z$, $BSw = ATw = w$, $Az = Bz = w$, $Sw = Tw = z$.

We will now suppose that $h(x_{2n}, x_{2n-1}, y_{2n-1}, y_{2n}) \neq 0 \neq h(x_{2n}, x_{2n+1}, y_{2n+1}, y_{2n})$ for all n . Applying inequality (1) , we get

$$
d(x_{2n+1}, x_{2n}) = d(SAx_{2n}, TBx_{2n-1})
$$

\n
$$
\leq c \frac{f(x_{2n}, x_{2n-1}, y_{2n-1}, y_{2n})}{h(x_{2n}, x_{2n-1}, y_{2n-1}, y_{2n})}
$$

\n
$$
= c \frac{\max\{d(x_{2n}, x_{2n-1})\rho(y_{2n+1}, y_{2n}), [d(x_{2n-1}, x_{2n})]^2\}}{\max\{\rho(y_{2n+1}, y_{2n}), d(x_{2n+1}, x_{2n}), d(x_{2n-1}, x_{2n})\}}
$$

from which it follows that

(4) $d(x_{2n}, x_{2n+1}) \leq c \max\{d(x_{2n-1}, x_{2n}), \rho(y_{2n}, y_{2n+1})\}.$ It follows similarly on using inequality (1) again that (5) $d(x_{2n-1}, x_{2n}) \leq c \max\{d(x_{2n-2}, x_{2n-1}), \rho(y_{2n-1}, y_{2n})\}.$ Similarly, on using inequality (2), it follows that (6) $\rho(y_{2n}, y_{2n+1}) \leq c \max\{d(x_{2n-1}, x_{2n}), \rho(y_{2n-1}, y_{2n})\}$ and (7) $\rho(y_{2n}, y_{2n-1}) \leq c \max\{d(x_{2n-2}, x_{2n-1}), \rho(y_{2n-2}, y_{2n-1})\}.$ It now follows from inequalities (4) and (6) that $d(x_{2n}, x_{2n+1}) \leq c \max\{d(x_{2n-1}, x_{2n}), cd(x_{2n-1}, x_{2n}), c\rho(y_{2n-1}, y_{2n})\}$ $\leq c \max\{d(x_{2n-1}, x_{2n}), \rho(y_{2n-1}, y_{2n})\}.$ It follows similarly from inequalities (5) and (7) that $d(x_{2n-1}, x_{2n}) \leq c \max\{d(x_{2n-2}, x_{2n-1}), \rho(y_{2n-2}, y_{2n-1})\}$ and so (8) $d(x_n, x_{n+1}) \leq c^{n-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\}.$ Similarly, (9) $\rho(y_n, y_{n+1}) \leq c^{n-1} \max\{d(x_1, x_2), \rho(y_1, y_2)\}.$ Since $c < 1$, it follows from inequalities (8) and (9) respectively that $\{x_n\}$ is a Cauchy sequence in X with a limit z and $\{y_n\}$ is a Cauchy sequence in Y with a limit w. Now suppose that A is continuous. Then (10) $w = \lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} Ax_{2n} = Az$ and (11) $\lim_{n \to \infty} f(z, x_{2n-1}, w, y_{2n}) = d(z, Sw)\rho(w, BSw),$ (12) $\lim_{n \to \infty} g(z, x_{2n-1}, w, y_{2n}) = \rho(w, Az)d(z, SAz),$ (13) $\lim_{n \to \infty} h(z, x_{2n-1}, w, y_{2n}) = \max\{d(Sw, z), \rho(BSw, w)\}.$ If (14) $\max\{d(Sw, z), \rho(w, BSw)\} = 0,$ then (15) $Sw = z$, $BSw = w$, $Bz = w$. If it were possible that (16) $\max\{d(Sw, z), \rho(w, BSw)\}\neq 0,$ then we have on using inequality (1) and equations (11) and (13) $d(Sw, z) = \lim_{n \to \infty} d(SAz, TBx_{2n-1})$ $\leq \lim_{n\to\infty} c \frac{f(z, x_{2n-1}, w, y_{2n})}{h(z, x_{2n-1}, w, y_{2n})}$ $h(z,x_{2n-1},w,y_{2n})$ $=c \frac{d(z, Sw)\rho(w, BSw)}{d(z, G)}$ $\max\{d(Sw,z), \rho(w,BSw)\}\$ \leq cd(Sw, z)

and so $Sw = z$ since $c < 1$.

Further, using inequality (2) and equations (12) and (13), we have

$$
\rho(BSw, w) = \lim_{n \to \infty} \rho(BSw, ATy_{2n})
$$

\n
$$
\leq \lim_{n \to \infty} c \frac{g(z, x_{2n-1}, w, y_{2n})}{h(z, x_{2n-1}, w, y_{2n})}
$$

\n= 0,

contradicting equation (16). Equations (14) and (15) must therefore hold. Now suppose that $Tw \neq z$. Then

(17)
$$
\lim_{n \to \infty} f(x_{2n}, z, w, w) = d(z, Tw)\rho(w, ATw),
$$

(18)
$$
\lim_{n \to \infty} h(x_{2n}, z, w, w) = \max\{d(z, Tw), \rho(w, ATw)\} \neq 0.
$$

Then we have on using inequality (1) and equations (17) and (18)

$$
d(z, Tw) = \lim_{n \to \infty} d(SAx_{2n}, TBz)
$$

\n
$$
\leq \lim_{n \to \infty} c \frac{f(x_{2n}, z, w, w)}{h(x_{2n}, z, w, w)}
$$

\n
$$
= c \frac{d(z, Tw)\rho(w, ATw)}{\max\{d(z, Tw), \rho(w, ATw)\}}
$$

\n
$$
\leq cd(z, Tw),
$$

giving a contradiction, since $c < 1$. We must therefore have $Tw = z$ and equations (3) again follow.

By the symmetry, the same results again hold if one of the mappings B, S, T is continuous, instead of A.

To prove the uniqueness, suppose that TB and SA have a second distinct common fixed point z' . Then, using inequality (1), we have

$$
d(z, z') = d(SAz, TBz')
$$

\n
$$
\leq c \frac{f(z, z', Az, Bz')}{h(z, z', Az, Bz')}
$$

\n
$$
= c \frac{\max\{d(z, z')\rho(w, Bz'), [d(z, z')]^2, d(z, z')\rho(w, Az')\}}{\max\{\rho(w, Bz'), d(z, z'), \rho(w, Az')\}}
$$

\n
$$
\leq cd(z, z'),
$$

a contradiction since $c < 1$. The fixed point z must therefore be unique.

,

We can prove similarly that w is the unique common fixed point of BS and AT . This completes the proof of the theorem. $\hfill \square$

2.2. Corollary. Let A, B, S, T be selfmappings on the complete metric space (X, d) satisfying the inequalities

$$
d(SAx, TBy) \le c \frac{f(x, y)}{h(x, y)}
$$

$$
d(BSx, ATy) \le c \frac{g(x, y)}{h(x, y)}
$$

for all x, y in X for which $h(x, y) \neq 0$, where

$$
f(x,y) = \max\{d(x,y)d(Ax, By), d(x,y)d(Sx, Ty),d(x,Ty)d(Ax, ATy), d(y, Sx)d(By, BSx)\},g(x,y) = \max\{d(x,y)d(Sx,Ty), d(x,y)d(Ax, By),d(x, By)d(Sx,TBy), d(y, Ax)d(Ty, SAx)\},h(x,y) = \max\{d(Ax, By), d(SAx, TBy), d(Sx, Ty), d(BSx, ATy)\}
$$

and $0 \leq c < 1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z and BS and AT have a unique common fixed point w. Further, $Az = Bz = w$ and $Sw = Tw = z$.

References

[1] B. Fisher and P.P. Murthy, Related fixed point theorems for two pairs of mappings on two metric spaces, Kyungpook Math. J., 37, 343-347, 1997.