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Abstract
We define statistical logarithmic summability of strongly measurable fuzzy valued functions and we give slowly
decreasing type Tauberian conditions under which statistical limit at infinity and statistical logarithmic summability
of strongly measurable fuzzy valued functions imply ordinary limit at infinity in one dimensional fuzzy number
space E1. Besides, we give slowly oscillating type Tauberian conditions for statistical limit and statistical
logarithmic summability of strongly measurable fuzzy valued functions in n−dimensional fuzzy number space En.
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1. Preliminaries
Let Kc(Rn) denote the family of all nonempty compact convex subsets of Rn. If A,B ∈Kc(Rn) and k ∈ R then the operations
of addition and scalar multiplication are defined as

A+B = {a+b : a ∈ A,b ∈ B} and kA = {ka : a ∈ A}.

The Hausdorff metric on Kc(Rn) is defined by

d(A,B) = max
{

sup
a∈A

inf
b∈B
‖a−b‖,sup

b∈B
inf
a∈A
‖a−b‖

}
,

where ‖.‖ denotes the usual Euclidean norm in Rn.
A fuzzy number is a mapping u : Rn→ [0,1] which satisfies the following four conditions:
(i) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1.
(ii) u is fuzzy convex, i.e. u[λx+(1−λ )y]≥min{u(x),u(y)}, for all x,y ∈ Rn and for all λ ∈ [0,1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 := {x ∈ Rn : u(x)> 0} is compact.[1]

This work was presented partly in 4th International Conference on Pure and Applied Sciences(Renewable Energy), ICPAS2017, November 23-25, 2017,
Istanbul-Turkey with title ”On some statistical weighted mean summability methods of fuzzy-number-valued functions”.
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The set of all fuzzy numbers is denoted by En and En is called fuzzy number space. If u ∈ En, then α-level set [u]α of u,
defined by

[u]α :=

{
{x ∈ Rn : u(x)≥ α} , (0 < α ≤ 1),

{x ∈ Rn : u(x)> 0} , (α = 0),

is a nonempty compact convex subset of Rn.
Let r ∈ Rn. We say that r is a crisp fuzzy number if

r(x) :=
{

1 , ifx = r
0 , otherwise.

The operations addition and scalar multiplication on fuzzy numbers are defined by

u+ v = w ⇐⇒ [w]α = [u]α +[v]α , for all α ∈ [0,1]

and

[ku]α = k[u]α , for all α ∈ [0,1].

Lemma 1.1. [2]

(i) 0 ∈ En is neutral element with respect to +, i.e., u+0 = 0+u = u, for all u ∈ En.

(ii) For any a,b ∈ R with a,b≥ 0 or a,b≤ 0, and any u ∈ En, we have (a+b)u = au+bu. For general a,b ∈ R, the above
property does not hold.

(iii) For any a ∈ R and any u,v ∈ En, we have a(u+ v) = au+av.

(iv) For any a,b ∈ R and any u ∈ En, we have a(bu) = (ab)u.

The metric D on En is defined as follows:

D(u,v) := sup
α∈[0,1]

d([u]α , [v]α).

From [2], we have the following lemma.

Lemma 1.2. Let u,v,w,z ∈ En and k ∈ R.

(i) (En,D) is a complete metric space.

(ii) D(ku,kv) = |k|D(u,v).

(iii) D(u+ v,w+ v) = D(u,w).

(iv) D(u+ v,w+ z)≤ D(u,w)+D(v,z).

(v) |D(u,0)−D(v,0)| ≤ D(u,v)≤ D(u,0)+D(v,0).

We recall the concepts of measurability and integrability for fuzzy valued function.

Definition 1.3. [3] Let T = [a,b]⊂R. A function s : T → En is strongly measurable if for all α ∈ [0,1] the set valued function
sα : T →Kc(Rn) defined by

sα(x) = [s(x)]α

is Lebesgue measurable, when Kc(Rn) is endowed with the topology generated by Hausdorff metric d.

Theorem 1.4. [3] If fuzzy valued function s is strongly measurable, then it is measurable with respect to the topology generated
by D.

Definition 1.5. [3] Let s : T → En. The integral of s over T is defined by the following:[∫
T

s(x)dx
]

α

=
∫

T
[s(x)]α dx =

{∫
T

f (x)dx | f : T → Rn is a measurable selection of sα

}
,

for α ∈ (0,1].
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A function s : T → En is called integrably bounded if there exists an integrable function h : T → R+ such that D(s(t), 0̄)≤
h(t), for all t ∈ T .

A strongly measurable and integrably bounded function s : T → En is said to be integrable over T if∫
T

s(x)dx ∈ En.

Theorem 1.6. [3] If s : T → En is strongly measurable and integrably bounded, then s is integrable.

Definition 1.7. A fuzzy valued function s : T → En is said to be continuous at x0 ∈ T if for each ε > 0 there is a δ > 0 such
that D(s(x),s(x0))< ε , whenever x ∈ T with |x− x0|< δ . If s is continuous at each x ∈ T , then we say s is continuous on T .

Theorem 1.8. [3] If f : T → En is continuous then it is strongly measurable.

Strong measurability of fuzzy valued functions does not imply continuity by the following example.

Example 1.9. Let µ,ν ∈ En with µ 6= ν and define s : T → En by

s(x) :=
{

µ , if x ∈Q
ν , otherwise.

Fuzzy valued function s is strongly measurable but it is not continuous.

Theorem 1.10. [3] If s : T → En is continuous, then s is integrable.

Theorem 1.11. [3] If s : T → En is continuous, g(x) =
∫ x

a s(t)dt is Lipschitz continuous on T .

Theorem 1.12. [3] Let f ,g : T → En be integrable and λ ∈ R. Then,

(i)
∫

T ( f (x)+g(x))dx =
∫

T f (x)dx+
∫

T g(x)dx;

(ii)
∫

T λ f (x)dx = λ
∫

T f (x)dx;

(iii)
b∫
a

f (x)dx =
c∫

a
f (x)dx+

b∫
c

f (x)dx, where a < c < b.

(iv) The function F : T → R+ defined by F(x) = D( f (x),g(x)) is integrable on T and

D
(∫

T
f (x)dx,

∫
T

g(x)dx
)
≤
∫

T
D( f (x),g(x))dx.

Lemma 1.13. [2] Suppose µ ∈ En and define s : T → En by s(x) = µ , for all x ∈ [a,b]. Then,

b∫
a

s(x)dx = (b−a)µ.

If u ∈ E1, then α-level set [u]α of u is closed, bounded and non-empty interval and we can write [u]α := [u−(α),u+(α)].
The partial ordering relation on E1 is defined as follows:

u� v⇐⇒ [u]α � [v]α ⇐⇒ u−(α)≤ v−(α) and u+(α)≤ v+(α), for all α ∈ [0,1].

Combining the results of Lemma 6 in [4], Lemma 5 in [5], Lemma 3.4, Theorem 4.9 in [6] and Lemma 14 in[7], following
lemma is obtained.

Lemma 1.14. Let u,v,w,e ∈ E1 and ε > 0. The following statements hold:

(i) D(u,v)≤ ε if and only if u− ε � v� u+ ε

(ii) If u� v+ ε for every ε > 0, then u� v.

(iii) If u� v and v� w, then u� w.

(iv) If u� w and v� e, then u+ v� w+ e.

(v) If u+w� v+w then u� v.
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A fuzzy valued function s : T → E1 has the parametric representation

[s(x)]α = [s−α (x),s
+
α (x)],

where s+α ,s
−
α : T → R, for all α ∈ [0,1].

Theorem 1.15. [8] Fuzzy valued function s : T → E1 is strongly measurable if and only if s+α and s−α are measurable for all
α ∈ [0,1].

Lemma 1.16. [9] Fuzzy valued function s : T → E1 is integrable if and only if s+α ,s
−
α are integrable over T and[∫

T
s(x)dx

]
α

=

[∫
T

s−α (x)dx,
∫

T
s+α (x)dx

]
, (1.1)

for all α ∈ [0,1].

Lemma 1.17. [9] Let f ,g : T → E1 be integrable and f (x)� g(x), for all x ∈ T . Then,
∫

T f (x)dx�
∫

T g(x)dx.

Talo et al.[9] and Belen[10] defined statistical limits of fuzzy valued functions at ∞ independently. Talo et al.[9] took the
case of strongly measurable fuzzy valued functions while Belen[10] took the case of continuous fuzzy valued functions. In
view of Theorem 1.8 and Example 1.9, definition of Talo et al.[9] is more general and hence we prefer to use that definiton.

Definition 1.18. [9] A strongly measurable fuzzy valued function s : [a,∞)→ En has statistical limit at ∞ if there exists a fuzzy
number µ such that for every ε > 0,

lim
b→∞

1
b−a

|{x ∈ (a,b) : D(s(x),µ)> ε}|= 0, (1.2)

where by |{.}| we denote the Lebesgue measure of the set {.}. In this case, we write st-lim
x→∞

s(x) = µ .

Remark 1.19. In (1.2), the set {x ∈ (a,b) : D(s(x),µ)> ε} is Lebesgue measurable by Theorem 1.4.

Theorem 1.20. [9] Let s be strongly measurable fuzzy valued function. Then,

lim
x→∞

s(x) = µ ⇒ st− lim
x→∞

s(x) = µ. (1.3)

The converse of Theorem 1.20 does not hold in general. As a counter example, we can give Example 1.9.

Definition 1.21. [11] A fuzzy valued function s : [1,∞)→ E1 is said to be slowly decreasing with respect to logarithmic
summability if for every ε > 0 there exist x0 > 1 and λ > 1 such that

s(t)� s(x)− ε (1.4)

whenever x0 ≤ x < t ≤ xλ .

Definition 1.22. A fuzzy valued function s : [1,∞)→ En is said to be slowly oscillating with respect to logarithmic summability
if for every ε > 0 there exist x0 > 1 and λ > 1 such that

D(s(t),s(x))≤ ε (1.5)

whenever x0 ≤ x < t ≤ xλ .

2. Main Results
By Lloc([a,∞),En), we denote the set of fuzzy valued functions s : [a,∞)→ En such that s is integrable on every bounded
interval [a,x], x > a. We define statistical logarithmic summability of fuzzy valued functions as the following.

Definition 2.1. Let s ∈ Lloc([1,∞),En). Logarithmic average τ(x) of s is defined by

τ(x) =
1

logx

∫ x

1

s(u)
u

du, x ∈ (1,∞).

We say that s is statistically logarithmic summable to a fuzzy number µ if st-lim
x→∞

τ(x) = µ .
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By [11, Theorem 3.2] and Theorem 1.20, ordinary limit of fuzzy valued functions at infinity implies statistical logarithmic
summability. But the converse is not true in general which can be seen by the following example.

Example 2.2. Take fuzzy valued function s : [1,∞)→ E1 such that

(s(x))(t) =

{
1− (t− sinx)2 , i f sinx−1≤ t ≤ sinx+1,
0, otherwise.

Then, we have

s−α (x) = sinx−
√

1−α , s+α (x) = sinx+
√

1−α,

lim
x→∞

τ
−
α (x)= lim

x→∞

1
logx

∫ x

1

s−α (u)
u

du=−
√

1−α,

lim
x→∞

τ
+
α (x)= lim

x→∞

1
logx

∫ x

1

s+α (u)
u

du =
√

1−α.

Since limx→∞ D(τ(x),µ) = 0 where [µ]α = [−
√

1−α,
√

1−α], by Theorem 1.20 fuzzy valued function s is statistical logarith-
mic summable to fuzzy number

µ(t) =

{
1− t2 i f −1≤ t ≤ 1,
0 otherwise.

But ordinary limit of s at infinity does not exist.

In the following two theorems, we give slowly decreasing and slowly oscillating type conditions under which statistical
limits of fuzzy valued functions implies ordinary limit at infinity.

Theorem 2.3. If a strongly measurable fuzzy valued function s : [1,∞)→ E1 is slowly decreasing with respect to logarithmic
summability, then st-lim

x→∞
s(x) = µ implies lim

x→∞
s(x) = µ .

Proof. Let strongly measurable fuzzy valued function s : [1,∞)→ E1 be slowly decreasing with respect to logarithmic
summability and st-lim

x→∞
s(x) = µ . Then for given an ε > 0 there exist x0 > 1 and λ > 1 such that slow decrease condition (1.4)

is satisfied. Also, as in [12, Proof of Theorem 1], since st-lim
x→∞

s(x) = µ there exists a sequence bn ↑ ∞ of real numbers such that

D(s(bn),µ)≤ ε, n = 1,2, . . . . (2.1)

and for some n0 we have

bn+1 < bλ
n , n = n0 +1,n0 +2, . . . (2.2)

Now consider t ∈ (bn,bn+1] for n > n0. In view of (2.2) and monotonicity of sequence (bn) we get

bn < t ≤ bn+1 < bλ
n < tλ .

So by slow decrease condition (1.4) and by (2.1), for every n > n0 and t ∈ (bn,bn+1] we have

s(t)� s(bn)− ε̄ � µ−2ε̄. (2.3)

Again for every n > n0 and t ∈ (bn,bn+1] we have

s(t)� s(bn+1)+ ε̄ � µ +2ε̄. (2.4)

Then combining (2.3) and (2.4) we get

D(s(t),µ)≤ 2ε f or every t ∈
∞⋃

n=n0+1

(bn,bn+1] = (bn0+1,∞).

This proves lim
x→∞

s(x) = µ .

Theorem 2.4. If a strongly measurable fuzzy valued function s : [1,∞)→ En is slowly oscillating with respect to logarithmic
summability, then st-lim

x→∞
s(x) = µ implies lim

x→∞
s(x) = µ .
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Proof. Let st-lim
x→∞

s(x) = µ and s be slowly oscillating with respect to logarithmic summability. Then as in the proof of Theorem

2.3, for given ε > 0 and λ > 1 there exists a sequence bn ↑ ∞ such that (2.1) and (2.2) are satisfied. By condition (2.2) and by
condition of slow oscillation we have

D(s(t),s(bn))≤ ε whenever x0 ≤ bn < t < bn+1 (2.5)

for large enough n, say n > n1. From (2.1) and (2.5) it follows that

D(s(t),µ)≤ D(s(t),s(bn))+D(s(bn),µ)≤ 2ε

for every t ∈
⋃

∞
n=n1+1(bn,bn+1] = (bn1+1,∞). This means that lim

x→∞
s(x) = µ .

Now we aim to replace logarithmic summability with statistical logarithmic summability in Theorem 2.8.

Lemma 2.5. If s : [1,∞)→ E1 is a fuzzy valued function such that slow decrease condition with respect to logarithmic
summability (1.4) is satisfied for ε := 1 where x0 > 1 and λ > 1, then there exists a constant B1 > 0 such that

s(t)� s(x)−B1 ln
(

ln t
lnx

)
whenever x0 ≤ x < t1/λ . (2.6)

Proof. Let s : [1,∞)→ E1 be a fuzzy valued function such that slow decrease condition with respect to logarithmic summability
(1.4) is satisfied only for ε := 1 where x0 > 1 and λ > 1, and let x0 ≤ x < t1/λ be given. Then consider the sequence

t0 := t, tp := t1/λ

p−1, p = 1,2, . . . ,q+1,

where q is defined by the condition tq+1 ≤ x < tq. Since (1.4) is satisfied for ε := 1, we get

s(t)� s(t1)−1� s(t2)−2� ·· · � s(tq)−q� s(x)−q−1.

Then by the calculations regarding q in [12, Proof of Lemma 1], we get

s(t)� s(x)−1− 1
lnλ

ln
(

ln t
lnx

)
whenever x0 ≤ x < t1/λ . (2.7)

Then in view of x < t1/λ , we have lnλ < ln
( ln t

lnx

)
and as result we conclude

s(t)� s(x)−B1 ln
(

ln t
lnx

)
whenever x0 ≤ x < t1/λ

with B1 := 2/lnλ .

Lemma 2.6. s ∈ Lloc([1,∞),E1). Under the assumptions of Lemma 2.5, there exists a constant B2 > 0 such that

1
ln t

∫ t

x0

s(t)
x

dx� 1
ln t

∫ t

x0

s(x)
x

dx−B2 whenever t > xλ
0 . (2.8)

Proof. Let the fuzzy valued function s satisfy slow decrease condition only for ε := 1 where this time assume x0 > e. Then by
(2.6), we get the following:∫ t

x0

s(t)
x

dx =
∫ t1/λ

x0

s(t)
x

dx+
∫ t

t1/λ

s(t)
x

dx

�
∫ t1/λ

x0

s(x)
x

dx−B3

∫ t1/λ

x0

1
x

ln
(

ln t
lnx

)
dx+

∫ t

t1/λ

s(x)
x

dx−
∫ t

t1/λ

dx
x

=
∫ t

x0

s(x)
x

dx−B3

∫ t1/λ

x0

1
x

ln
(

ln t
lnx

)
dx−

∫ t

t1/λ

dx
x

�
∫ t

x0

s(x)
x

dx−B3(ln t)
(

lnλ

λ
+

(ln lnx0)

λ
+

1
λ

)
.

where we took into account the calculations in [12, Proof of Lemma 3]. If we take

B2 :=
B1

λ
(lnλ + ln lnx0 +1),

this proves (2.8).
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Lemma 2.7. If s ∈ Lloc([1,∞),E1) is slowly decreasing with respect to logarithmic summability, then logarithmic mean τ is
slowly decreasing with respect to logarithmic summability.

Proof. Let s ∈ Lloc([1,∞),E1) and be s be slowly decreasing with respect to logarithmic summability. We aim to show that
logarithmic mean τ of s is also slowly decreasing.

Let some 0 < ε < 1 be given. Then consider x0 ≤ x < t ≤ xλ that in slow decrease condition (1.4), where

1 < λ ≤ 1+
ε

max{1,B2}

and B2 is from (2.8).
By the following equality

τ(t)+
(

1− lnx
ln t

)
1

lnx

∫ x0

1

s(u)
u

du+
(

1− lnx
ln t

)
1

lnx

∫ x

x0

s(u)
u

du+
(

1− lnx
ln t

)
lnx0

lnx
s(x)

= τ(t)+
(

1− lnx
ln t

)
τ(x)+

(
1− lnx

ln t

)
lnx0

lnx
s(x)

= τ(x)+
1

ln t

∫ t

x

s(u)
u

du+
(

1− lnx
ln t

)
lnx0

lnx
s(x),

we have

τ(t)+
(

1− lnx
ln t

)
1

lnx

∫ x0

1

s(u)
u

du+
(

1− lnx
ln t

)
1

lnx

∫ x

x0

s(u)
u

du+
(

1− lnx
ln t

)
lnx0

lnx
s(x)

= τ(x)+
1

ln t

∫ t

x

s(u)
u

du+
(

1− lnx
ln t

)
lnx0

lnx
s(x).

(2.9)

Then by Lemma 2.6 and from slow decrease condition (1.4) we get

τ(t)+
(

1− lnx
ln t

)
1

lnx

∫ x0

1

s(u)
u

du+
(

1− lnx
ln t

){
1

lnx

∫ x

x0

s(x)
u

du+B2

}
+

(
1− lnx

ln t

)
lnx0

lnx
s(x)

� τ(x)+
1

ln t

∫ t

x

s(x)−1
u

du+
(

1− lnx
ln t

)
lnx0

lnx
s(x),

which yields

τ(t)+
(

1− lnx
ln t

)
1

lnx

∫ x0

1

s(u)
u

du+
(

1− lnx
ln t

)
B2 � τ(x)−

(
1− lnx

ln t

)
+

(
1− lnx

ln t

)
lnx0

lnx
s(x). (2.10)

At this point there exists x1 > xλ
0 such that(

1− lnx
ln t

)
lnx0

lnx
s(x)�−ε̄ whenever x > x1 (2.11)

holds since by (2.7) we have

s(x)
lnx
� s(x0)−1

lnx
− 1

lnx lnλ
ln
(

lnx
lnx0

)
→ 0 as x→ ∞.

Besides there exists x2 such that(
1− lnx

ln t

)
1

lnx

∫ x0

1

s(u)
u

du�−ε̄ whenever x > x2, (2.12)

since

lim
x→∞

(
1− lnx

ln t

)
1

lnx

∫ x0

1

s(u)
u

du = 0̄.

Also from the fact 1
λ
≤ lnx

ln t we have(
1− lnx

ln t

)
B2 ≤

(
1− 1

λ

)
B2 ≤ (λ −1)B2 ≤ ε, (2.13)
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and again from the fact that 1
λ
≤ lnx

ln t we get

−
(

1− lnx
ln t

)
≥−

(
1− 1

λ

)
≥−(λ −1)≥−ε. (2.14)

Then inserting the expressions (2.11)–(2.14) in equality (2.10) we get

τ(t)� τ(x)−4ε̄ whenever x3 ≤ x < t ≤ xλ ,

where x3 = max{x0,x1,x2}. This proves that τ is slowly decreasing with respect to logarithmic summability.

Analogous of Corollary 3.8 in [11] can be given as the following.

Theorem 2.8. If s ∈ Lloc([1,∞),En) is logarithmic summable to a fuzzy number µ and is slowly decreasing with respect to
logarithmic summability then lim

x→∞
s(x) = µ .

In view of Theorem 2.8, Theorem 2.3 and Lemma 2.7 we give the following result.

Theorem 2.9. If s ∈ Lloc([1,∞),E1) is slowly decreasing with respect to logarithmic summability, then st- lim
x→∞

τ(x) = µ implies

lim
x→∞

s(x) = µ .

Replacing absolute value with metric D in Lemma 2 and Lemma 4 in [12] we obtain the following lemmas in fuzzy setting.

Lemma 2.10. If s : [1,∞)→ En is a fuzzy valued function such that slow oscillation condition with respect to logarithmic
summability (1.5) is satisfied for ε := 1 where x0 > 1 and λ > 1, then there exists a constant B3 > 0 such that

D(s(t),s(x))≤ B3 ln
(

ln t
lnx

)
whenever x0 ≤ x < t1/λ .

Lemma 2.11. Let s ∈ Lloc([1,∞),En). Under the assumptions of Lemma 2.10, there exists a constant B4 > 0 such that

1
ln t

∫ t

x0

D(s(t),s(x))
x

dx≤ B4 whenever t > xλ
0 .

Lemma 2.12. If s ∈ Lloc([1,∞),En) is slowly oscillating with respect to logarithmic summability, then logarithmic mean τ is
also slowly oscillating.

Proof. As in the proof of Lemma 2.7, for given 0 < ε < 1 consider x0 ≤ x < t ≤ xλ that in slow oscillation condition (1.5),
where

1 < λ ≤ 1+
ε

max{1,B4}

and B4 is from Lemma 2.11. Adding 2
(
1− lnx

ln t

)(
1− lnx0

lnx

)
s(x) to both sides of the equation (2.9) we get

τ(t)+
ln t− lnx
ln t lnx

∫ x0

1

s(u)
u

du+
ln t− lnx
ln t lnx

∫ x

x0

s(u)
u

du+
1

ln t

∫ t

x

s(x)
u

du+
ln t− lnx
ln t lnx

(lnx− lnx0)s(x)

= τ(x)+
1

ln t

∫ t

x

s(u)
u

du+
ln t− lnx

ln t
s(x)+

ln t− lnx
ln t lnx

∫ x

x0

s(x)
u

du.

Then by the properties given in Lemma 1.2 and Theorem 1.12 we have

D(τ(t),τ(x)) = D
(

ln t− lnx
ln t lnx

∫ x0

1

s(u)
u

du+
ln t− lnx
ln t lnx

∫ x

x0

s(u)
u

du+
1

ln t

∫ t

x

s(x)
u

du+
ln t− lnx
ln t lnx

(lnx− lnx0)s(x),

1
ln t

∫ t

x

s(u)
u

du+
ln t− lnx

ln t
s(x)+

ln t− lnx
ln t lnx

∫ x

x0

s(x)
u

du
)

≤ ln t− lnx
ln t lnx

lnx0D(s(x), 0̄)+
ln t− lnx
ln t lnx

∫ x0

1

D(s(u), 0̄)
u

du+
ln t− lnx
ln t lnx

∫ x

x0

D(s(u),s(x))
u

du

+
1

ln t

∫ t

x

D(s(u),s(x))
u

du

= J1 + J2 + J3 + J4.
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By Lemma 2.10, there exists x1 > xλ
0 such that J1 ≤ ε for x > x1 in view of the fact that

D(s(x), 0̄)
lnx

≤ D(s(x),s(x0))

lnx
+

D(s(x0), 0̄)
lnx

≤ B3
ln(lnx/lnx0)

lnx
+

D(s(x0), 0̄)
lnx

→ 0 (as x→ ∞).

Besides, since

lim
x→∞

ln t− lnx
ln t lnx

∫ x0

1

D(s(u), 0̄)
u

du = 0

there exists x2 such that J2 ≤ ε for x > x2.
Furthermore, from the fact that 1

λ
≤ lnx

ln t and by Lemma 2.11 we have J3 ≤ (λ −1)B4 ≤ ε for x > xλ
0 .

Again from the fact that 1
λ
≤ lnx

ln t and by slow oscillation condition we have J4 ≤ ε .
Hence combining all findings we have

D(τ(t),τ(x))≤ J1 + J2 + J3 + J4 ≤ 4ε whenever x3 ≤ x < t ≤ xλ ,

where x3 = max{x1,x2}, and this completes the proof.

Analogous of Corollary 2.1 in [13] may be given for s ∈ Lloc([1,∞),En) as the following. The proof is similar and hence
omitted.

Theorem 2.13. If s ∈ Lloc([1,∞),En) is logarithmic summable to a fuzzy number µ and is slowly oscillating with respect to
logarithmic summability, then lim

x→∞
s(x) = µ .

In view of Theorem 2.4, Lemma 2.12 and Theorem 2.13 we give the following result.

Theorem 2.14. If s∈ Lloc([1,∞),En) is slowly oscillating with respect to logarithmic summability, then st-lim
x→∞

τ(x) = µ implies

lim
x→∞

s(x) = µ .
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