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Abstract: Model predictive control has been widely used in the industry. This can control the multivariable system 

with constraints on input and output variables but it needs online computation solver, and creates the non-

convex solution in nonlinear plant due to the parameter uncertainties.  The online computational problem 

and non-convex solution of the model predictive control are achieved via neural network model predictive 

control. The paper explores the speed control of permanent magnet synchronous motor (PMSM) by using 

neural network model predictive control (NNMPC) technique. The multi-layer artificial neural network is 

used to identify the dynamics of PMSM. The set point speed tracking control of PMSM is identified by 

using neural network model predictive control strategy. By using the set of input and output data obtained 

from the system, the multi input-output feed-forward neural network model is created. Levenberg-Marquardt 

algorithm is used to train the process models of the PMSM. That provides future plant output for control 

optimization of the predictive control. The overall system is developed and tested in the 

MATLAB/Simulink. To evaluate the efficiency of the controller proposed, it is compared with a constrained 

model predictive controller through the studies of simulation. The overshoot and settling time of the speed 

response of the PMSM are measured and analyzed for NNMPC and constrained MPC. 
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Nomenclature  

Rs Stator Resistance (Ω) 

Ld Direct axis stator inductance (H) 

Lq Quadrature axis stator inductance (H) 

Vd Direct axis voltage (V) 

Vq Quadrature axis voltage (V) 

id Direct axis stator current (A) 

iq  Quadrature axis stator current (A) 

ωe Electrical Speed (rad/s) 

φmg Flux linkage due to permanent magnet (Wb-t) 

Zp Number of pole pairs 

Jm Moment of inertia (kg m2) 

Te Electromagnetic Torque (N-m) 

Bv Viscous coefficient 

TL Load Torque (N-m) 
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1. INTRODUCTION 

Permanent magnet synchronous motor (PMSM) is broadly utilized in electric vehicle and modern 

applications because of its high-energy efficiency, torque density and low weight [1-3]. PMSM is driven 

with solid-state drives, which have been a field of passion for researchers throughout the previous two 

decades. Different control techniques applied for PMSM are found in the literature. Most of the control 

techniques are based on the classical d-q model and it is known as field-oriented control (FOC) [4]. 

Rotor position control along with speed control objective of the PMSM was achieved by cascade control 

structure [5]. Current control along with speed control objective of the PMSM was achieved by double 

loop feedback control. In double loop feedback control, the outer-loop used for control the angular 

velocity of the PMSM and inner loop control used for control the q-axis current of the PMSM [6]. In 

the implementation of FOC of PMSM, the rotor position is mandatory to achieve desired performance 

in the motor and for this purpose, rotor position sensors are installed in the PMSM, which increases the 

cost. To overcome this problem, sensor less vector control methods were introduced and along with 

these back-stepping methods, sliding mode control and fuzzy controller are mentioned in the literature 

[7-9]. However, these approaches have problem due to constraints of the PMSM. It is hard to understand 

the advantages of optimal control of the system with a nonlinear behavior of the PMSM system and 

adherence of constraints on the manipulated variable, state variables, and output variables. In this case, 

it is not possible to derive mathematical equations for the PMSM system.  

Linear Model Predictive Controller (MPC) has become a suitable control of a technique used in the 

industry with the account of constraints handling. For handling nonlinear process, MPC requires large 

computational capacity and nonlinear solver. Some researchers combined the linear predictive control 

with nonlinear optimization techniques to solve the nonlinear process but that increased the online 

computation time and the system generated the non-convex solution due to parameter uncertainties.  

Moreover, this type of control needs mathematical model of the plant. To overcome, online computation 

burden and non-convex solution, in this paper, neural network model predictive control is introduced 

for the speed control of permanent magnet synchronous motor. The neural network model predictive 

control does not require any mathematical model of the system, plant model is updated in offline mode 

by using the collected data from the plant and it reduces the online computation burden [10-12]. The 

neural network model predictive control technique has two processes, the first process is plant 

identification and the second process is predictive control mechanism using receding horizon policy 

[13-15]. 

In this paper, MPC and Neural Network Model Predictive Control (NNMPC) are applied to control the 

speed of the permanent magnet synchronous motor. Comparative analysis between MPC and NNMPC 

for different operating conditions of the PMSM are presented to test the effectiveness of the NNMPC. 

The organization of the paper as follows: The state space model of the PMSM is described in the section 

2. Section 3 explains about model predictive control for the PMSM. Section 4 explains about neural 

network model predictive control for the PMSM. The simulation results are discussed in the section 5. 

Concluding remarks are given in the section 6. 

 

2. STATE MODEL OF PMSM 

The first and foremost job is to find a linear model of the permanent magnet synchronous motor from 

the differential equations of the plant [16-18]. The differential equations for the PMSM in d-q reference 

frame is given by the following equations, 
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𝑑𝑖𝑑(𝑡)

𝑑𝑡
=

1

𝐿𝑑

[𝑣𝑑(𝑡) − 𝑅𝑠𝑖𝑑(𝑡) + 𝜔𝑒(𝑡)𝐿𝑞𝑖𝑞(𝑡)] (1) 

 
𝑑𝑖𝑞(𝑡)

𝑑𝑡
=

1

𝐿𝑑

[𝑣𝑞(𝑡) − 𝑅𝑠𝑖𝑞(𝑡) + 𝜔𝑒(𝑡)𝐿𝑑𝑖𝑑(𝑡) − 𝜔𝑒(𝑡)𝜑𝑚𝑔] (2) 

 
𝑑𝜔𝑒(𝑡)

𝑑𝑡
=

𝑍𝑝

𝐽𝑚
[𝑇𝑒 −

𝐵𝑣

𝑍𝑝

𝜔𝑒(𝑡) − 𝑇𝐿] (3) 

 

𝑇𝑒 =
3

2
𝑍𝑝[𝜑𝑚𝑔𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑(𝑡)𝑖𝑞(𝑡)] (4) 

There are three bilinear terms in the differential equations of the PMSM i.e.,  ωe(t)iq(t), ωe(t)id(t)  

and id(t)iq(t). Using Taylor series expansion, the aforementioned bilinear terms are approximated 

around the operating points id
0 ,  iq

0 and ωe
0  to obtain its linear approximation. On substituting these 

approximations in Eq. (1) and Eq. (2), we obtain the linearized model of plant in the following form: 

𝑑𝑋(𝑡)

𝑑𝑡
=  𝐴. 𝑋(𝑡) + 𝐵. 𝑢(𝑡) + 𝜇0 (5) 

 
𝑦(𝑡) = 𝐶. 𝑋, (6) 

where, 

𝑋(𝑡) =  [

𝑖𝑑(𝑡)

𝑖𝑞(𝑡)

𝜔𝑒(𝑡)

] (7) 

 

𝑢(𝑡) =  [
𝑣𝑑(𝑡)

𝑣𝑞(𝑡)
]   𝑎𝑛𝑑 𝑦 (𝑡) =  [

𝑖𝑑(𝑡)

𝜔𝑒(𝑡)
] (8) 

State matrix A is given by, 

A = 

[
 
 
 
 
 −

𝑅𝑠

𝐿𝑑

𝐿𝑞

𝐿𝑑
𝜔𝑒

0 𝐿𝑞

𝐿𝑑
𝑖𝑞
0

−
𝐿𝑑

𝐿𝑞
𝜔𝑒

0 −
𝑅𝑠

𝐿𝑞
−(

𝐿𝑑

𝐿𝑞
𝑖𝑑
0 +

𝜑𝑚𝑔

𝐿𝑞
 )

0
3𝑍𝑝

2𝜑𝑚𝑔

2𝐽𝑚
−

𝐵𝑣

𝐽𝑚 ]
 
 
 
 
 

 (9) 

input matrix B is given by, 

B=

[
 
 
 

1

𝐿𝑑
0

0
1

𝐿𝑞

0 0]
 
 
 

 (10) 

and output matrix C is given by, 

C = [
1 0 0
0 0 1

] (11) 
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𝜇0 = 

[
 
 
 
 
 
 −

𝐿𝑞

𝐿𝑑

𝜔𝑒
0𝑖𝑞

0

𝐿𝑑

𝐿𝑞

𝜔𝑒
0𝑖𝑑

0

−
𝑍𝑝𝑇𝐿

𝐽𝑚 ]
 
 
 
 
 
 

 (12) 

μ0 is an input disturbance vector consists of load torque and steady-state parameters. The aim of the 

developed controller is to track the set speed at the same time controller should maintain direct axis 

current (id) is zero and maintain the direct axis voltage and quadrature axis voltage at prescribed values. 

Hence, from state-space formulation, electrical speed (ωe) and direct axis current are considered as 

outputs. The iq current is one of the variables of state that will be evaluated during implementation. 

Conversion of Continuous-Time Model to discrete time model 

With the zero-order hold mechanism, we can develop discrete time model of Eq. (5) and Eq. (6) which 

describe the dynamics [19]-[21]. By considering t0 = 0, t1 = Δt, t2 = 2Δt, …, ti = i. Δt is the sampling 

time with a fixed sampling time Δt and sampling index i. The systematic solution of the differential 

equation at time t1 = Δt is obtained by the Eq. (13), 

𝑥𝑚(𝑡1) =  𝑒𝐴𝑚∆𝑡 𝑥𝑚(0) + ∫ 𝑒𝐴𝑚(∆𝑡−𝜏)𝐵𝑚𝑢(𝜏)𝑑𝜏 + ∫ 𝑒𝐴𝑚(∆𝑡−𝜏)𝜇0𝑑𝜏
∆𝑡

0

∆𝑡

0

 (13) 

With the initial condition vector xm(t1), the differential equation analytical solution at time t2 is obtained 

by means of following expression, 

𝑥𝑚(𝑡2) =  𝑒𝐴𝑚∆𝑡 𝑥𝑚(𝑡1) + ∫ 𝑒𝐴𝑚(2∆𝑡−𝜏)𝐵𝑚𝑢(𝜏)𝑑𝜏 + ∫ 𝑒𝐴𝑚(2∆𝑡−𝜏)𝜇0𝑑𝜏
2∆𝑡

∆𝑡

2∆𝑡

∆𝑡

 (14) 

The analytical solution of xm(ti) is given by the initial condition vector xm(ti−1) for an arbitrary time ti = 

i.∆t. 

𝑥𝑚(𝑡𝑖) = 𝑒𝐴𝑚∆𝑡 𝑥𝑚(𝑡𝑖−1) +  ∫ 𝑒𝐴𝑚(𝑖∆𝑡−𝜏)𝐵𝑚𝑢(𝜏)𝑑𝜏 + ∫ 𝑒𝐴𝑚(𝑖∆𝑡−𝜏)𝜇0𝑑𝜏
𝑖∆𝑡

(𝑖−1)∆𝑡

𝑖∆𝑡

(𝑖−1)∆𝑡

 (15) 

The convolution integral is cut down as the activation input u(τ) is excluded from the accumulation and 

the following integral equality is shown to hold, 

∫ 𝑒𝐴𝑚(𝑖∆𝑡−𝜏′)𝑑𝜏′ = ∫ 𝑒𝐴𝑚𝜏𝑑𝜏
∆𝑡

0

𝑖∆𝑡

(𝑖−1)∆𝑡

 (16) 

By substitution i*∆t-τ’ = τ in the Eq. (16) and it is converted into discrete time model with integral 

equality and zero-order hold and it is expressed as follows, 

𝑥𝑚(𝑡𝑖) =  𝑒𝐴𝑚∆𝑡 𝑥𝑚(𝑡𝑖−1) +  ∫ 𝑒𝐴𝑚𝜏𝑑𝜏𝐵𝑚𝑢(𝑡𝑖−1) + ∫ 𝑒𝐴𝑚𝜏𝑑𝜏𝜇0
∆𝑡

0

∆𝑡

0

 (17) 

Let Ad and Bd denotes discrete time system matrices, 

𝐴𝑑 = 𝑒𝐴𝑚∆𝑡 ;        𝐵𝑑 = ∫ 𝑒𝐴𝑚𝜏𝑑𝜏𝐵𝑚

∆𝑡

0
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and 𝜇𝑑 denotes discrete time constant vector,  

𝜇𝑑 = ∫ 𝑒𝐴𝑚𝜏𝑑𝜏𝜇0
∆𝑡

0

 

The compact equation of the discrete-time model (i.e. Eq. (17)) is expressed in the following Eq. (18) 

as, 

𝑥𝑚(𝑡𝑖) = 𝐴𝑑𝑥𝑚(𝑡𝑖−1) + 𝐵𝑑𝑢(𝑡𝑖−1) + 𝜇𝑑 (18) 

The output y(ti) = Cdxm(ti), where Cd = Cm. Eq. (19) can also be explained in terms of a forecast one step 

ahead as, 

𝑥𝑚(𝑡𝑖+1) = 𝐴𝑑𝑥𝑚(𝑡𝑖) + 𝐵𝑑𝑢(𝑡𝑖) + 𝜇𝑑 (19) 

In the discrete-time model, the constant vector μ0 is the function of input disturbance. This discrete-time 

model is used for the design of model predictive control and neural network model predictive control of 

PMSM. In next section, model predictive controlled PMSM is explained. 

 

3. MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) is used in the industry due to advanced process control strategy. Model 

predictive controller depends on dynamic model of the process system and online optimization solver 

[22]-[30]. Fig. 1 shows the model predictive controller for permanent magnet synchronous motor 

(PMSM).  

 
Figure 1. Model predictive controlled PMSM 

The PMSM plant output y(k) should track the reference command signal y*. This can be attained by, 

comparing predicted output from PMSM model y(k+1) with reference command y*, and calculating the 

input u(k) based on cost function and constraints optimization. The model predictive controller also has 

to ensure that the constraints are met for all times. In this method, control objectives are converted into 

cost function, which maps future states, outputs and controlled variables sequences into a scalar cost 

value. The cost function facilitates to generate control input for the PMSM plant based on the predicted 

values and reference command signal. The const function used in the model predictive controller to 

track the reference command is given in the Eq. (20), 

𝐽 =  ∑[𝑦(𝑘 + 𝑖) − 𝑦∗(𝑘 + 𝑖)]2

𝑁2

𝑖=𝑁1

+  𝜆 ∑𝛥𝑢2

𝑁𝑢

𝑖=1

(𝑘 + 𝑖 − 1) (20) 
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With the following conditions, 

∆u(k+i-1) = 0 

1 ≤ Nu < i ≤N2 

where, Nu - the control horizon, N1 – minimum prediction horizon and N2 - maximum prediction horizon, 

i- is the order of the predictor, y* – reference command, λ – weight factor, k –time step and ∆ - 

differentiation operator. The control input signal ‘u’ is subjected with following constraints, 

umin ≤ u(k+i) ≤ umax 

where, i= 1,2,3, … Nu 

Based on these two arguments and by using the internal dynamic system model, the future states and 

controlled variables can be predicted over the prediction horizon and cost function is minimized 

accordingly. 

3.1. Optimization Stage 

By minimizing the objective function subject to both the evolution over the prediction horizon of the 

discrete-time internal system model, the constraints give a rise to a constrained problem of optimal 

control over the finite-time. The consequence statement is the optimal sequence of controlled variables, 

uopt(k): 

uopt(k) = arg minimize (J(y(k), u(k)) (21) 

 
Figure 2. Prediction horizon at time step k+1 

3.2. Receding Horizon Policy 

The solution to the optimization problem Eq. (21) yields at time step k (t = k TS).  An open-loop optimal 

sequence of control input variables uopt(k) from time step k to k + Np− 1. To provide feedback, Only the 

first element of that series is applied to the method, namely uopt(k). In the next step k+1 a new state 

estimate is obtained and the problem of optimization is solved over the relocated horizon from k+1 to 

k+Np again. This policy is named as receding horizon control and it is illustrated in Fig. 2. The efforts 

to formulate MPC control problems is often quite small, while the efforts to resolve the underlying 

optimization problem are discouraging. Unfortunately, the computational burden related to solving the 



Journal of Energy Systems 

77 

optimization problem underlying MPC increases exponentially with the length of the prediction horizon 

and plant model inside the MPC is updated at every step time k to predict the accurate output from the 

plant i.e., plant model should be updated regularly if any parameter uncertainties occur in the plant. To 

overcome these problems, neural network model predictive controller is developed for speed control of 

PMSM and details are provided in the next section. 

 

4. NEURAL NETWORK MODEL PREDICTIVE CONTROL 

Linear predictive control performance is very poor when applied to complex non-linear plant.  This 

problem can be overcome by combining predictive control with non-linear online optimization 

techniques but it has some disadvantages such as nonlinear online optimization takes more time to 

predict the optimal control input and also solution may be non-convex due to parameter uncertainties. 

Moreover, this nonlinear predictive control needs mathematics of the plant to provide optimum results. 

To overcome these problems, in this work neural network model predictive control is proposed for the 

speed control of permanent magnet synchronous motor. It does not required mathematical model of 

plant, neural network is trained in offline mode without mathematical model and it overcome the 

problem of parameter uncertainties [31]-[43]. The neural network model predictive controller is 

designed by the following two-step, plant identification using neural network is done in step one and 

predictive control action using receding horizon policy is done in step two.  Fig. 3 shows the PMSM 

plant identification by neural network. 

 
Figure 3. PMSM plant identification by neural network. 

The input-output data of the open loop operation of the PMSM are collected and it is used train the 

neural network using learning algorithm. The learning algorithm updates the weights of the neural 

network to minimize the following objective function, 

𝐽𝑁𝑁 = √
∑ (𝑦𝑖 − 𝑦𝑛𝑖

)2𝑛
𝑖=1

𝑛
 (22) 

Where, yi is the plant output data, yni is the output from the neural network and n is the total number of 

data set used for training. The structure of the neural network plant model is shown in the Fig. 4. 
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Figure 4. Structure of Neural Network Plant model 

 

 
Figure 5. Neural Network Model Predictive Controlled PMSM 

Neural network model predictive controlled PMSM is shown in Fig. 5. Neural network PMSM model 

is created by plant identification to predict future plant performance. Based on previous control input (u 

(k)) and output (y (k)) of the PMSM plant, neural network plant model predicts the future plant output 

(yn (k+1)).   The controller then calculates the manipulated vector ‘u (k+1)’ which is used to control the 

plant output over a given future time horizon. To generate the optimum control input to the PMSM plant, 

the following objective function is minimized using numerical optimization, 

𝐽𝑁𝑁𝑀𝑃𝐶 = ∑ (𝑦∗(𝑘 + 𝑗) − 𝑦𝑛(𝑘 + 𝑗)2

𝑁2

𝑗=𝑁1

+ 𝜂 ∑(𝑢′(𝑘 + 𝑗 − 1) − 𝑢′(𝑘 + 𝑗 − 2))2

𝑁𝑢

𝑗=1

 (23) 

Where, Nu - the control horizon, N1 – minimum prediction horizon and N2 - maximum prediction 

horizon, j- is the order of the predictor, y* – reference command, yn- output from neural network,  – 

weight factor, k –time step and 𝑢′- control input signal for plant from control optimization. In next 

section, simulation result of the classical model predictive controlled PMSM and neural network model 

predictive controlled PMSM is discussed. 
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5. SIMULATION RESULTS 

In this section, simulation of the speed control of permanent magnet synchronous motor with classical 

model predictive controller and neural network model predictive controller is discussed. The 

specification of the permanent magnet synchronous motor is shown in Table 1. 

Table 1. Specification of PMSM 

Description Symbol Value 

Sampling interval ∆t 200μs 

Direct and Quadrature axis inductance Ld and Lq 7mH 

Total inertia Jm 0.00004 kg.m2 

Viscous coefficient Bv 0.00011 Nm.s 

Resistance Rs 2.98 Ω 

Total pole pairs Zp 2 

Linkage Flux Φmg 0.125 wb 

5.1. Constraints of the PMSM 

The maximum voltage of the PMSM drive is determined by the voltage of the DC bus (Vdc) and the 

modulation value of the PWM. The linear modulation range limits the maximum possible voltage 

amplitudes, so that; 

√𝑣𝑑
2 + 𝑣𝑞

2  ≤
𝑉𝑑𝑐

√3
, (24) 

and therefore, this non-linear constraint can always be imposed by means of a rectangular area close to 

the circular area as, 

|𝑣𝑞| ≤ 𝜖
𝑉𝑑𝑐

√3
, (25) 

 

|𝑣𝑑| ≤ √(1 − 𝜖2)
𝑉𝑑𝑐

√3
, (26) 

where, 0 ≤ ϵ ≤ 1. With ϵ = 0.5 and the input DC voltage is Vdc=100 V, the Vq and Vd constraints get 

the values, 

-28.87 ≤ Vq ≤ 28.87 (27) 

 
-50 ≤ Vd ≤ 50 (28) 

The restrictions on incremental Vq and Vd modifications are enforced as, 

-10.0 ≤ ∆Vq ≤ 10.0 (29) 

 
-10.0 ≤ ∆Vd ≤ 10.0 (30) 

The parameter used in the classical model predictive controller is given as; the control horizon NC is 

selected as 3, the prediction horizon NP is selected as 10 and sample time selected as 0.1. The Simulink 

model of the model predictive controlled PMSM is shown in Fig. 6. Manipulated variable taken as q-

axis voltage of the PMSM and manipulated output taken as angular velocity of the PMSM.  
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Figure 6. Simulink model of model predictive controlled PMSM 

The parameter of the neural network model predictive controller is shown in Table 2. The Simulink 

model of the neural network model predictive controlled PMSM is shown in Fig. 7. Control signal taken 

as q-axis voltage of the PMSM and plant output taken as angular velocity of the PMSM. 

Table 2. The NNMPC Parameters 

Parameters Values 

Cost horizon (N2) 7 

Control horizon (Nu) 2 

Number of hidden layers 7 

Initial weights 1 

Activation function Sigmoidal 

Epochs 1000 

Training algorithm Levenberg-Marquardt 

Train samples 1000 

Architecture Feed forward 

 

 
Figure 7. Simulink model of the neural network model predictive controlled PMSM  

The following steps are used to design the neural network model predicative control in MATLAB. In 

the first step, opening interface of the neural network predictive control block is shown in Fig. 8(a). In 

this block, one has to enter the details of cost horizon, control horizon, control weight factor, search 

weight factor, minimization routine and iterations per sample. In the second step, open the plant 

identification window and it is shown in Fig. 8(b). In this block, one has to enter the detail of size of the 

hidden layer, sample interval, number of delayed plant input and outputs. Next process is to generate 

the training data using mathematical model of the plant or collected data from the plant and it is imported 

from import option of the plant identification block. After generation of the input and output data for 
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the training, neural network is trained using Levenberg-Marquardt algorithm and training details are 

shown in Fig. 8(c).  

The collected input and output data for training, neural network output and error during testing is shown 

in Fig. 9(a). The error between neural network and target is around ± 0.1 only. One thousand iterations 

have been used for train the neural network and performance curve of the neural network training is 

shown in Fig. 9(b) and the mean squared error is found as 0.0003372 only. Regression analysis is 

preformed between neural network output and target data and it is shown in the Fig. 9(c). From the 

regression results, it is observed that both neural network output and target data are super imposed each 

other.  

 
(a) 

 

 
(b) (c) 

Figure 8. (a) Neural network model predictive control, (b) plant identification by NNMPC, (c) neural network 

training. 
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The developed NNMPC and MPC controlled PMSM are tested with different operating conditions of 

the PMSM such as constant speed reference settings, varying set speed command and sudden load 

disturbance conditions. Fig. 10 depicts the set point tracking results of the PMSM for set speed command 

of 800 rpm. Model predictive controlled PMSM speed response has 12.5 % overshoot and settled at 0.3 

second.  Neural network model predictive controlled PMSM speed response has 0.13 % overshoot and 

settled at 0.035 seconds. From the test results, it is observed that neural network model predictive 

controller has better performance than MPC. 

 
(a) 

 

 
(b) (c) 

Figure 9. (a) Neural Network Model Predictive control training result (b) Performance plot (c) Regression result. 
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Figure 10. Speed response of the PMSM for constant set speed command 

 

 
Figure 11. Speed response of the PMSM for speed reference change from 500 rpm to 800 rpm 

 

 
Figure 12. Speed response of the PMSM for speed reference change from 800 rpm to 500 rpm 
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Figure 13. Speed response of the PMSM for sudden load change from 0 Nm to 0.1 Nm 

Fig. 11 shows the set point tracking results of the PMSM for speed reference change from 500 rpm to 

800 rpm at 0.5 second. Model predictive controlled PMSM speed response has 6.25 % overshoot, and 

settled at 0.75 second.  Neural network model predictive controlled PMSM speed response has 0.11 % 

overshoot and settled at 0.53 second. Fig. 12 shows the set point tracking results of the PMSM for speed 

reference change from 800 rpm to 500 rpm at 0.5 second. Model predictive controlled PMSM speed 

response has 4.3 % undershoot, and settled at 0.77 second.  Neural network model predictive controlled 

PMSM speed response has 0.12 % undershoot and settled at 0.54 second. From the test results, it is 

observed that neural network model predictive controller has less overshoot, less undershoot and settled 

quickly. 

 
Figure 14. Speed response of the PMSM for sudden load change from 0.1 Nm to 0 Nm 

Fig. 13 shows the set point tracking results of the PMSM for sudden load change from 0 Nm to 0.1 Nm 

at 0.5 second. Model predictive controlled PMSM speed response has 11.25 % undershoot, and settled 

at 0.67 seconds. Neural network model predictive controlled PMSM speed response has 4.35 % 

undershoot and settled at 0.54 seconds. Fig. 14 shows the set point tracking results of the PMSM for 

sudden load change from 0.1 Nm to 0 Nm at 0.5 second. Model predictive controlled PMSM speed 

response has 11.5 % overshoot, and settled at 0.68 seconds. Neural network model predictive controlled 

PMSM speed response has 5.1 % overshoot and settled at 0.53 seconds. From the test results, it is 

observed that neural network model predictive controller has less overshoot, less undershoot and settled 

quickly. 
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6. CONCLUSION 

This paper presents speed control of the permanent magnet synchronous motor using neural network 

model predictive controller. The overall system has been simulated using MATLAB/Simulink software.  

Rigorous analyze of the proposed NNMPC and constrained MPC was studied. The Performance of 

neural network model predictive controller was compared with a constrained model predictive controller 

for the different operating conditions of the permanent magnet synchronous motor. From the test results, 

neural network model predictive controlled PMSM has overshoot of 0.11 % to 5.1 %, undershoot of 

0.12 % to 4.35% and settling time of 30 to 40 ms, but these parameters were not favor for model 

predictive controlled PMSM i.e. it has overshoot of 11.25 % to 12.5 %, undershoot of 4.35 % to 11.25 

% and settling time of 170 to 300 ms. As a result, neural network model predictive controller performs 

well in all aspect such as less overshoot, less undershoot and quick settling when compared with 

constrained MPC. Therefore, the proposed neural network model predictive controller suitable for speed 

control application of PMSM. 
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