

Some Results on Especial Diophantine Sets with Size-3

Özen ÖZER^{1*} ¹Faculty of Engineering, Kırklareli University, Kırklareli, 39100, Turkey.

E-mail address: <u>ozenozer39@gmail.com</u>

Abstract

Purpose of this paper is to determine some regular non-extendible D(n) triples for some fixed integer n. Besides, paper includes a number of algebraic properties for such diophantine sets with size three.

Keywords: Diophantine Sets, Property D(n), Integral Solutions of Pell Equations, Quadratic Residues and Reciprocity Theorems, Legendre Symbol.

2010 Mathematics Subject Classification: 11D09, 11A15, 11A07.

1.Introduction and Preliminaries

There are a lot of significant and attracted results in the literature related with Diophantine sets and equations. One of them was started by a Greek mathematician Diophantus of Alexandria in the 3rd century. Mathematicians have been interested in Diophantine sets for a long time before due to unsolved problems in the literature.

^{*} Corresponding author: Özen ÖZER

For this paper, we use some basic notions such as quadratic reciprocity and residues ([3, 7, 13-16,22]), legendre symbol ([5, 12]) and Diophantine sets with their regularity ([6,8-10, 17-21]) as well as significant books ([1, 2, 4, 6, 10, 16]) from algebraic and elemantary number theories. We obtain regular non-extendibility of some D(n) Diophantine triples where *n* is 31 or -31.Additionally, we demontrate that some types of elements can not be in $D(\mp 31)$.

Definition 1.1. ([6, 8, 9]) A Diophantine *m*-tuple with the property D(n) (it sometimes representatives as P_n with *m*-tuples) for *n* an integer is an *m*-tuple of different positive integers $\{\beta_1, ..., \beta_n\}$ such that $\beta_i \beta_j + n$ is always a square of an integer for every distinct *i*, *j*. As a special case, If n = 3 then it is called by D(n) - Diophantine triple.

Definition 1.2. ([8]) If D(n)- triple $\{u, v, w\}$ satisfies the following condition

$$(w - v - u)^2 = 4(u.v + n)$$
 (1.1)

then $\{u, v, w\}$ is called Regular Diophantine Triple.

Definition 1.3. ([13, 15])Let q be an odd prime and u be an integer such that gcd(u,q) = 1. The quadratic residue symbol $\left(\frac{u}{q}\right)$ is defined to be 1 or -1 according as the congruence $x^2 \equiv u \pmod{q}$ is solvable or not.

Also, Quadratic Reciprocity law was formulated by Euler although Legendre discovered it independently of Euler in 1785. We can see some results on this law as follows:

Theorem 1.1. ([12]) (Quadratic Reciprocity Law) Let *p*, *q* be different odd primes. Then,

(i) If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then p is a square \pmod{q} if and only if q is a square \pmod{p} .

(ii) If $p \equiv 3 \pmod{4}$ and $q \equiv 1 \pmod{4}$, then p is a square \pmod{q} if and only if q is not a square \pmod{p} .

Theorem 1.2. ([2, 12, 14, 22]) (First Supplement to the Quadratic Reciprocity Law) Let q be an odd prime. Then, -1 is a square (mod q) necessary and sufficient condition $q \equiv 1 \pmod{4}$ holds.

Theorem 1.3. ([12,14]) (Second Supplement to the Quadratic Reciprocity Law) Let p be an odd prime. Then 2 is a square mod q if and only if $q \equiv 1,7 \pmod{4}$.

Definition 1.4. ([5,7]) The symbol $\left(\frac{\alpha}{q}\right)$ is called Legendre Symbol, if $\left(\frac{\alpha}{q}\right)$ equals to 1. It means that α is a quadratic residue.

$$\begin{pmatrix} \frac{\alpha}{q} \end{pmatrix} = \begin{cases} 1 & \text{if } \alpha \text{ is a quadratic residue modulo } q \\ -1 & \text{if } \alpha \text{ is a non-quadratic residue modulo } q \end{cases}$$
(1.2)

Proposition 1.1. ([5,7]) Let q be an odd prime. Then following properties are satisfied.

(a) $m \equiv n \pmod{q}$ implies $\left(\frac{m}{q}\right) = \left(\frac{n}{q}\right)$

(b) The Legendre Symbol is multiplicative: $\left(\frac{m}{q}\right) \cdot \left(\frac{n}{q}\right) = \left(\frac{m \cdot n}{q}\right)$ where m, n are integers and coprime to q prime.

2. Theorems And Results

Theorem 2.1. $P_{+31} = \{2, 9, 25\}$ is regular but non-extendible Diophantine triple.

Proof. For regularity, we consider the condition (1.1) of Definition 1.2. So, it is seen that $P_{+31} = \{2, 9, 25\}$ is a regular triple. We suppose that $\{2, 9, 25\}$ can extendible to Diophantine quadruple for any positive integer ϑ and $\{2,9,25\,\vartheta\}$ is a P_{+31} quadruple. Then, there are a_1, a_2, a_3 integers such that,

$$2\vartheta + 31 = a_1^2 \tag{2.1}$$

$$9\vartheta + 31 = a_2^2 \tag{2.2}$$

$$25\vartheta + 31 = a_3^{\ 2} \tag{2.3}$$

Eliminating ϑ between (2.2) and (2.3), we obtain following equation:

$$25a_2^2 - 9a_3^2 = 496 \tag{2.4}$$

Applying factorization method on the (2.4), we get a table as follows:

Solutions	1.Class of Solutions	2.Class of Solutions
(a_2, a_3)	(∓25,∓41)	(∓7,∓9)

Table 2.1. Solutions of $25a_2^2 - 9a_3^2 = 496$

Considering (2.1) and (2.2), we obtain

$$9a_1^2 - 2a_2^2 = 217 \tag{2.5}$$

Considering above solutions, we have $a_2^2 = 625$, $a_2^2 = 49$. If we put these values into the (2.5) we have $a_1^2 = 163$, $a_1^2 = 35$. This is a contradiction since a_1 isn't an integer.

So, there is no such ϑ positive integer and $P_{+31} = \{2, 9, 25\}$ can be non-extended to P_{+31} Diophantine quadruple.

Theorem 2.2. A set $P_{+31} = \{3,46,75\}$ is both regular and non-extendible to the P_{+31} Diophantine quadruple.

Proof. $P_{+31} = \{3,46,75\}$ satisfies (1.1) regularity condition of Definition 1.2. So, it is regular. Supposing that $P_{+31} = \{3,46,75,\omega\}$ be a P_{+31} Diophantine quadruple for positive integer ω . There are b_1, b_2, b_3 integers such that

$$3\omega + 31 = b_1^2 \tag{2.6}$$

$$46\omega + 31 = b_2^{\ 2} \tag{2.7}$$

$$75\omega + 31 = b_3^{\ 2} \tag{2.8}$$

hold. Dropping ω from (2.6) and (2.8), we have

$$25b_1^2 - b_3^2 = 744 \tag{2.9}$$

If we use factorization method into the (2.9), we obtain solutions in a following table:

Solutions	1.Class of Solutions	2.Class of Solutions
(b_1, b_3)	(∓19,∓91)	(∓13,∓59)

Table 2.2. Solutions of $25b_1^2 - b_3^2 = 744$

Dropping ω from (2.6) and (2.7), then we have

$$-3b_2^2 + 46b_1^2 = 1333 \tag{2.10}$$

From Table 2.2, we have $b_1^2 = 361$ or $b_1^2 = 169$. If we substitute them into the (2.10), we obtain $b_2^2 = 5091$ or $b_2^2 = 2147$ respectively. It is a contradiction and b_2 isn't integer solution for (2.10).

Thus, there is not positive integer ω and $P_{+31} = \{3,46,75\}$ can not be extended to P_{+31} Diophantine quadruple. **Theorem 2.3.** $P_{+31} = \{3,75,110\}$ is a regular triple but can not nonextendible to P_{+31} Diophantine triple.

Proof. First of all, let's show that $P_{+31} = \{3,75,110\}$ is a regular triple. If we use regularity condition for $P_{+31} = \{3,75,110\}$, it is easily seen that the set holds condition (1.1). That is why, set is regular.

Similarly, let us assume that $P_{+31} = \{3,75,110,\alpha\}$ be a Diophantine quadruple for positive integer α . So, we get $c_1, c_2, c_3 \in \mathbb{Z}$ such that following equations are satisfied.

$$3\alpha + 31 = c_1^2 \tag{2.11}$$

$$75\alpha + 31 = c_2^{\ 2} \tag{2.12}$$

$$110\alpha + 31 = c_3^2 \tag{2.13}$$

If we reduce α from (2.11) and (2.12), we obtain an equation as same as (2.9) for (c_1, c_2) . So, we have the solutions as same as Table 2.2 for (c_1, c_2) . Dropping α from (2.11) and (2.13), then we obtain

$$110c_1^2 - 3c_3^2 = 3317 \tag{2.14}$$

Substituting $c_1^2 = 361$ or $c_1^2 = 169$ into the (2.14), $c_3^2 = 12131$, or $c_3^2 = 5091$ are got. It is seen that c_3 is not integer solution for (2.14). Thus, it is a contradiction.

Therefore, there is no positive integer α and also $P_{+31} = \{3,75,110\}$ can not be extended to P_{+31} Diophantine quadruple.

Theorem 2.4. A set $P_{+31} = \{9, 25, 66\}$ regular diophantine triple and nonextendible to P_{+31} quadruple.

Proof. $P_{+31} = \{9, 25, 66\}$ holds (1.1) condition in the Definition 1.2. That is why it is regular. Assume that $P_{+31} = \{9, 25, 66, g\}$ is Diophantine quadruple for $g \in \mathbb{Z}^+$. Definition 1.1 implies that

$$9 g + 31 = d_1^2 \tag{2.15}$$

$$25 g + 31 = d_2^2 \tag{2.16}$$

$$66 g + 31 = d_3^{\ 2} \tag{2.17}$$

for d_1 , d_2 , $d_3 \in \mathbb{Z}$. Simplification of (2.15) and (2.16), we have;

$$25d_1^2 - 9d_2^2 = 496 \tag{2.18}$$

This equation is similar to (2.4) for (d_1, d_2) . From Table 2.1, we obtain $d_1^2 = 625$, $d_1^2 = 49$. From (2.15) and (2.17), we obtain

$$22d_1^2 - 3d_3^2 = 589 \tag{2.19}$$

Substituting $d_1^2 = 625$, $d_1^2 = 49$ into the (2.19), we have $d_3^2 = 4387$ and $d_3^2 = 163$, respectively. This is a contradiction since d_3 is not integer solution of (2.19).

Hence, $P_{+31} = \{9, 25, 66\}$ can not extendible to P_{+31} Diophantine quadruple.

Theorem 2.5. Both $P_{-31} = \{2, 100, 128\}$ and $P_{-31} = \{2, 128, 160\}$ are regular Diophantine triple and also non-extendible.

Proof. We can see that both $P_{-31} = \{2, 100, 128\}$ and $P_{-31} = \{2, 128, 160\}$ are regular Diophantine triples from (1.1) condition.

Suggesting that $\{2, 100, 128, \hbar\}$ is a P_{-31} Diophantine quadruple for positive integer \hbar . Then,, there are $e_1, e_2, e_3 \in \mathbb{Z}$ such that

$$2\hbar - 31 = e_1^2 \tag{2.20}$$

$$100 \hbar - 31 = e_2^2 \tag{2.21}$$

$$128\hbar - 31 = e_3^2 \tag{2.22}$$

Simplifying \hbar between (2.20) and (2.22), we get

$$-64e_1^2 + e_3^2 = 1953 \tag{2.23}$$

and similarly from (2.20) and (2.21)

$$-50e_1^2 + e_2^2 = 1519 \tag{2.24}$$

By factorizing (2.23), we obtain following table for solutions.

Solutions	1.Class of	2.Class of	3.Class of	4.Class of
	Solutions	Solutions	Solutions	Solutions
(e_3, e_1)	(∓977,∓122)	(∓143,∓17)	(∓113,∓13)	(∓47,∓2)

Table 2.3. Solutions of $-64e_1^2 + e_3^2 = 1953$

By substituting $e_1^2 = 14884$, $e_1^2 = 289$, $e_1^2 = 169$, $e_1^2 = 4$ into the (2.24), we get $e_2^2 = 745719$ $e_2^2 = 15969$, $e_2^2 = 8450$, $e_2^2 = 1719$ respectively. It is seen that it is a contradiction since $e_2 \notin \mathbb{Z}$.

As a consequence, $P_{-31} = \{2, 100, 128\}$ can not be extended to P_{-31} Diophantine quadruple.

Let $P_{-31} = \{2, 128, 160, \mathcal{L}\}\$ be a Diophantine quadruple for $\mathcal{L} \in \mathbb{Z}^+$. From Definition 1.1, we have

$$2\mathcal{L} - 31 = f_1^2 \tag{2.25}$$

$$128\mathcal{L} - 31 = f_2^{\ 2} \tag{2.26}$$

$$160\mathcal{L} - 31 = f_3^{\ 2} \tag{2.27}$$

for $f_1, f_2, f_3 \in \mathbb{Z}$. Dropping \mathcal{L} from (2.25) and (2.26), we have an equation like (2.19). Hence, Table2.3 can be used for (f_2, f_1) instead of (e_3, e_1) . From (2.25) and (2.27), we also have

$$-80f_1^2 + f_3^2 = 2449 \tag{2.28}$$

Putting $f_1^2 = 14884$, $f_1^2 = 289$, $f_1^2 = 169$, $f_1^2 = 4$ into the (2.28), we have $f_3^2 = 1193169$, $f_3^2 = 25569$, $f_3^2 = 15969$, $f_3^2 = 2749$. It is a contradiction because f_3 is not an integer solution of (2.28).

Therefore, $P_{-31} = \{2, 128, 160\}$ is nonextendable to P_{-31} Diophantine triple.

Theorem 2.6. A set $P_{-31} = \{4, 64, 98\}$ is not only regular but also nonextendible Diophantine triple.

Proof. Regularity of $P_{-31} = \{4, 64, 98\}$ can be easily seen from (1.1). In the same way, supposing that $P_{-31} = \{4, 64, 98, \mathcal{M}\}$ be a Diophantine quadruple for positive integer \mathcal{M} . We get $g_1, g_2, g_3 \in \mathbb{Z}$ such that

$$4\mathcal{M} - 31 = g_1^2 \tag{2.29}$$

$$64\mathcal{M} - 31 = g_2^2 \tag{2.30}$$

$$98\mathcal{M} - 31 = g_3^2 \tag{2.31}$$

Dropping \mathcal{M} from (2.29) and (2.30), we get an equation as follows:

$$g_2^2 - 16g_1^2 = 465 \tag{2.32}$$

and if we eliminate \mathcal{M} from (2.29) and (2.31), then

$$2g_3^2 - 49g_1^2 = 1457 \tag{2.33}$$

is obtained. Table 2.4 is got from (2.32) as follows:

Solutions	1.Class of	2.Class of	3.Class of	4.Class of
	Solutions	Solutions	Solutions	Solutions
(g_2, g_1)	(∓233,∓58)	(∓79,∓19)	(∓49,∓11)	(∓23,∓2)

Table 2.4. Solutions of $g_2^2 - 16g_1^2 = 465$

Substituting $g_1^2 = 3364$, $g_1^2 = 361$, $g_1^2 = 121$, $g_1^2 = 4$, into the (2.33), $g_3^2 = \frac{166293}{2}$, $g_3^2 = 9573$, $g_3^2 = 3693$, $g_3^2 = \frac{1653}{2}$ are got. it is a contradiction since g_3 is not integer solution for (2.33)

So, $P_{-31} = \{4, 64, 98\}$ can not be extended to P_{-31} Diophantine quadruple.

Theorem 2.7. Following conditions are satisfied for $P_{\pm 31}$ sets.

- (a) There isn't any set P_{+31} includes any multiplication of 4,7, 13, or 19.
- (b) There is no set P_{-31} involves any multiplication of 3,11, 13, or 17.

Proof. (a) (i) Supposing that a is an element of set P_{+31} . If $4m \in P_{+31}$ for $m \in Z$, then $4ma + 31 = X^2$ (2.34)

satisfy for some integer X. Applying (mod 4) on the (2.34), we obtain

$$X^2 \equiv 3 \pmod{4} \tag{2.35}$$

Since $X \in Z$, then X is even or odd integer. So, (2.35) can not has a solution. This is a contradiction. Hence, $4m \notin P_{+31}$ for $m \in Z$.

(ii)Similarly, assuming that $b \in P_{+31}$ and $7n \in P_{+31}$ for $(n \in Z)$. So,

$$7nb + 31 = \Psi^2 \tag{2.36}$$

holds for integer Ψ . By (mod 7), we obtain

$$\Psi^2 \equiv 3 \pmod{7} \tag{2.37}$$

From Theorem 1.1 and Definition 1.4,

$$\left(\frac{3}{7}\right)\left(\frac{7}{3}\right) = (-1)^{\frac{3-1}{2} \cdot \frac{7-1}{2}} = -1$$
(2.38)

is hold.. Using Proposition 1.1, we have $\left(\frac{7}{3}\right) = \left(\frac{1}{3}\right) = +1$ and substituting it into the (2.38) then $\left(\frac{3}{7}\right) = -1$ is obtained. This implies that equivalent (2.38) isn't solvable. So, $7n \notin P_{+31}$ for $n \in Z$. (iii)In the same vein, if $c \in P_{+31}$ and $13k \in P_{+31}$ for $(k \in Z)$, then

$$13kc + 31 = \Omega^2 \tag{2.39}$$

holds for integer Ω . Applying (mod 13) on (2.39), we have

$$\Omega^2 \equiv 5 \pmod{13} \tag{2.40}$$

Using Theorem 1.1 and Definition 1.4, then

$$\left(\frac{5}{13}\right)\left(\frac{13}{5}\right) = (-1)^{\frac{5-1}{2} \cdot \frac{13-1}{2}} = +1$$
(2.41)

is satisfied. By substituting $\left(\frac{13}{5}\right) = \left(\frac{3}{5}\right) = -1$ into the (2.41) then we get $\left(\frac{5}{13}\right) = -1$. This is a contradiction since (2.40) can not solvable. Therefore, $13k \notin P_{+31}$ for $k \in Z$.

(iv)Assume that if $d \in P_{+31}$ and $19l \in P_{+31}$. Then,

$$19ld + 31 = T^2 \tag{2.39}$$

holds for integer T. Applying (mod 19) on (2.39), we get

$$T^2 \equiv 12 \pmod{19}$$
 (2.40)

From Legendre symbol's properties and Theorem 1.3, we have

$$\begin{pmatrix} \frac{12}{19} \end{pmatrix} = \begin{pmatrix} \frac{4}{19} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{19} \end{pmatrix} = \begin{pmatrix} \frac{2}{19} \end{pmatrix} \begin{pmatrix} \frac{2}{19} \end{pmatrix} \begin{pmatrix} \frac{3}{19} \end{pmatrix}$$
(2.41)

Using Definition 1.4, we obtain $\left(\frac{3}{19}\right) = -1$. It requires that $\left(\frac{12}{19}\right) = -1$ and it is a contradiction So, $19l \notin P_{+31}$ for $l \in Z$.

(b) Along the same line, assume that any multiply of 3,11, 13, or 17 are in the P_{-31} .

Briefly and respectively, we get

$$A^2 \equiv 2 \pmod{3} \tag{2.42}$$

$$B^2 \equiv 2 \pmod{11} \tag{2.43}$$

$$C^2 \equiv 8 \pmod{13} \tag{2.44}$$

$$D^2 \equiv 3 \pmod{17}$$
 (2.45)

From Theorem 1.3, we calculate $\left(\frac{2}{3}\right) = -1$, $\left(\frac{2}{11}\right) = -1$ and $\left(\frac{2}{13}\right) = -1$. This is a contradiction since (2.42), (2.43) and (2.44) are unsolvable. Besides, from Theorem 1.1 and Definition 1.4, we get $\left(\frac{3}{17}\right) = -1$ which means that (2.45) is not solvable. So, any multiplication of 3,11, 13, or 17 are not in the P_{-31} .

Remark 2.8. One may find different regular non- extendible triples P_{+31} or P_{-31} and also extend the Theorem 2.7 using our method.

References

- [1] Biggs N.L., Discrete Mathematics. Oxford University Press, 2003.
- [2] Burton D.M., Elementary Number Theory. Tata McGraw-Hill Education, 2006.
- [3] Clark, P. L., Quadratic Reciprocity I, Lecture Notes, 1-12.
- [4] Cohen H., Number Theory, Graduate Texts in Mathematics, vol. 239, Springer-Verlag, New York, 2007.
- [5] Daileda, R.C., The Legendre Symbol, Lecture Notes in Number Theory, Trinity University.
- [6] Dickson LE., History of Theory of Numbers and Diophantine Analysis, Vol 2, Dove Publications, New York, 2005.
- [7] Dotsenko, V., Quadratic Residues, Lecture Notes, pp. 1-3.
- [8] Dujella, A., Jurasic, A., Some Diophantine Triples and Quadruples for Quadratic Polynomials,J. Comp. Number Theory, Vol.3, No.2, 123-141, 2011.
- [9] Fermat, P. Observations sur Diophante, Oeuvres de Fermat, Vol.1 (P. Tonnery, C. Henry eds.), p.303, 1891.
- [10] Gopalan M.A., Vidhyalaksfmi S., Özer Ö., "A Collection of Pellian Equation (Solutions and Properties)", Akinik Publications, New Delhi, INDIA, 2018.
- [11] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990.
- [12] Jimbo, H.C. and Ngongo, I.S., Application of Limit Theorem to sum of Legendre Symbols, Acta Math. Univ. Comenianae, Vol. (submitted to AMUC), pp. 1-5.
- [13] Kohnen, W., An Elemenary Proof in the Theory of Quadratic Residues, Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 273-275.
- [14] Lemmermeyer, F. Reciprocity Laws: from, Euler to Eisenstien. Berlin Hiedelberg New York: Springer-Verlag,2000.
- [15] Mathmdmb, Primitive Roots, Order, Quadratic Residue, Lecture Notes, March 30, 2011.
- [16] Mollin R.A., Fundamental Number theory with Applications, CRC Press, 2008.

- [17] Özer Ö., A Note On The Particular Sets With Size Three, Boundary Field Problems and Computer Simulation Journal, 55, 56-59, 2016.
- [18] Özer Ö., On The Some Particular Sets, Kırklareli University Journal of Engineering and Science, 2, 99-108, 2016.
- [19] Özer Ö., Some Properties of The Certain Pt Sets, International Journal of Algebra and Statistics, Vol. 6; 1-2, 117-130, 2017.
- [20] Özer Ö., On The Some Nonextandable Regular P_{-2} Sets, Malaysian Journal of Mathematical Sciences 12(2): 255–266, 2018.
- [21] Özer Ö., Dubey O.P., On Some Particular Regular Diophantine 3-Tuples, Mathematics in Natural Sciences, (Accepted).
- [22] Stillwell, J. Elements of Number Theory. New York: Springer-Verlag, 2003.