Some Results on Especial Diophantine Sets with Size-3

Özen ÖZER ${ }^{\text {* }}$
${ }^{1}$ Faculty of Engineering, Kırklareli University, Kırklareli, 39100, Turkey.
E-mail address: ozenozer39@gmail.com

Abstract

Purpose of this paper is to determine some regular non-extendible $D(n)$ triples for some fixed integer n. Besides, paper includes a number of algebraic properties for such diophantine sets with size three.

Keywords: Diophantine Sets, Property $D(n)$, Integral Solutions of Pell Equations, Quadratic Residues and Reciprocity Theorems, Legendre Symbol.

2010 Mathematics Subject Classification: 11D09, 11A15, 11A07.

1.Introduction and Preliminaries

There are a lot of significant and attracted results in the literature related with Diophantine sets and equations. One of them was started by a Greek mathematician Diophantus of Alexandria in the 3rd century. Mathematicians have been interested in Diophantine sets for a long time before due to unsolved problems in the literature.

[^0]For this paper, we use some basic notions such as quadratic reciprocity and residues ($[3,7,13-16,22])$, legendre symbol ($[5,12]$) and Diophantine sets with their regularity $([6,8-10$, 17-21]) as well as significant books ([1, 2, 4, 6, 10, 16]) from algebraic and elemantary number theories. We obtain regular non-extendibility of some $D(n)$ Diophantine triples where n is 31 or -31.Additionally, we demontrate that some types of elements can not be in $D(\mp 31)$.

Definition 1.1. ($[6,8,9]$) A Diophantine m-tuple with the property $D(n)$ (it sometimes representatives as $\boldsymbol{P}_{\boldsymbol{n}}$ with m-tuples) for n an integer is an m-tuple of different positive integers $\left\{\boldsymbol{\beta}_{\boldsymbol{1}}, \ldots, \boldsymbol{\beta}_{\boldsymbol{n}}\right\}$ such that $\boldsymbol{\beta}_{\boldsymbol{i}} \boldsymbol{\beta}_{\boldsymbol{j}}+\boldsymbol{n}$ is always a square of an integer for every distinct i, j.

As a special case, If $n=3$ then it is called by $D(n)$ - Diophantine triple.

Definition 1.2. ([8]) If $\boldsymbol{D}(\boldsymbol{n})$ - triple $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$ satisfies the following condition

$$
\begin{equation*}
(w-v-u)^{2}=4(u . v+n) \tag{1.1}
\end{equation*}
$$

then $\{u, v, w\}$ is called Regular Diophantine Triple.

Definition 1.3. $([13,15])$ Let q be an odd prime and u be an integer such that $\operatorname{gcd}(u, q)=1$. The quadratic residue symbol $\left(\frac{u}{q}\right)$ is defined to be 1 or -1 according as the congruence $x^{2} \equiv u(\bmod q)$ is solvable or not.

Also, Quadratic Reciprocity law was formulated by Euler although Legendre discovered it independently of Euler in 1785. We can see some results on this law as follows:

Theorem 1.1. ([12]) (Quadratic Reciprocity Law) Let p, q be different odd primes. Then,
(i) If $p \equiv 1(\bmod 4)$ or $q \equiv 1(\bmod 4)$, then p is a square $(\bmod q)$ if and only if q is a square $(\bmod p)$.
(ii) If $p \equiv 3(\bmod 4)$ and $q \equiv 1(\bmod 4)$, then p is a square $(\bmod q)$ if and only if q is not a square $(\bmod p)$.

Theorem 1.2. ([2, 12, 14, 22]) (First Supplement to the Quadratic Reciprocity Law) Let q be an odd prime. Then, -1 is a square $(\bmod q)$ necessary and sufficient condition $q \equiv 1(\bmod 4)$ holds.

Theorem 1.3. ([12,14]) (Second Supplement to the Quadratic Reciprocity Law) Let p be an odd prime. Then 2 is a square $\bmod q$ if and only if $q \equiv 1,7(\bmod 4)$. Definition 1.4. ([5, 7]) The symbol $\left(\frac{\alpha}{q}\right)$ is called Legendre Symbol, if $\left(\frac{\alpha}{q}\right)$ equals to 1. It means that α is a quadratic residue.

$$
\left(\frac{\alpha}{q}\right)=\left\{\begin{align*}
1 & \text { if } \alpha \text { is a quadratic residue modulo } q \tag{1.2}\\
-1 & \text { if } \alpha \text { is a non - quadratic residue modulo } q
\end{align*}\right.
$$

Proposition 1.1. ([5, 7]) Let q be an odd prime. Then following properties are satisfied.
(a) $m \equiv n(\bmod q)$ implies $\left(\frac{m}{q}\right)=\left(\frac{n}{q}\right)$
(b) The Legendre Symbol is multiplicative: $\left(\frac{m}{q}\right) \cdot\left(\frac{n}{q}\right)=\left(\frac{m \cdot n}{q}\right)$ where m, n are integers and coprime to q prime.

2. Theorems And Results

Theorem 2.1. $P_{+31}=\{2,9,25\}$ is regular but non-extendible Diophantine triple.

Proof. For regularity, we consider the condition (1.1) of Definition 1.2. So, it is seen that $P_{+31}=\{2,9,25\}$ is a regular triple. We suppose that $\{2,9,25\}$ can extendible to Diophantine quadruple for any positive integer ϑ and $\{2,9,25 \vartheta\}$ is a P_{+31} quadruple. Then, there are a_{1}, a_{2}, a_{3} integers such that,

$$
\begin{align*}
2 \vartheta+31 & =a_{1}{ }^{2} \tag{2.1}\\
9 \vartheta+31 & =a_{2}{ }^{2} \tag{2.2}\\
25 \vartheta+31 & =a_{3}{ }^{2} \tag{2.3}
\end{align*}
$$

Eliminating ϑ between (2.2) and (2.3), we obtain following equation:

$$
\begin{equation*}
25 a_{2}^{2}-9 a_{3}^{2}=496 \tag{2.4}
\end{equation*}
$$

Applying factorization method on the (2.4), we get a table as follows:

Table 2.1. Solutions of $25 a_{2}^{2}-9 a_{3}^{2}=496$

Solutions	1.Class of Solutions	2.Class of Solutions
$\left(a_{2}, a_{3}\right)$	$(\mp 25, \mp 41)$	$(\mp 7, \mp 9)$

Considering (2.1) and (2.2), we obtain

$$
\begin{equation*}
9 a_{1}^{2}-2 a_{2}^{2}=217 \tag{2.5}
\end{equation*}
$$

Considering above solutions, we have ${a_{2}}^{2}=625, a_{2}{ }^{2}=49$. If we put these values into the (2.5) we have $a_{1}{ }^{2}=163, a_{1}{ }^{2}=35$. This is a contradiction since a_{1} isn't an integer.

So, there is no such ϑ positive integer and $P_{+31}=\{2,9,25\}$ can be non-extended to P_{+31} Diophantine quadruple.

Theorem 2.2. A set $P_{+31}=\{3,46,75\}$ is both regular and non-extendible to the P_{+31} Diophantine quadruple.

Proof. $P_{+31}=\{3,46,75\}$ satisfies (1.1) regularity condition of Definition 1.2. So, it is regular. Supposing that $P_{+31}=\{3,46,75, \omega\}$ be a P_{+31} Diophantine quadruple for positive integer ω. There are b_{1}, b_{2}, b_{3} integers such that

$$
\begin{align*}
3 \omega+31 & =b_{1}{ }^{2} \tag{2.6}\\
46 \omega+31 & =b_{2}{ }^{2} \tag{2.7}\\
75 \omega+31 & =b_{3}{ }^{2} \tag{2.8}
\end{align*}
$$

hold. Dropping ω from (2.6) and (2.8), we have

$$
\begin{equation*}
25 b_{1}^{2}-b_{3}^{2}=744 \tag{2.9}
\end{equation*}
$$

If we use factorization method into the (2.9), we obtain solutions in a following table:

Table 2.2. Solutions of $25 b_{1}{ }^{2}-b_{3}{ }^{2}=744$

Solutions	1.Class of Solutions	2.Class of Solutions
$\left(b_{1}, b_{3}\right)$	$(\mp 19, \mp 91)$	$(\mp 13, \mp 59)$

Dropping ω from (2.6) and (2.7), then we have

$$
\begin{equation*}
-3 b_{2}^{2}+46 b_{1}^{2}=1333 \tag{2.10}
\end{equation*}
$$

From Table 2.2, we have ${b_{1}}^{2}=361$ or $b_{1}{ }^{2}=169$. If we substitute them into the (2.10), we obtain ${b_{2}}^{2}=5091$ or ${b_{2}}^{2}=2147$ respectively. It is a contradiction and b_{2} isn't integer solution for (2.10).

Thus, there is not positive integer ω and $P_{+31}=\{3,46,75\}$ can not be extended to P_{+31} Diophantine quadruple.

Theorem 2.3. $P_{+31}=\{3,75,110\}$ is a regular triple but can not nonextendible to P_{+31} Diophantine triple.

Proof. First of all, let's show that $P_{+31}=\{3,75,110\}$ is a regular triple. If we use regularity condition for $P_{+31}=\{3,75,110\}$, it is easily seen that the set holds condition (1.1). That is why, set is regular.

Similarly, let us assume that $P_{+31}=\{3,75,110, \alpha\}$ be a Diophantine quadruple for positive integer α. So, we get $c_{1}, c_{2}, c_{3} \in \mathbb{Z}$ such that following equations are satisfied.

$$
\begin{align*}
3 \alpha+31 & =c_{1}{ }^{2} \tag{2.11}\\
75 \alpha+31 & =c_{2}^{2} \tag{2.12}\\
110 \alpha+31 & =c_{3}^{2} \tag{2.13}
\end{align*}
$$

If we reduce α from (2.11) and (2.12), we obtain an equation as same as (2.9) for $\left(c_{1}, c_{2}\right)$. So, we have the solutions as same as Table 2.2 for (c_{1}, c_{2}). Dropping α from (2.11) and (2.13), then we obtain

$$
\begin{equation*}
110 c_{1}^{2}-3 c_{3}^{2}=3317 \tag{2.14}
\end{equation*}
$$

Substituting $c_{1}{ }^{2}=361$ or $c_{1}{ }^{2}=169$ into the (2.14), $c_{3}{ }^{2}=12131$, or $c_{3}{ }^{2}=5091$ are got. It is seen that c_{3} is not integer solution for (2.14). Thus, it is a contradiction.

Therefore, there is no positive integer α and also $P_{+31}=\{3,75,110\}$ can not be extended to P_{+31} Diophantine quadruple.

Theorem 2.4. A set $P_{+31}=\{9,25,66\}$ regular diophantine triple and nonextendible to P_{+31} quadruple.

Proof. $P_{+31}=\{9,25,66\}$ holds (1.1) condition in the Definition 1.2 . That is why it is regular. Assume that $P_{+31}=\{9,25,66, g\}$ is Diophantine quadruple for $g \in \mathbb{Z}^{+}$. Definition 1.1 implies that

$$
\begin{align*}
9 g+31 & =d_{1}{ }^{2} \tag{2.15}\\
25 g+31 & =d_{2}{ }^{2} \tag{2.16}\\
66 g+31 & =d_{3}{ }^{2} \tag{2.17}
\end{align*}
$$

for $d_{1}, d_{2}, d_{3} \in \mathbb{Z}$. Simplification of (2.15) and (2.16), we have;

$$
\begin{equation*}
25 d_{1}^{2}-9 d_{2}^{2}=496 \tag{2.18}
\end{equation*}
$$

This equation is similar to (2.4) for $\left(d_{1}, d_{2}\right)$. From Table 2.1, we obtain $d_{1}{ }^{2}=625, d_{1}{ }^{2}=$ 49. From (2.15) and (2.17), we obtain

$$
\begin{equation*}
22 d_{1}^{2}-3 d_{3}^{2}=589 \tag{2.19}
\end{equation*}
$$

Substituting ${d_{1}}^{2}=625, d_{1}{ }^{2}=49$ into the (2.19), we have $d_{3}{ }^{2}=4387$ and $d_{3}{ }^{2}=163$, respectively. This is a contradiction since d_{3} is not integer solution of (2.19).

Hence, $P_{+31}=\{9,25,66\}$ can not extendible to P_{+31} Diophantine quadruple.

Theorem 2.5. Both $P_{-31}=\{2,100,128\}$ and $P_{-31}=\{2,128,160\}$ are regular Diophantine triple and also non-extendible.

Proof. We can see that both $P_{-31}=\{2,100,128\}$ and $P_{-31}=\{2,128,160\}$ are regular Diophantine triples from (1.1) condition.

Suggesting that $\{2,100,128, \hbar\}$ is a P_{-31} Diophantine quadruple for positive integer \hbar. Then,, there are $e_{1}, e_{2}, e_{3} \in \mathbb{Z}$ such that

$$
\begin{align*}
2 \hbar-31 & =e_{1}{ }^{2} \tag{2.20}\\
100 \hbar-31 & =e_{2}{ }^{2} \tag{2.21}\\
128 \hbar-31 & =e_{3}{ }^{2} \tag{2.22}
\end{align*}
$$

Simplifying \hbar between (2.20) and (2.22), we get

$$
\begin{equation*}
-64 e_{1}^{2}+e_{3}^{2}=1953 \tag{2.23}
\end{equation*}
$$

and similarly from (2.20) and (2.21)

$$
\begin{equation*}
-50 e_{1}^{2}+e_{2}^{2}=1519 \tag{2.24}
\end{equation*}
$$

By factorizing (2.23), we obtain following table for solutions.

Table 2.3. Solutions of $-64 e_{1}{ }^{2}+e_{3}{ }^{2}=1953$

Solutions	1.Class of Solutions	2.Class of Solutions	3.Class of Solutions	4.Class of Solutions
$\left(e_{3}, e_{1}\right)$	$(\mp 977, \mp 122)$	$(\mp 143, \mp 17)$	$(\mp 113, \mp 13)$	$(\mp 47, \mp 2)$

By substituting $e_{1}{ }^{2}=14884, e_{1}{ }^{2}=289, e_{1}{ }^{2}=169, e_{1}{ }^{2}=4$ into the (2.24), we get $e_{2}{ }^{2}=$ $745719 e_{2}{ }^{2}=15969, e_{2}{ }^{2}=8450, e_{2}{ }^{2}=1719$ respectively. It is seen that it is a contradiction since $e_{2} \notin \mathbb{Z}$.

As a consequence, $P_{-31}=\{2,100,128\}$ can not be extended to P_{-31} Diophantine quadruple.

Let $P_{-31}=\{2,128,160, \mathcal{L}\}$ be a Diophantine quadruple for $\mathcal{L} \in \mathbb{Z}^{+}$. From Definition 1.1, we have

$$
\begin{align*}
2 \mathcal{L}-31 & =f_{1}{ }^{2} \tag{2.25}\\
128 \mathcal{L}-31 & =f_{2}{ }^{2} \tag{2.26}\\
160 \mathcal{L}-31 & =f_{3}{ }^{2} \tag{2.27}
\end{align*}
$$

for $f_{1}, f_{2}, f_{3} \in \mathbb{Z}$. Dropping \mathcal{L} from (2.25) and (2.26), we have an equation like (2.19).
Hence, Table2.3 can be used for (f_{2}, f_{1}) instead of (e_{3}, e_{1}). From (2.25) and (2.27), we also have

$$
\begin{equation*}
-80 f_{1}^{2}+f_{3}^{2}=2449 \tag{2.28}
\end{equation*}
$$

Putting $f_{1}^{2}=14884, f_{1}^{2}=289, f_{1}^{2}=169, f_{1}^{2}=4$ into the (2.28), we have $f_{3}{ }^{2}=$ 1193169, $f_{3}{ }^{2}=25569, f_{3}{ }^{2}=15969, f_{3}{ }^{2}=2749$. It is a contradiction because f_{3} is not an integer solution of (2.28).

Therefore, $P_{-31}=\{2,128,160\}$ is nonextendable to P_{-31} Diophantine triple.

Theorem 2.6. A set $P_{-31}=\{4,64,98\}$ is not only regular but also nonextendible Diophantine triple.

Proof. Regularity of $P_{-31}=\{4,64,98\}$ can be easily seen from (1.1). In the same way, supposing that $P_{-31}=\{4,64,98, \mathcal{M}\}$ be a Diophantine quadruple for positive integer \mathcal{M}. We get $g_{1}, g_{2}, g_{3} \in \mathbb{Z}$ such that

$$
\begin{align*}
4 \mathcal{M}-31 & =g_{1}{ }^{2} \tag{2.29}\\
64 \mathcal{M}-31 & =g_{2}{ }^{2} \tag{2.30}\\
98 \mathcal{M}-31 & =g_{3}{ }^{2} \tag{2.31}
\end{align*}
$$

Dropping \mathcal{M} from (2.29) and (2.30), we get an equation as follows:

$$
\begin{equation*}
g_{2}{ }^{2}-16 g_{1}^{2}=465 \tag{2.32}
\end{equation*}
$$

and if we eliminate \mathcal{M} from (2.29) and (2.31), then

$$
\begin{equation*}
2 g_{3}^{2}-49 g_{1}^{2}=1457 \tag{2.33}
\end{equation*}
$$

is obtained. Table 2.4 is got from (2.32) as follows:

Table 2.4. Solutions of $g_{2}{ }^{2}-16 g_{1}{ }^{2}=465$

Solutions	1.Class of Solutions	2.Class of Solutions	3.Class of Solutions	4.Class of Solutions
$\left(g_{2}, g_{1}\right)$	$(\mp 233, \mp 58)$	$(\bar{\mp} 79, \mp 19)$	$(\mp 49, \bar{\mp} 11)$	$(\mp 23, \mp 2)$

Substituting $g_{1}{ }^{2}=3364, g_{1}{ }^{2}=361, g_{1}{ }^{2}=121, g_{1}{ }^{2}=4$, into the (2.33), $g_{3}{ }^{2}=\frac{166293}{2}$, $g_{3}{ }^{2}=9573, g_{3}{ }^{2}=3693, g_{3}{ }^{2}=\frac{1653}{2}$ are got. it is a contradiction since g_{3} is not integer solution for (2.33)

So, $P_{-31}=\{4,64,98\}$ can not be extended to P_{-31} Diophantine quadruple.

Theorem 2.7. Following conditions are satisfied for $P_{ \pm 31}$ sets.
(a) There isn't any set P_{+31} includes any multiplication of $4,7,13$, or 19 .
(b) There is no set P_{-31} involves any multiplication of $3,11,13$, or 17 .

Proof. (a) (i) Supposing that a is an element of set P_{+31}. If $4 m \in P_{+31}$ for $m \in Z$, then

$$
\begin{equation*}
4 m a+31=\mathrm{X}^{2} \tag{2.34}
\end{equation*}
$$

satisfy for some integer X. Applying $(\bmod 4)$ on the (2.34), we obtain

$$
\begin{equation*}
X^{2} \equiv 3(\bmod 4) \tag{2.35}
\end{equation*}
$$

Since $\mathrm{X} \in Z$, then X is even or odd integer. So, (2.35) can not has a solution. This is a contradiction. Hence, $4 m \notin P_{+31}$ for $m \in Z$.
(ii) Similarly, assuming that $b \in P_{+31}$ and $7 n \in P_{+31}$ for $(n \in Z)$. So,

$$
\begin{equation*}
7 n b+31=\Psi^{2} \tag{2.36}
\end{equation*}
$$

holds for integer Ψ. By (mod 7), we obtain

$$
\begin{equation*}
\Psi^{2} \equiv 3(\bmod 7) \tag{2.37}
\end{equation*}
$$

From Theorem 1.1 and Definition 1.4,

$$
\begin{equation*}
\left(\frac{3}{7}\right)\left(\frac{7}{3}\right)=(-1)^{\frac{3-1}{2} \cdot \frac{7-1}{2}}=-1 \tag{2.38}
\end{equation*}
$$

is hold.. Using Proposition 1.1, we have $\left(\frac{7}{3}\right)=\left(\frac{1}{3}\right)=+1$ and substituting it into the (2.38) then $\left(\frac{3}{7}\right)=-1$ is obtained. This implies that equivalent (2.38) isn't solvable. So, $7 n$ $\notin P_{+31}$ for $n \in Z$.
(iii)In the same vein, if $c \in P_{+31}$ and $13 k \in P_{+31}$ for $(k \in Z)$, then

$$
\begin{equation*}
13 k c+31=\Omega^{2} \tag{2.39}
\end{equation*}
$$

holds for integer Ω. Applying $(\bmod 13)$ on (2.39), we have

$$
\begin{equation*}
\Omega^{2} \equiv 5(\bmod 13) \tag{2.40}
\end{equation*}
$$

Using Theorem 1.1 and Definition 1.4, then

$$
\begin{equation*}
\left(\frac{5}{13}\right)\left(\frac{13}{5}\right)=(-1)^{\frac{5-1}{2} \cdot \frac{13-1}{2}}=+1 \tag{2.41}
\end{equation*}
$$

is satisfied. By substituting $\left(\frac{13}{5}\right)=\left(\frac{3}{5}\right)=-1$ into the (2.41) then we get $\left(\frac{5}{13}\right)=-1$. This is a contradiction since (2.40) can not sovable. Therefore, $13 k \notin P_{+31}$ for $k \in Z$.
(iv)Assume that if $d \in P_{+31}$ and $19 l \in P_{+31}$. Then,

$$
\begin{equation*}
19 l d+31=T^{2} \tag{2.39}
\end{equation*}
$$

holds for integer T. Applying (mod 19) on (2.39), we get

$$
\begin{equation*}
\mathrm{T}^{2} \equiv 12(\bmod 19) \tag{2.40}
\end{equation*}
$$

From Legendre symbol's properties and Theorem 1.3, we have

$$
\begin{equation*}
\left(\frac{12}{19}\right)=\left(\frac{4}{19}\right) \cdot\left(\frac{3}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{2}{19}\right)\left(\frac{3}{19}\right) \tag{2.41}
\end{equation*}
$$

Using Definition 1.4, we obtain $\left(\frac{3}{19}\right)=-1$. It requires that $\left(\frac{12}{19}\right)=-1$ and it is a contradiction So, $19 l \notin P_{+31}$ for $l \in Z$.
(b) Along the same line, assume that any multiply of $3,11,13$, or 17 are in the P_{-31}.

Briefly and respectively, we get

$$
\begin{align*}
\mathrm{A}^{2} & \equiv 2(\bmod 3) \tag{2.42}\\
\mathrm{B}^{2} & \equiv 2(\bmod 11) \tag{2.43}\\
\mathrm{C}^{2} & \equiv 8(\bmod 13) \tag{2.44}\\
\mathrm{D}^{2} & \equiv 3(\bmod 17) \tag{2.45}
\end{align*}
$$

From Theorem 1.3, we calculate $\left(\frac{2}{3}\right)=-1,\left(\frac{2}{11}\right)=-1$ and $\left(\frac{2}{13}\right)=-1$. This is a contradiction since (2.42), (2.43) and (2.44) are unsolvable. Besides, from Theorem 1.1 and Definition 1.4 , we get $\left(\frac{3}{17}\right)=-1$ which means that (2.45) is not solvable. So, any multiplication of $3,11,13$, or 17 are not in the P_{-31}.

Remark 2.8. One may find different regular non- extendible triples P_{+31} or P_{-31} and also extend the Theorem 2.7 using our method.

References

[1] Biggs N.L., Discrete Mathematics. Oxford University Press, 2003.
[2] Burton D.M., Elementary Number Theory. Tata McGraw-Hill Education, 2006.
[3] Clark, P. L., Quadratic Reciprocity I, Lecture Notes, 1-12.
[4] Cohen H., Number Theory, Graduate Texts in Mathematics, vol. 239, Springer-Verlag, New York, 2007.
[5] Daileda, R.C., The Legendre Symbol, Lecture Notes in Number Theory, Trinity University.
[6] Dickson LE., History of Theory of Numbers and Diophantine Analysis, Vol 2, Dove Publications, New York, 2005.
[7] Dotsenko, V., Quadratic Residues, Lecture Notes, pp. 1-3.
[8] Dujella, A., Jurasic, A., Some Diophantine Triples and Quadruples for Quadratic Polynomials, J. Comp. Number Theory, Vol.3, No.2, 123-141, 2011.
[9] Fermat, P. Observations sur Diophante, Oeuvres de Fermat, Vol. 1 (P. Tonnery, C. Henry eds.), p.303, 1891.
[10] Gopalan M.A., Vidhyalaksfmi S. , Özer Ö., "A Collection of Pellian Equation (Solutions and Properties)", Akinik Publications, New Delhi, INDIA, 2018.
[11] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990.
[12] Jimbo, H.C. and Ngongo, I.S., Application of Limit Theorem to sum of Legendre Symbols, Acta Math. Univ. Comenianae, Vol. (submitted to AMUC), pp. 1-5.
[13] Kohnen, W., An Elemenary Proof in the Theory of Quadratic Residues, Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 273-275.
[14] Lemmermeyer, F. Reciprocity Laws: from, Euler to Eisenstien. Berlin Hiedelberg New York: Springer-Verlag,2000.
[15] Mathmdmb, Primitive Roots,Order, Quadratic Residue, Lecture Notes, March 30, 2011.
[16] Mollin R.A., Fundamental Number theory with Applications, CRC Press, 2008.
[17] Özer Ö., A Note On The Particular Sets With Size Three, Boundary Field Problems and Computer Simulation Journal, 55, 56-59, 2016.
[18] Özer Ö., On The Some Particular Sets, Kırklareli University Journal of Engineering and Science, 2, 99-108, 2016.
[19] Özer Ö., Some Properties of The Certain P_{t} Sets, International Journal of Algebra and Statistics, Vol. 6; 1-2, 117-130, 2017.
[20] Özer Ö., On The Some Nonextandable Regular P_{-2} Sets, Malaysian Journal of Mathematical Sciences 12(2): 255-266, 2018.
[21] Özer Ö., Dubey O.P., On Some Particular Regular Diophantine 3-Tuples, Mathematics in Natural Sciences, (Accepted).
[22] Stillwell, J. Elements of Number Theory. New York: Springer-Verlag, 2003.

[^0]: * Corresponding author: Özen ÖZER

