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Abstract. In this article, we discussed semi-analytical approximated method for solving mixed Volterra-Fredholm
integro-differential equations, namely homotopy analysis method. Moreover, we prove the existence and unique-
ness results and convergence of the technique. Finally, an example is included to demonstrate the validity and
applicability of the proposed technique.
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1. Introduction

In this work, we consider the mixed Volterra-Fredholm integro-differential equation of the second kind as follows:
k∑

j=0

p j(x)Θ( j)(x) = f (x) +

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))dxdt,

with the initial conditions

Θ(r)(a) = br, r = 0, 1, 2, . . . , (k − 1), a ≤ x ≤ b, Ω = [a, b],

where Θ( j)(x) is the jth derivative of the unknown function Θ(x) that will be determined, K(x, t) is the kernel of the
equation, f (x) and p j(x) are analytic functions, G(t,Θ(l)(t)), l ≥ 0 is nonlinear analytic function of Θ and br, 0 ≤ r ≤
(k − 1) are real finite constants.

In recent years there has been a growing interest in the integro-differential equation. The integro-differential equa-
tions be an important branch of modern mathematics. It arises frequently in many applied areas which include engi-
neering, electrostatics, mechanics, the theory of elasticity, potential, and mathematical physics [1, 3, 6, 10, 25, 27–29,
31, 34, 36].

Recently, Wazwaz (2001) presented an efficient and numerical procedure for solving boundary value problems for
higher-order integro-differential equations. A variety of methods, exact, approximate and purely numerical techniques
are available to solve nonlinear integro-differential equations [5, 9, 11–15, 23, 32, 35]. These methods have been of
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great interest to several authors and used to solve many nonlinear problems. Some of these techniques are Adomian
decomposition method [4, 32], modified Adomian decomposition method [26, 35], Variational iteration method [7, 37]
and many methods for solving integro-differential equations [2, 3, 6, 16–22, 30, 33].

In this work, our aim is to solve a general form of mixed Volterra-Fredholm integro-differential equations using
semi-analytical approximated method, namely, homotopy analysis method. Also, we prove the existence and unique-
ness results and convergence of the technique.

2. NonlinearMixed Volterra-Fredholm Integro-Differential Equation of Second Kind

We consider the mixed Volterra-Fredholm integro-differential equation of the second kind as follows:
k∑

j=0

p j(x)Θ( j)(x) = f (x) +

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))dxdt. (2.1)

We can write Eq.(2.1) as follows:

pk(x)Θ(k)(x) +

k−1∑
j=0

p j(x)Θ( j)(x) = f (x) +

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))dxdt,

Θ(k)(x) =
f (x)

pk(x)
+

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))
pk(t)

dxdt −
k−1∑
j=0

p j(x)
pk(x)

Θ( j)(x). (2.2)

Let us set L−1 is the multiple integration operator as follows:

L−1(�) :=
∫ x

a

∫ x

a
· · ·

∫ x

a

∫ x

a
(�) dtdt . . . dtdt︸        ︷︷        ︸

k−times

. (2.3)

From Eq.(2.2) and Eq.(2.3)

Θ(x) = L−1{
f (x)

pk(x)
} +

k−1∑
r=0

(x − a)r

r!
br + L−1{

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))
pk(t)

dxdt}

− L−1{

k−1∑
j=0

p j(x)
pk(x)

Θ( j)(x)}. (2.4)

We can obtain the term
∑k−1

r=0
(x−a)r

r! br from the initial conditions. From [8], we have

L−1{

∫ x

a

∫
Ω

K(x, t)G(t,Θ(l)(t))
pk(t)

dxdt} =

∫ x

a

∫
Ω

(x − t)kK(x, t)G(t,Θ(l)(t))
(k!) pk(t)

dxdt (2.5)

also

L−1{

k−1∑
j=0

p j(x)
pk(x)

Θ( j)(x)} =

k−1∑
j=0

∫ x

a

(x − t)k−1 p j(t)
(k − 1)! pk(t)

Θ( j)(t)dt (2.6)

By substituting Eq.(2.5)and Eq.(2.6) in Eq.(2.4) we obtain

Θ(x) = L−1{
f (x)

pk(x)
} +

k−1∑
r=0

(x − a)r

r!
br +

∫ x

a

∫
Ω

(x − t)kK(x, t)G(t,Θ(l)(t))
(k!) pk(t)

dxdt

−

k−1∑
j=0

∫ x

a

(x − t)k−1 p j(t)
(k − 1)! pk(t)

Θ( j)(t)dt.

We set,

L−1{
f (x)

pk(x)
} +

k−1∑
r=0

(x − a)r

r!
br = F(x),
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Ω

(x − t)kK(x, t)
(k!) pk(t)

dx = K1(x, t),

(x − t)k−1 p j(x)
(k − 1)! pk(x)

= K2(x, t).

So, we have one-dimensional nonlinear integro-differential equation as follows:

Θ(x) = F(x) +

∫ x

a
K1(x, t)G(t,Θ(l)(t))dt −

k−1∑
j=0

∫ x

a
K2(x, t)Θ( j)(t)dt. (2.7)

3. Homotopy AnalysisMethod (HAM)

The basic concept behind the HAM is illustrated by using the following nonlinear equation:

N[Θ] = 0,

where N is a nonlinear operator, Θ(x) is unknown function and x is an independent variable. Let Θ0(x) denote an initial
guess of the exact solution Θ(x), ~ , 0 an auxiliary parameter, H1(x) , 0 an auxiliary function, and L an auxiliary
linear operator with the property L[s(x)] = 0 when s(x) = 0. Then using q ∈ [0, 1] as an embedding parameter, we can
construct a homotopy when consider, N[Θ] = 0, as follows [24]:

(1 − q)L[φ(x; q) − Θ0(x)] − q~H1(x)N[φ(x; q)]
= Ĥ[φ(x; q); Θ0(x),H1(x), ~, q]. (3.1)

It should be emphasized that we have great freedom to choose the initial guess Θ0(x), the auxiliary linear operator L,
the non-zero auxiliary parameter ~, and the auxiliary function H1(x). Enforcing the homotopy Eq.(3.1) to be zero, i.e.,

Ĥ1[φ(x; q); Θ0(x),H1(x), ~, q] = 0,

we have the so-called zero-order deformation equation

(1 − q)L[φ(x; q) − Θ0(x)] = q~H1(x)N[φ(x; q)], (3.2)

when q = 0, the zero-order deformation Eq.(3.2) becomes

φ(x; 0) = Θ0(x), (3.3)

and when q = 1, since ~ , 0 and H1(x) , 0, the zero-order deformation Eq.(3.2) is equivalent to

φ(x; 1) = Θ(x). (3.4)

Thus, according to Eqs.(3.3) and (3.4), as the embedding parameter q increases from 0 to 1, φ(x; q) varies continu-
ously from the initial approximation Θ0(x) to the exact solution Θ(x). Such a kind of continuous variation is called
deformation in homotopy [35]. Due to Taylor’s theorem, φ(x; q) can be expanded in a power series of q as follows:

φ(x; q) = Θ0(x) +

∞∑
m=1

Θm(x)qm, (3.5)

where,

Θm(x) =
1

m!
∂mφ(x; q)
∂qm |q=0.

Let the initial guess Θ0(x), the auxiliary linear parameter L, the nonzero auxiliary parameter ~ and the auxiliary function
H1(x) be properly chosen so that the power series (3.5) of φ(x; q) converges at q = 1, then, we have under these
assumptions the solution series,

Θ(x) = φ(x; 1) = Θ0(x) +

∞∑
m=1

Θm(x).

From Eq.(3.5), we can write Eq.(3.2) as follows:

(1 − q)L[φ(x; q) − Θ0(x)] = (1 − q)L[
∞∑

m=1

Θm(x)qm]

= q~H1(x)N[φ(x; q)],
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then,

L[
∞∑

m=1

Θm(x)qm] − qL[
∞∑

m=1

Θm(x)qm] = q~H1(x)N[φ(x; q)]. (3.6)

By differentiating Eq.(3.6) m times with respect to q, we obtain,

{L[
∞∑

m=1

Θm(x)qm] − qL[
∞∑

m=1

Θm(x)qm]}(m) = q~H1(x)N[φ(x; q)](m)

= m!L[Θm(x) − Θm−1(x)]

= ~H1(x)m
∂m−1N[φ(x; q)]

∂qm−1 |q=0.

Therefore,

L[Θm(x) − χmΘm−1(x)] = ~H1(x)<m(
−−−−→
Θm−1(x)), (3.7)

where,

<m(
−−−−→
Θm−1(x)) =

1
(m − 1)!

∂m−1N[ϕ(x; q)]
∂qm−1 |q=0, (3.8)

and

χm =

0 m ≤ 1,
1 m > 1.

Note that the high-order deformation Eq.(3.7) is governing the linear operator L, and the term<m(
−−−−→
Θm−1(x)) can be

expressed simply by Eq.(3.8) for any nonlinear operator N.
The homotopy analysis method is applied to solve Volterra-Fredholm integro-differential equation, we have

N[Θ(x)] = Θ(x) − F(x) −
∫ x

a
K1(x, t)G(t,Θ(l)(t))dt +

k−1∑
j=0

∫ x

a
K2(x, t)D( j)(Θ(t))dt.

so,

<m(Θm−1(x)) = Θm−1(x) −
∫ x

a
K1(x, t)G(t,Θ(l)

m−1(t))dt +

k−1∑
j=0

∫ x

a
K2(x, t)D( j)(Θm−1(t))dt.

(3.9)

Substituting Eq.(3.9) into Eq.(3.7)

L[Θm(x) − χmΘm−1(x)] = hH1(x)[Θm−1(x) −
∫ x

a
K1(x, t)G(t,Θ(l)

m−1(t))dt

+

k−1∑
j=0

∫ x

a
K2(x, t)D( j)(Θm−1(t))dt]. (3.10)

we take an initial guess Θ0(x) = F(x), an auxiliary linear operator LΘ = Θ, a nonzero auxiliary parameter h = −1,
and auxiliary function H1(x) = 1. This is substituted into Eq.(3.10) to give the recurrence relation

Θ0(x) = F(x)

Θn(x) =

∫ x

a
K1(x, t)G(t,Θ(l)

n−1(t))dt −
k−1∑
j=0

∫ x

a
K2(x, t)D( j)(Θn−1(t))dt, n ≥ 1.
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4. Existence, Uniqueness and Convergence Results

In this section the existence and uniqueness of the obtained solution and convergence of the method are proved.
Consider the Eq.(2.7), we assume F(x) is bounded for all x in Ω and∣∣∣∣K1(x, z)

∣∣∣∣ ≤ M1,
∣∣∣∣K2(x, z)

∣∣∣∣ ≤ M1 j, j = 0, 1, . . . , k − 1, ∀x, z ∈ J.

Also, we suppose the nonlinear terms G(Θ(x)) and D j(Θ(x)) are Lipschitz continuous with∣∣∣∣G(x,Θ(x)) −G(x,Θ∗(x))
∣∣∣∣ ≤ d

∣∣∣∣Θ(x) − Θ∗(x)
∣∣∣∣∣∣∣∣D j(Θ(x)) − D j(Θ∗(x))

∣∣∣∣ ≤ C j

∣∣∣∣Θ(x) − Θ∗(x)
∣∣∣∣, j = 0, 1, . . . , k − 1.

If we set,

γ = (b − a)(dM1 + kCM), C = max
∣∣∣∣C j

∣∣∣∣, M = max
∣∣∣∣M1 j

∣∣∣∣.
Then the following theorems can be proved by using the above assumptions.

Theorem 4.1. Assume that the above assumptions are hold, and 0 < γ < 1. Then Eq.(2.7) has a unique solution.

Proof. Let Θ and Θ∗ be two different solutions of Eq.(2.7) thenΘ(x) − Θ∗(x)
 =

∫ x

a
K1(x, t)G(t,Θ(l)(t))dt −

k−1∑
j=0

∫ x

a
K2(x, t)D j(Θ(t))dt

−

∫ x

a
K1(x, t)G(t,Θ(l)∗(t))dt +

k−1∑
j=0

∫ x

a
K2(x, t)D j(Θ∗(t))dt


≤

∫ x

a
K1(x, t)

[
G(t,Θ(l)(t)) −G(t,Θ(l)∗(t))

]
dt

−

k−1∑
j=0

∫ x

a
K2(x, t)

[
D j(Θ(t)) − D j(Θ∗(t))

]
dt


≤

∫ x

a

K1(x, t)
G(t,Θ(l)(t)) −G(t,Θ(l)∗(t))

dt

+

k−1∑
j=0

∫ x

a

K2(x, t)
D j(Θ(t)) − D j(Θ∗(t))

dt

≤ M1d
∣∣∣∣Θ(x) − Θ∗(x)

∣∣∣∣(b − a) + kMC
∣∣∣∣Θ(x) − Θ∗(x)

∣∣∣∣(b − a)

≤ (b − a)(M1d + kMC)
Θ(x) − Θ∗(x)


= γ

Θ(x) − Θ∗(x)
.

So, Θ(x) − Θ∗(x)
 ≤ γΘ(x) − Θ∗(x)

,
from which we get (1 − γ)

Θ − Θ∗
 ≤ 0. Since 0 < γ < 1, so

Θ − Θ∗
 = 0. Therefore, Θ = Θ∗, and this completes

the proof.

Theorem 4.2. If the series solution Θ(x) =
∑∞

m=0 Θm(x) obtained by the m-order deformation is convergent, then it
converges to the exact solution of the Volterra-Fredholm integro-differential equation (2.7).

Proof. We assume

Θ(x) =

∞∑
m=0

Θm(x), Ĝ(Θ(x)) =

∞∑
m=0

G(Θm(x)), D̂ j(Θ(x)) =

∞∑
m=0

D j(Θm(x)),
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where,
lim

m→∞
Θm(x) = 0.

We can write,
n∑

m=1

[Θm(x) − χmΘm−1(x)] = Θ1(x) + (Θ2(x) − Θ1(x)) + (Θ3(x) − Θ2(x))

+ · · · + (Θn(x) − Θn−1(x)) = Θn(x). (4.1)

Hence, from Eq.(4.1)
lim
n→∞

Θn(x) = 0. (4.2)

So, using Eq.(4.2) and the definition of the linear operator L, we have
∞∑

m=1

L
[
Θm(x) − χmΘm−1(x)

]
= L

∞∑
m=1

[
Θm(x) − χmΘm−1(x)

]
= 0.

Therefore from Eq.(4.2), we can obtain that,
∞∑

m=1

L[Θm(x) − χmΘm−1(x)] = hH(x)
∞∑

m=1

<m−1(Θm−1(x)) = 0.

Since h , 0 and H(x, y) , 0 , we have
∞∑

m=1

<m−1(Θm−1(x)) = 0. (4.3)

By substituting<m−1(Θm−1(x)) into the relation (3.9) and simplifying it, we have
∞∑

m=1

<m−1(Θm−1(x)) =

∞∑
m=1

[
Θm−1(x) −

∫ x

a
K1(x, t)G(t,Θ(l)

m−1(t))dt

+

k−1∑
j=0

∫ x

a
K2(x, t)D j(Θm−1(t))dt − (1 − χm)F(x)

]
= Θ(x) − F(x) −

∫ x

a
K1(x, t)

[ ∞∑
m=1

G(t,Θ(l)
m−1(t))

]
dt

+

k−1∑
j=0

∫ x

a
K2(x, t)

[ ∞∑
m=1

D j(Θm−1(t))
]
dt (4.4)

From Eq.(4.3) and Eq.(4.4), we have

Θ(x) = F(x) +

∫ x

a
K1(x, t)Ĝ(t,Θ(l)(t))dt −

k−1∑
j=0

∫ x

a
K2(x, t)D̂ j(Θ(t))dt.

Then, Θ(x) must be the exact solution of Eq.(2.7).

5. Numerical Example

In this section, we present the semi-analytical technique based on HAM to solve Volterra-Fredholm integro-differential
equations:

Example 5.1. Consider the Volterra-Fredholm integro-differential equation as follow:

Θ′′′(x) + Θ(x) sin x2 = x2 sin x2 −
1
3

x3 +

∫ x

0

∫ 1

0
xtΘ′(t)dxdt,

with the initial conditions
Θ′′(0) = Θ′(0) = Θ(0) = 0.

The exact solution is Θ(x) = x2, ε = 10−2
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Table 1. Numerical Results of the Example 1.

x Exact HAMn=3 HAMn=4 Er(HAMn=3) Er(HAMn=4)
0.1 0.01 0.022336 0.011246 32.336×10−3 1.246×10−3

0.2 0.04 0.007327 0.033736 32.673×10−3 6.264×10−3

0.4 0.16 0.125735 0.145964 34.265×10−3 14.036×10−3

0.6 0.36 0.324434 0.346395 35.566×10−3 13.605×10−3

0.8 0.64 0.602669 0.633758 37.331×10−3 6.242×10−3

6. Conclusion

In this work, the HAM has been successfully employed to obtain the approximate solutions of a mixed Volterra-
Fredholm integro-differential equation. Moreover, we proved the existence and uniqueness results and convergence of
the technique. The results show that this method is very efficient, convenient and can be adapted to fit a larger class
of problems. The comparison reveals that although the numerical results of this method is similar approximately with
exact solutions.
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