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Abstract 

 
In the estimation of aggregate loss, claim severity and claim frequency are generally assumed independent. Although, 

the independence assumption is quite basic, it may cause underestimates or overestimates in calculations. The 

dependence in the estimation of aggregate loss can be included with the copula-based models. The joint cumulative 

distribution and the joint probability density functions of mixed variables such as continuous claim severity and discrete 

claim frequency can be obtained using the bivariate copula functions and the mixed copula approach. In this study, 

aggregate loss is modeled using the bivariate Archimedean copula functions considering the dependency between claim 

components. It is assumed that claim severity and frequency have Gamma and zero-truncated Poisson distributions, 

respectively. In the application part, the aggregate loss is calculated using different Archimedean copula functions. 

Different copula functions and different parameters for each copula are used to analyze the effect of copula type and 

parameter. Furthermore, aggregate loss in the presence of dependence between claims are estimated.    

 

Anahtar sözcükler: Bivariate Archimedean copula, Copula-based model, Dependence, Mixed-variable.  

Öz  

Hasar tutarı ve sayısı arasındaki bağımlılığın Arşimet kopulalar ile modellenmesi üzerine 

karşılaştırmalı bir çalışma 

Toplam hasar tahmininde, hasar tutarı ile hasar sayısı genellikle bağımsız varsayılmaktadır. Bağımsızlık varsayımı 

oldukça temel olmasına rağmen, hesaplamalarda gerçek değerden daha düşük veya daha yüksek tahminlere neden 

olabilir. Toplam hasar tahminindeki bağımlılık, kopula-temelli modeller ile dikkate alınabilir. Sürekli hasar tutarı ve 

kesikli hasar sayısı gibi karma değişkenlerin ortak kümülatif dağılım ve ortak olasılık yoğunluk fonksiyonu iki değişkenli 

kopula fonksiyonları ve karma kopula yaklaşımı kullanılarak elde edilebilir. Bu çalışmada toplam hasar, hasar 

bileşenleri arasındaki bağımlılık dikkate alınarak, Arşimet kopula fonksiyonları yardımıyla modellenmiştir. Hasar tutarı 

ve sayısının sırasıyla Gamma ve sıfır-kesilmiş Poisson dağılımlarına sahip olduğu varsayılmıştır. Uygulama 

bölümünde, toplam hasar farklı Arşimet kopulalar kullanılarak tahmin edilmiştir. Kopula türü ve parametresinin 

etkisini analiz etmek amacıyla farklı kopula fonksiyonları ve her bir kopula için farklı parametreler kullanılmıştır.  

 

Keywords: İki değişkenli Arşimet kopula, Kopula-temelli model, Bağımlılık, Karma-değişken.    

1. Introduction 

Claim severity and frequency are the main components of non-life insurance mathematics. Analyses such 

as ratemaking, reserve calculation and credibility are generally carried out under the independence 
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assumption between the claim components. According to the compound risk model, claim severity and 

frequency are assumed independent, and aggregate loss is calculated by Lundberg [1]. The aggregate loss 

is termed as risk premium corresponding only the expected loss without expenses. In ratemaking studies, 

generally claim severity and frequency are modeled by generalized linear models separately. Thereafter, 

expected values of claim severity and frequency are multiplied to calculate the aggregate loss under 

independence assumption. 

 

Although, the independence assumption is quite essential, it causes underestimate or overestimate of 

aggregate loss compared the actual aggregate loss. To eliminate the effects of the independence 

assumption, some approaches have been proposed to model the dependence. Copula which is the most 

used method for modeling dependence in financial and statistical studies is also introduced in actuarial 

studies by Frees and Valdez [2]. Studies about dependence modeling using copulas can be divided into 

two part with and without GLMs. Song [3] defined the mixed copula approach using GLMs and Gauss 

copula function. The mixed copula approach lays the groundwork to model dependency between mixed 

variables such as continuous claim severity and discrete claim frequency. Kastenmeier [4] established a 

joint regression model for claim severity and frequency using the mixed copula approach. Song et al. [5], 

Kolev and Paiva [6] and Czado et al. [7] also modeled dependency between mixed variables. Czado et al. 

[7] modeled dependency between claim severity and frequency using Gauss copula and marginal GLMs. 

Krämer et al. [8] used Clayton, Gumbel and Frank copulas besides Gauss copula and they referred the 

models contain GLMs and copula as the copula-based regression models. Krämer et al. [8] also modeled 

the dependency between claim components only using the copula and claims without GLMs and the 

approach is entitled as the copula-based models. Copula-based models are useful for modeling the 

dependence according to only the distribution of claim components without any explanatory variables. 

 

Besides copula-based models and copula-based regression models, Gschlöβl and Czado [9] introduced a 

new approach to model dependency between claim severity and frequency by taking the claim frequency 

as an explanatory variable in the GLM modeling of aggregate loss. Garrido et al. [10] also used same 

approach to model dependency in non-life insurance. 

 

Except copula; markov models [11], continuous time processes [12] and multivariate distributions such as 

phase-type distributions [13] are also used to model dependence in actuarial sciences.  
 

This study is important with regars to showing that the copula function, has also started to be used in non-

life insurance mathematics for dependence modeling though copula-based models. It has been also shown 

that the dependency between claim components can be modeled flexibly with different copula functions 

and different parameters. 

 

In this study, dependency between claim components is modeled via copula-based models using 

Archimedean copula family. This paper is organized as follows: Firstly, bivariate Archimedean copula 

functions are given in Section 2. The properties of aggregate loss under the dependence and independence 

assumptions and the relationship between copula and aggregate loss are briefly mentioned in Section 3. 

An application study is carried out to compare the copulas and to estimate expected loss in the presence of 

dependency between claim components in Section 4 and the concluding remarks are given in Section 5. 

2. Archimedean copula functions 

Copula is introduced by Sklar [14] and allows us to model dependence among variables in many 

disciplines such as economy, finance, econometric, statistics and actuarial science. A copula is a function 

which joins a multivariate distribution function to its marginal distribution functions which have standart 

uniform distributions [15].  
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Archimedean copula family is one of the most frequently used parametric copulas. Archimedean copulas 

are diversified as Clayton, Gumbel, Frank, Ali Mikhail Haq and Joe copula functions. As Archimedean 

copulas are parametric copulas, they are expressed with a parameter. Using Sklar’s Theorem [15], where 

  is the copula parameter, a bivariate parametric copula )(.,.C  can be defined as follows: 

 ( ) ( ) ( )( ) yFxFCyxF YXXY ,, =               (1) 

where ( )xFX  and ( )yFY  are the distribution functions of random variables X and Y. 

In this study, frequently used Archimedean copulas are considered to set up copula-based models. Let 

( ).,.C  be a bivariate parametric copula function and    1,01,0),( xvu  . Archimedean copulas are 

defined as ( ) ( ))()()(, 1 vutvuC  += −
 with generator function )(t . Generator function 

   : 0,1 0, →   is a continuous, strictly decreasing and convex function with (1) 0 =  and  
1( )t −

 

shows the so called pseudo-inverse of generator function [15].  

In some cases, Kendall’s τ can be more applicative instead of the copula parameter θ in the sense of 

monotone transforms of copulas [8]. The closed forms of copula functions, the generator functions and the 

relationships between Kendall’s τ and copula parameter θ for Archimedean copula family are given as 

follows [8], [15].  

2.1. Clayton Copula  
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2.3. Frank copula 
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  demostrates the first partial derivative. 

3. The relationship between copula and aggregate loss 

The aggregate loss is basically defined as the sum of monetary losses of all the claims. Aggregate loss can 

be calculated considering or ignoring the dependence between claim components. 

3.1. Aggregate loss under the independence assumption 

In risk theory, there are two main models: individual risk model and collective risk model. In the 

individual risk model, the claim frequency is assumed fixed. Otherwise, the aggregate loss has a 

compound distribution with the primary distribution being the claim frequency and the second one being 

the claim severity in collective risk model [16]. According to the collective risk model, claim severity and 

claim frequency are assumed independent random variables. Let Y displays the claim frequency and  iX  

shows the claim severity of the ith loss for i=1,..,Y. Aggregate loss which is denoted by S is defined as 

follows: 

 YXXS ++= ...1                 (11) 

iX ’s are assumed independently and identically distributed positive integer-valued random variables. 

Using the properties of compound distribution, the expected value and the variance of aggregate loss can 

be calculated as )()()( YEXESE =  and  2)()()()()( XEYVarXVarYESVar += , respectively. 

In most studies expected value and the variance of aggregate loss is calculated without considering the 

distribution of aggregate loss due to the difficulty of obtaining closed form of the distribution function. 

The distribution of S can be obtained using convolution method, Panjer and De Peril recursions [16], [17]. 

Krämer et al. [8] proposed a new approach to define the distributions of policy loss and the aggregate loss 

considering dependency between claim severity and frequency using copula functions.  
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3.2. Estimation of aggregate loss using copula under the assumption of dependency 

Aggregate loss can be estimated by copulas in the presence of dependency between claim components.   

The relationship between copula and aggregate loss can be explained by copula-based model relied on the 

distributions of claim components and the copula functions. 

Let assume that claim severity and frequency have Gamma and zero-truncated Poisson distributions, 

respectively. Density and probability functions are given by Equation (12) and Equation (13) using mean 

parameterization. First moment, second moment and variance of distributions are also given by Table 1 as 

follows. 
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Table 1. Moments of the Distributions of Claim Severity and Frequency 

Variables Distribution First Moment Second Moment Variance 

Claim Severity  
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Let ( ).,.C  be a bivariate Archimedean copula where   is the copula parameter. Joint cumulative 

distribution function and joint probability density function can be obtained Sklar Theorem [14] and by the 

mixed copula approach [3] as follows. 

3.2.1. Joint cumulative distribution function of claim severity and frequency 

The joint cumulative distribution function of claim severity and frequency can be written by using Sklar’s 

Theorem as follows. 

 ( ) ( ) ( )( ) yFxFCyxF YXXY ,,,,, 2 =        (14) 

3.2.2. Joint probability density function of claim severity and frequency 

The joint probability density function of claim severity and frequency can be written by the mixed copula 

approach which is proposed by Song [3]. The mixed copula approach, allows the usage of copula 

functions which are used with only the continuous random variables, also together with discrete random 

variables [7]. This approach uses the Radon-Nikodym Theorem to convert the discrete measurement to 

continuous measurement.  
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    ( ) ( )( ) ( ) ( )( ) 1,, −

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
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x
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x
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 ( ) ( ) ( )( ) ( ) ( )( )  1,,)(,,,, 11

2 −−= yFxFDyFxFDxfyxf YXYXXXY
   (15) 

( ).,.1D  shows the first partial derivative and the Equation (15) can be proved by mixed copula approach. 

More detail information can be found in [3]. 

To indicate policy loss considering the dependence between the claim severity and frequency, Krämer et 

al. [8] define a new variable as iL where iX  and iY  display the ith claim severity and frequency, 

respectively. 

 iii YXL .:=                        (16) 

The expected value and the variance of the ith policy loss are denoted by 
iL and

2

iL , respectively. Joint 

density function of loss can be written by mixed copula approach as follows [8]. 
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Where there are n policies, aggregate loss S can be written as follows: 

 nnn YXYXLLS ........: 111 ++=++=              (18) 

Since the policy loss iL  has positive and continuous distribution, aggregate loss has also positive and 

continuous distribution. Furthermore, according to the central limit theorem,  
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           (19)                                                                     

the asymptotic distribution of aggregate loss S is the standard normal distribution and can be displayed by 

)1,0(NS
D

→  using the Equation (19) [8]. 
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4. Application 

Analyses in the application part are carried out using the R packages “CopulaRegression” [18], “MASS” 

[19] and “VineCopula” [20]. “CopulaRegression” package works dependent on “MASS” and 

“VineCopula” packages. “CopulaRegression” package is established on the assumption of Gamma 

distributed claim severity and zero-truncated Poisson distributed claim frequency. A system is designed 

contained insured with Gamma-distributed claim severity and zero-truncated Poisson distributed claim 

frequency. For that purpose, first of all an one-year real comprehensive insurance data set taken from a 

non-life insurance company for year 2017 consisted of 2820 observations is analyzed to determine the 

parameters of distributions. Before the parameter estimation, the distributions of claim severity and the 

claim frequency are analyzed by Kolmogorov Simirnov Test using SPSS Statistics 23. As, Gamma 

distribution is formed by Exponential distribution and zero-truncated Poisson distribution is a special form 

of Poisson distribution, goodness of fit for severity and frequency is carried out for Exponential and 

Poisson. According to results of goodness of fit, claim severity and frequency of the real comprehensive 

insurance data fit aforementioned distributions. It is reasonable to using this data in the parameter 

estimation. To obtain the information of the claim severity, policies with at least one claim frequency are 

taken over. Parameters are estimated using the moments method. Details of the mean parametrization have 

been given by Table 1. Descriptive statistics are given by Table 2 for parameter estimation. 

Table 2. Descriptive Statistics of Comprehensive Insurance Data 

Variables Minimum Maximum Mean Median Variance 

Claim Severity (X)  51.24 35477.00 1759.4936 2933.58735 8605934.753 

Claim Frequency (Y)  1 4 1.7034 0.4678 0.2190 

 

Using moments method, mean parameter and dispersion parameter of Gamma distribution are 

approximately obtained as 1760 and 1, respectively and for zero-truncated Poisson distribution mean 

parameter is assumed as 1.18. 

 

“CopulaRegression” package firstly simulate n observations claim severity from the marginal Gamma 

distribution, and for each severity, the package sample an observation from the conditional distribution of 

claim frequency given claim severity. The conditional density function for a Gamma distributed claim 

severity (X) and zero-truncated claim frequency (Y) can be written as  
)(

),(
)|(

xf

yxf
xXyYP

X

XY===  .In 

the second step, the package obtain the conditional distributions [18]. 

 

In this study, conditional probability mass function of the claim frequency is obtained as a first step to 

write copula-based model combining the marginal distributions and the copula function. While the effects 

of the copula on the conditional probability mass function of the claim frequency are demonstrated by 

Figure 1, the impressions of copula parameters on the conditional distribution are displayed by Figure 2. 

To investigate the effects of copula type, the conditional probability mass function of the claim frequency 

is plotted using Clayton, Gumbel and Frank copula functions with a fixed θ parameter. It is assumed that 

condition on claim severity of 2000 TL. 
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Figure 1. Conditional Probability Mass Function of the Claim Frequency (Clayton, Gumbel and Frank 

Copula Functions with a Fixed Parameter (θ=1.5)) 

According to the Figure 1, it is explicit that copula type influences the probability of claim frequency. The 

probabilities are higher for small values using Gumbel copula compared with other types of copula. The 

probability of one claim is higher with Gumbel and Frank copulas than the probability with Clayton. To 

investigate the effects of copula parameter, different parameters have been tried for all copula types. 

Instead of giving all results, the conditional probability mass functions of the claim frequency are plotted 

using different copula parameters for Clayton copula where parameter effect can be observed better. 

 

Figure 2. Conditional Probability Mass Function of the Claim Frequency (Clayton Copula Function with 

Different Parameters (θ=0.5; 1; 1.5)) 
 

It is observed from Figure 2, the higher values of θ, the greater conditional probability value of claim 

frequency, especially for smaller claims. It is deduced from Figure 1 and 2, dependence between claim 

frequency and severity can be modeled by Archimedean copulas flexibly. 

Cumulative distribution function of claim severity and frequency given by Equation (14) are obtained with 

Clayton, Gumbel and Frank copulas for different parameters. Cumulative distribution functions using 

different copulas are plotted by Figure 3. It is noticed that the type of copula has no significant impact on 

the cumulative distribution function for small τ values. However, for larger τ values, the graph of 

cumulative distribution function using Frank copula is different the graphs using the other two copula 

types. Smaller cumulative probabilities are obtained for larger τ values while using Frank copula. 

Increasing curves are obtained in accordance with the general characteristics of the distribution functions. 
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Figure 3. Cumulative Distribution Functions of Aggregate Loss for Different Copula Functions with 

Different Parameters 

 

Joint probability density function of claim severity and frequency given by Equation (15) are obtained 

with Clayton, Gumbel and Frank copulas for different parameters. Joint density functions using different 

copulas are plotted by Figure 4. 

 

Figure 4. Probabilities of the Aggregate Loss for Different Copula Functions with Different Parameters 

As the marginal Gamma distributed claim severity has a right-skewed distribution, the aggregate loss is 

also inclined to be right-skewed according to the Figure 4. While the probabilities are similar for Clayton 

and Gumbel copulas, Frank copula is more sensitive to the large value of the copula parameter. The results 

of the probability density function for Frank copula also support the results found for cumulative 

distribution function above. 

Expected aggregate loss in the presence of dependence between claim components are estimated with the 

copula-based model. The estimated loss using different copulas and parameters are summarized with 

Table 3 as follows. 
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Table 3. Expected Loss using Clayton, Gumbel and Frank Copulas for Different Parameters 

Type of Copula τ θ Expected Loss 

 

 

Clayton 

0.1 0.2222222 2285.120 

0.2 0.5000000 2336.037 

0.3 0.8571429 2389.853 

0.4 1.3333333 2447.339 

0.5 2.0000000 2509.511 

0.6 3.0000000 2577.670 

 

 

Gumbel 

0.1 1.1111110 2372.550 

0.2 1.2500000 2492.395 

0.3 1.4285710 2596.252 

0.4 1.6666670 2684.361 

0.5 2.0000000 2757.008 

0.6 2.5000000 2814.559 

 

 

Frank 

0.1 0.9073682 2309.685 

0.2 1.8608840 2384.995 

0.3 2.9174345 2461.079 

0.4 4.1610643 2536.578 

0.5 5.7362827 2610.203 

0.6 7.9296423 2680.823 

 

For Clayton, Gumbel and Frank copulas, same values of Kendall’s τ parameter are taken and the 

corresponding values of θ copula parameter are given in Table 3.  The higher values of τ and θ, the higher 

expected loss for all copulas. Expected losses are higher using Gumbel copulas compared the other 

copulas. Furthermore, some statistical values such as quantiles of expected loss are calculated and given 

by Table 4.  

Table 4. Quantiles of Aggregate Loss using Clayton, Gumbel and Frank Copulas for τ =0.5 

Type of Copula % Value at the quantile 

is evaluated 

Expected 

Loss(τ=0.5) 

 

Clayton 

25 743.7378  

2509.511 50 1534.867 

75 3211.736 

 

Gumbel 

25 742.5345  

2757.008 50 1462.432 

75 2917.698 

 

Frank 

25 740.4356  

2610.203 50 1472.067 

75 3156.319 

 

Quantiles of aggregate loss given by Table 4 can be useful for interval estimation of aggregate loss under 

dependence assumption. The values of expected aggregate loss are ranked between the 50 % and 75 % 

quartiles. It confirms that the distribution of aggregate loss under dependency assumption is also right 

skewed.  
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5. Concluding Remarks 

In non-life insurance mathematics claim severity and frequency are generally assumed independent and 

the aggregate loss is over or under estimated compared the actual aggregate loss under this assumption. 

Dependency between claim components can taken into consideration using copula-based model approach 

proposed by Kramer et al. [8]. Copula-based models can be created by bivariate Archimedean copula 

family and mixed vairables such as continuous claim severity and discrete claim frequency. Mixed 

variables can be included in the same copula function with the mixed copula approach. In this study, joint 

cumulative distribution and joint probability density functions of claim severity and frequecy are obtained 

using the copula-based model. The aggregate loss is modeled using different bivariate Archimedean 

copula functions and different copula parameters. The effects of the parameters and the type of copulas on 

dependence modeling are analysed and interprered.  

It has been noticed that copula-based models allow for flexible dependency modeling of claim severity 

and frequency in non-life insurance mathematics. Flexibility arises from the use of different copula 

functions with different parameters in these models. According to the results of the study, Frank copula is 

more sensitive to dependence modeling in cases where the relationship between the claim severity and 

frequency is high. It has been observed that aggregate loss increases as τ value increases for all 

Archimedean copula functions used. However, higher aggregate loss is estimated when the dependency is 

modeled with Gumbel copula. Furthermore, the quantiles of aggregate loss that can be used in interval 

estimation of aggregate loss under dependence assumption are calculated with the help of the R packages 

“CopulaRegression”.  It has been seen that the values of expected aggregate loss are ranked between the 

50 % and 75 % quartiles, which is an expected result since the distribution of aggregate loss under 

dependency assumption is also right skewed. 

Copula-based models in this study can be developed as copula-based regression models including 

generalized linear models and the results of models can be compared. This study can be enhanced by 

using other parametric copulas such as Gauss and t-copulas or non-parametric copulas such as Bernstein 

copulas.  
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