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Abstract
The Lagerstrom’s equation has been solved by an approximate technique combining both homotopy perturbation
and variational iteration method. By this technique the solution of Lagerstrom’s equation can be determined for
viscous flow past a solid at low Reynolds number where a significance mater is the occurrence of logarithmic
term. In this technique ExpIntegralEi function has been used for simplifying the calculation. The results have
been calculated by this technique shows a good agreement with those obtained by numerical method.
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1. Introduction
The perturbation methods [1]-[2] are widely used for solving nonlinear problems mostly in week nonlinear problems. For
Lagerstrom’s equation a logarithmic singularity arises and the straight forward perturbation method fails to give uniformly
valid solution. Several methods are used to solve Lagerstrom’s model equation. Earlier P. A. Lagerstrom [3] used Matched
asymptotic expansions. A geometric analysis and Rigorous asymptotic expansion methods have introduced by N. Popovic, P.
Szmolyan [4]-[5]. S. Kaplun and P. A. Lagerstrom [6] have presented asymptotic expansions of Navier-Stokes solutions for
small Reynolds numbers. N. Fenichel [7], K. K. Alymkulov and D. A. Tursunov [8], P. A. Lagerstrom and R. G. Casten [9]
used singular perturbation technique for solving ordinary differential equation. Lagerstrom’s model equation is given by the
non-autonomous second-order boundary value problem

u′′+
n−1

x
u′+uu′ = 0, (1.1)

where

u(ε) = 0,u(∞) = 1, (1.2)

with n ∈ N, 0 < ε ≤ ∞ and prime denotes differentiating with respect to x.
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Let ξ = x
ε

then Eq. (1.1) and Eq. (1.2) can be written as

u′′+
n−1

ξ
u′+ εuu′ = 0, (1.3)

and

u(1) = 0,u(∞) = 1, (1.4)

with 1 < ξ < ∞ and prime denotes differentiating with respect to ξ . Eq. (1.1) and Eq. (1.3) are the model which was first
introduce in [6] and [10] for viscous flow past a solid at low Reynolds number. When ε = 0 the solution of Eq. (1.3) becomes
u = 1− 1

ξ
and it is known as unperturbed solution. In this paper a new technique has been presented to solve Eq. (1.3) with

boundary conditions in equation Eq. (1.4) based on combined homotopy perturbation method [11] and variational iteration
method [12].

2. The Method
First we consider the Lagerstrom’s model equation is given in Eq. (1.3) as of the form

u′′+
n−1

ξ
u′+ ku′+ p(u− k)u′ = 0, (2.1)

where

u(1) = 0,u(∞) = 1. (2.2)

When p = 0 Eq. (2.1) has a solution that one can be determined easily. When p≤ 1 we consider the approximate solution of
the form [11]

u = u0 + pu1 + p2u2 +O(p3). (2.3)

On substituting the value of u in Eq. (2.1) we get

u′′0 +
n−1

ξ
u′0 + ku′0 +

(
u′′1 +

n−1
ξ

u′1 + ku′1 +(u0− k)u′0

)
p+
(

u′′2 +
n−1

ξ
u′2 + ku′1 +(u0− k)u′1 +u1u′0

)
p2 +O(p3) = 0.

(2.4)

Equating the coefficient of like power of p we obtain

u′′0 +
n−1

ξ
u′0 + ku′0 = 0, (2.5)

u′′1 +
n−1

ξ
u′1 + ku′1 +(u0− k)u′0 = 0, (2.6)

u′′2 +
n−1

ξ
u′2 + ku′1 +(u0− k)u′1 +u1u′0 = 0. (2.7)

Solving above set of linear equations we get u0,u1,u2, · · · ,etc. and substituting these in Eq. (2.3) we obtain an approximate
solution
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3. Examples

3.1 Example 1
Let us first consider n = 3 then Eq. (2.5), Eq. (2.6) and Eq. (2.7) turned into the flowing form

u′′0 +
2
ξ

u′0 + ku′0 = 0, (3.1)

u′′1 +
2
ξ

u′1 + ku′1 +(u0− k)u′0 = 0, (3.2)

u′′2 +
2
ξ

u′2 + ku′1 +(u0− k)u′1 +u1u′0 = 0. (3.3)

Obviously Eq. (3.1) can be rewritten as

d
dξ

(
ξ

2ekξ u′0
)
= 0, (3.4)

where ξ 2ekξ is an integrating factor of Eq. (3.1).
Integrating Eq. (3.4) with respect to ξ we get

u′0 =
Be−kξ

ξ 2 . (3.5)

Again integrating Eq. (3.5) with respect to ξ we get

u0 = A+B

(
−e−kξ

ξ
− k ExpIntegralEi(−kξ )

)
, (3.6)

where ExpIntegralEi function is defined as

Ei(x) = γ + lnx+ exp
( x

2

) ∞

∑
n=1

(−1)n−1xn

n!2n−1

n−1
2

∑
k=0

1
2k+1

, (3.7)

and γ is Euler Gama constant.

Using condition u0(1) = 0 and from Eq. (3.6) we obtain

A+B
(
−e−k− k Ei(−k)

)
= 0. (3.8)

Since at ξ → ∞,− e−kξ

ξ
− k Ei(−kξ )→ 0 and for satisfying the condition u0(∞) = 1,A must be considered as 1 then solving

Eq. (3.8) for B we obtain

B =
ek

1+ ekk Ei(−k)
. (3.9)

Substituting the values of A and B in Eq. (3.6) we obtain

u0 = 1+
ek

1+ ekk Ei(−k)

(
−e−kξ

ξ
− k ExpIntegralEi(−kξ )

)
, (3.10)

where k is constant to be determined.
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We consider
∫

∞

0 (u0− k)u′0dξ ∼= 0 and we have obtain k ∼= 0.5. For solving u′1 Eq. (3.2) can be written as

d
dξ

(
ξ

2ekξ u′1
)
=
(

ξ
2ekξ (k−u0)u′0

)
, (3.11)

where ξ 2ekξ is an integrating factor. Substituting the values of u0 in Eq. (3.11) and then integrating we obtain

ξ
2ekξ u′1 =

ek
(

ek(1−ξ )−ξ + kξ + ek(k−1)kξ Ei(−k)+ ek(1+ kξ )Ei(−kξ )
)

(1+ ekk Ei(−k))2 +C. (3.12)

Using condition u′1(1) = 0 then from Eq. (3.12) we obtain

C =−
ek
(
k+ ek(k−1)k Ei(−k)+ ek(1+ k)Ei(−k)

)
(1+ ekk Ei(−k))2 . (3.13)

Substituting the values of C in Eq. (3.12) we obtain

u′1 =
g

ξ 2ekξ
, (3.14)

where

g =
ek
(

ek(1−ξ )−ξ + kξ + ek(k−1)kξ Ei(−k)+ ek(1+ kξ ) Ei(−kξ )
)

(1+ ekk Ei(−k))2 −
ek
(
k+ ek(k−1)k Ei(−k)+ ek(1+ k) Ei(−k)

)
(1+ ekk Ei(−k))2 .

(3.15)

We have calculated u1 by numerical integration as

u1 =
∫

ξ

1

g
ξ 2ekξ

dξ . (3.16)

Thus the approximate solution can be written for p = 1

u = u0 +u1, (3.17)

where u0 and u1 are obtain from Eq. (3.10) and Eq. (3.16).

3.2 Example 2
Consider n = 2 and proceeding in a similar way as example 1 then we obtain

u0 = 1− Ei(−kξ )

Ei(−k)
, (3.18)

and

u1 =
∫

ξ

1

f
ξ ekξ

dξ , (3.19)

where

f =
e−kξ + kξ (Ei(−k)− k Ei(−k)−Ei(−kξ ))

k Ei(−k)2 +
e−k + k Ei(−k)2

k Ei(−k)2 . (3.20)

Thus the approximate solution can be written for p = 1

u = u0 +u1, (3.21)

where u0 and u1 are obtain from Eq. (3.18) and Eq. (3.19).
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4. Results and Discussion

In the present work a new technique has been presented for solving Lagerstrom’s model equation based on combined homotopy
perturbation method [11] and variational iteration method [12]. First the approximate solution obtained by present procedure
by Eq. (3.17) compared with numerical solution for n = 3,k = 0.544 have presented in Table 1 also we have presented the
absolute percentage error in Table 1. Next the approximate solution obtained by present procedure by Eq. (3.21) compared
with numerical solution for n = 2,k = 0.49 have presented in Table 2 also we have presented the absolute percentage error in
Table 2.

ξ Numerical Result Present Result
Er(%)

1.00 0.00000 0.00000
0.000000

1.25 0.376978 0.376613
0.096

1.50 0.60695 0.606553
0.065

1.75 0.748508 0.749424
0.122

2.00 0.836696 0.839742
0.364

2.25 0.892385 0.897609
0.585

2.50 0.928041 0.935012
0.751

2.75 0.951176 0.959282
0.852

3.00 0.966376 0.975006
0.893

3.50 0.983257 0.991504
0.838

4.00 0.990994 0.997712
0.677

4.50 0.994656 0.999413
0.478

Table 1. Comparison between the numerical results and present results for n = 3,k = 0.544 and Er(%) denote the absolute
percentage error with numerical result.
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Figure 4.1. Present method solution has been presented by red colour circle line and black colour solid line represents
numerical solution when n = 3,k = 0.544 .

Figure 4.2. Present method solution has been presented by red colour circle line and black colour solid line represents
numerical solution when n = 2,k = 0.49 .
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ξ Numerical Result Present Result
Er(%)

1.00 0.00000 0.00000
0.000000

1.25 0.23860 0.23631
0.959

1.50 0.42265 0.41829
1.031

1.75 0.56288 0.55769
0.922

2.00 0.66853 0.66414
0.656

2.25 0.74745 0.74519
0.302

2.50 0.80605 0.80667
0.076

2.75 0.84941 0.85308
0.432

3.00 0.88143 0.88788
0.731

3.50 0.92438 0.93268
0.898

4.00 0.94681 0.95595
0.965

4.50 0.95913 0.96661
0.779

5.00 0.96595 0.97006
0.425

Table 2. Comparison between the numerical results and present results for n = 2,k = 0.49 and Er(%) denote the absolute
percentage error with numerical result.

Then we have presented the numerical solution by black color solid line and present method solution by red color circle
line for n = 3,k = 0.544 in figure 4.1 and in figure 4.2 we have presented the numerical solution by black color solid line and
present method solution by red color circle line for n = 2,k = 0.49 . We observe that in all tables and figure the present method
solution shows a good coincide with numerical results.

5. Conclusion
A new method has been presented for solving Lagerstrom’s equation having a significance mater is the occurrence of logarithmic
term. The results obtained by the present paper are nicely shows a good agreement with corresponding numerical solutions for
several values of n .The method is useful for solving nonlinear logarithmic singularity arising in science and engineering.
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