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1. Introduction

Let A be the class of all functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U, where

U = {z : z ∈ C and |z| < 1} .

For two functions F (z) and G(z) analytic in U , we say that F (z) is subordinate to G(z), denoted
by

F ≺ G or F (z) ≺ G(z),

if there exists an analytic function w(z) with

|w(z)| ≤ |z| such that F (z) = G (w(z)) .

Furthermore if the function G(z) is univalent in U then we have the following equivalence [1–3]

F (z) ≺ G(z) ⇐⇒ F (0) = G (0) and F (U) ⊂ G (U) .
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For two analytic functions f(z) given by (1) and g(z)

g(z) = z +

∞∑
n=2

enz
n, (z ∈ U) ,

their Convolution or Hadamard product is given by

(f ∗ g)(z) = z +
∞∑
n=2

anenz
n, (z ∈ U) .

For arbitrary fixed numbers A, B, α and β satisfying −1 ≤ B < A ≤ 1, 0 ≤ α < 1 and 0 < β ≤ 1,
let Pβ [A,B, α] denote the family of functions

h(z) = 1 + h1z + h2z
2 + · · · ,

regular in U and such that h(z) is in Pβ [A,B, α] if and only if

h(z) ≺ (1− α)

(
1 +Az

1 +Bz

)β
+ α. (2)

Therefore, h(z) is in Pβ [A,B, α] if and only if

h(z) =
(1− α) (1 +Aw(z))β + α (1 +Bw(z))β

(1 +Bw(z))β
, (3)

for some w(z) with |w(z)| ≤ |z|. By taking β = 1, then the class Pβ [A,B, α], reduces to P [A,B, α],
defined by Polatoglu in [4], if we take α = 0, β = 1, then the class Pβ [A,B, α], reduces to the well
known class P [A,B], defined and studied by Janowski in [5] and setting α = 0, β = 1, A = 1, B = −1,
the class Pβ [A,B, α], reduces to the class P of functions with positive real part. For more details
see [6–15].

One can easily verify that p ∈ Pβ [A,B, α], if and only if, there exists g ∈ P [A,B], such that

p(z) = (1− α) g(z) + α.

The Herglotz representation of the functions of the class Pβ [A,B, α], is given by

h(z) = α+
1− α

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ),

where µ is non decreasing function in [0, 2π] such that
∫ 2π
0 dµ(θ) = 2.

For A = 1, B = −1, the class Pβ [A,B, α], reduces to the class Pβ (α), presented by Dziok recently
[16, Th.3] and further by setting α = 0, β = 1, A = 1, B = −1, we obtain the class P of analytic
functions with real part greater than zero.

Now we define the subclass Pm,β [A,B, α], of analytic functions as follows;

Definition 1.1. A function p(z) analytic in U belongs to the class Pm,β [A,B, α], if and only if

p(z) = α+
1− α

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ), (4)

where µ(θ) is non decreasing function in [0, 2π] with∫ 2π

0
dµ(θ) = 2 and

∫ 2π

0
|dµ(θ)| ≤ m,

where, m ≥ 2, −1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1.
Now using Horglotz-Stieltjes formula for the functions in the class Pm,β [A,B, α], given in (4), we

obtain

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z),
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where p1, p2 ∈ Pβ [A,B, α] see ( [16], Theorem 3).
For β = 1, the class Pm,β [A,B, α] = Pm [A,B, α] [33] and for α = 0, β = 1, A = 1, B =

−1, Pm,1 [1,−1, 0] = Pm [17].
We consider the function

ϕ (z; s, b) =
∞∑
n=0

zn

(b+ n)s
, (5)

where b ∈ C \ Z−
0 and s ∈ C. The function ϕ (z; s, b) contain many well known functions as a special

case such as Riemann and Hurwitz Zeta functions for more details, see [18,19].
Using the technique of convolution and the function ϕ (z; s, b) Srivastava and Attiya given in [20].

In addition see also ( [21,22]) introduced and studied the linear operator

Js,bf : A→ A,

defined, in terms of the Hadamard product (or convolution), by

Js,b(f)(z) = ϕ(z; s, b) ∗ f(z), f ∈ A, (z ∈ U) , (6)

where ∗ denotes the convolution and

ψ (z; s, b) = (1 + b)s
(
ϕ(z; s, b)− b−s

)
= z +

∞∑
n=2

(
b+ 1

b+ n

)s
zn, (z ∈ U) . (7)

Therefore, using (6) and (7), we have

Js,b(f)(z) = z +
∞∑
n=2

(
b+ 1

b+ n

)s
anz

n, (z ∈ U) .

For special values of b and s the operator contain many known operators, see [23,24].
With the help of the class Pm,β [A,B, α], along with generalized Srivastava and Attiya operator

given in [20] , we now define the following subclass of analytic functions;

Definition 1.2. A function f ∈ A, is in the class Rs,bm,β [A,B, α], if and only if

z (Js,bf(z))
′

Js,bf(z)
∈ Pm,β [A,B, α] , (z ∈ U) .

Definition 1.3. A function f ∈ A, is in the class V s,b
m,β [A,B, α], if and only if

1 +
z (Js,bf(z))

′′

(Js,bf(z))
′ ∈ Pm,β [A,B, α] , (z ∈ U) .

where m ≥ 2, b ∈ C \
(
Z−
0 = {0,−1,−2, . . .}

)
, s ∈ C, −1 ≤ B < A ≤ 1, 0 ≤ α < 1 , 0 < β ≤ 1. We

also note that
f(z) ∈ V s,b

m [A,B, α, β] ⇔ zf(z)′ ∈ Rs,bm,β [A,B, α] . (8)

Remarks:
(i) R0,b

m,1 [A,B, 0] = Rm [A,B] , V 0,b
m,1 [A,B, 0] = Vm [A,B], the well known classes presented and

studied in [25] and [26].

(ii) R0,b
m,1 [1,−1, 0] = Rm, V

0,b
m,1 [A,B, 0] = Vm, we have the well known class introduced and studied

in [17] and [27].

(iii) R0,b
m,1 [2ζ − 1,−1, 0] , V 0,b

m,1 [2ζ − 1,−1, 0], were presented and studied in [28].

To avoid repetition, it is admitted once that m ≥ 2, b ∈ C \
(
Z−
0 = {0,−1,−2, . . .}

)
, s ∈ C,

−1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1.



Journal of New Theory 31 (2020) 20-31 / Some variations of Janowski functions associated with ... 23

2. Preliminary Lemma

We need the following Lemma which will be used in our main results.

Lemma 2.1. [29] Let f(z) be subordinate to g(z), with

f(z) = 1 +

∞∑
n=1

anz
n, g(z) = 1 +

∞∑
n=1

bnz
n.

If g(z) is univalent in U and g(U) is convex, then |an| ≤ |b1|.

Lemma 2.2. Let p(z) ∈ Pm,β [A,B, α], be of the form (1). Then

|qn| ≤ β (A−B) |1− α| .

The proof is immediate by using Lemma 2.1.

Lemma 2.3. Let p(z) ∈ Pm,β [A,B, α] , be of the form (1). Then

|qn| ≤
m

2
β (A−B) |1− α| .

The proof is immediate by using Lemma 2.2.

Lemma 2.4. Let p(z) ∈ Pm,β [A,B, α] , be of the form (1). Then

(1− α)

4

[
(m+ 2)

(
1−Ar

1−Br

)β
− (m− 2)

(
1 +Ar

1 +Br

)β]
+ α

≤ Rep(z) ≤ |p(z)| ≤ (1− α)

4

[
(m+ 2)

(
1 +Ar

1 +Br

)β
− (m− 2)

(
1−Ar

1−Br

)β]
+ α.

This results is sharp.
The proof is immediate by using Lemma 2.3.

Lemma 2.5. [30] Let ψ be convex and let g be starlike in U . Then for F analytic in U with F (0) = 1,
ψ∗Fg
ψ∗g is contained in the convex hull of F (U).

3.Main Results

Theorem 3.1. Let p(z) ∈ Pm,β [A,B, α], with m ≥ 2. Then, for |z| = r < 1,

∣∣zp′(z)∣∣ ≤ (A−B)βr
[
(m+ 2) (1+Ar)β−1

(1+Br)β+1 + (m− 2) (1−Ar)β−1

(1−Br)β+1

]
Rep(z)[

(m+ 2)
(
1+Ar
1+Br

)β
− (m− 2)

(
1−Ar
1−Br

)β]
+ 4α

1−α

.

Proof. The proof is immediate by using Lemma 2.4.

Putting α = 0, β = 1 in Theorem 3.1, we can obtain Corollary 3.2, below which is comparable to
the result obtained by Noor and Malik [31].

Corollary 3.2. Let p(z) ∈ Pm,β [A,B, α], with m ≥ 2. Then, for |z| = r < 1,

∣∣zp′(z)∣∣ ≤ (A−B) r
{
m− 4Br +mB2r2

}
Rep(z)

(1−Br2) (2 +mr (A−B)− 2ABr2)
.

Theorem 3.3. Let f(z) ∈ Rs,bm,β [A,B, α]. Then

|an| ≤
(b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(b+ 1)s (n− 1)!
. (9)

This result is sharp.
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Proof. Let
z (Js,bf(z))

′

Js,bf(z)
= p(z), (z ∈ U) , (10)

where p(z) ∈ Pm,β [A,B, α] and p(z) = 1 +
∞∑
n=1

qnz
n.

Then from the definition we have

Js,bf(z) = z +

∞∑
n=2

bnz
n, (11)

where

bn =

(
b+ 1

b+ n

)s
an. (12)

From (10) and (11), we have

z +
∞∑
n=2

nbnz
n =

(
z +

∞∑
n=2

bnz
n

)(
1 +

∞∑
n=1

qnz
n

)

=

( ∞∑
n=1

bnz
n

)(
1 +

∞∑
n=1

qnz
n

)
, b1 = 1

=

∞∑
n=1

bnz
n +

( ∞∑
n=1

bnz
n

)( ∞∑
n=1

qnz
n

)
.

By using the Cauchy,s product formula [32], for the power series we have

z +
∞∑
n=2

nbnz
n =

∞∑
n=1

bnz
n +

∞∑
n=1

n−1∑
j=1

bjqn−j

 zn.

Equating the coefficient of zn, we have

nbn = bn +

n−1∑
j=1

bjqn−j .

By using induction on n, and Lemma 2.3, we obtain

bn =

(
m
2 β (A−B) |1− α|

)
n−1

(n− 1)!
.

Using the value of bn, we obtain (9).
Sharpness is given for the functions f1 ∈ A such that

z (Js,bf1(z))
′

Js,bf1(z)
=

(
m

2
+

1

2

)(
(1− α)

(
1 +Az

1 +Bz

)β
+ α

)

−
(
m

2
− 1

2

)(
(1− α)

(
1 +Az

1 +Bz

)β
+ α

)
.

This complete the proof of Theorem 3.3.

Putting s = 0, β = 1 in Theorem 3.3, we can obtained the following Corollary.

Corollary 3.4. Let f(z) ∈ R0,b
m,1 [A,B, α]. Then

|an| ≤
(
m
2 (A−B) |1− α|

)
n−1

(n− 1)!
.

This result is sharp.
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Putting s = 0, β = 1, A = 1, B = −1 in Theorem 3.3, we can obtain Corollary 3.5, below which is
comparable to the result obtained by Noor [33].

Corollary 3.5. Let f(z) ∈ R0,b
m,1 [1,−1, α] = Rm (α). Then

|an| ≤
(m |1− α|)n−1

(n− 1)!
, for all n ≥ 2.

This result is sharp.

Theorem 3.6. Let f(z) ∈ V s,b
m,β [A,B, α]. Then

|an| ≤
(b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(b+ 1)s n!
. (13)

This result is sharp.

Proof. The proof of Theorem 3.6 is similar to that of Theorem 3.3, so the details are omitted.

For an analytic functions f(z), we consider the operator

F (z) = Ic (f(z)) =
1 + c

zc

∫ z

0
tc−1f (t) dt, c > −1. (14)

The operator Ic, when c ∈ N, was introduced by Bernardi [24]. The operator I1, was studied by
Libera [34] and Livingston [35].

Theorem 3.7. If f(z) is of the form of (1) , belongs to Rs,am,β [A,B, α] and F (z) = z+
∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14). Then

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s (n− 1)!
.

Proof. From (14), we can easily write

(1 + c) f(z) = cF (z) + zF ′(z),

or equivalently,

(1 + c) z +
∞∑
n=2

(1 + c) anz
n = cz +

∞∑
n=2

cdnz
n + z +

∞∑
n=2

ndnz
n.

Thus we have,
(n+ c) dn = (1 + c) an,

using the estimate from Theorem 3.3, we have

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s (n− 1)!
.

we obtain the required result.

Putting s = 0, β = 1, in Theorem 3.7, we can obtained the following Corollary.

Corollary 3.8. If f(z) is of the form of (1), belongs to R0,a
m,1 [1,−1, α] and F (z) = z+

∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c)

(
m
2 (A−B) |1− α|

)
n−1

(n+ c)n!
.

Putting s = 0, β = 1, A = 1, B = −1, in Theorem 3.7, we can obtained the following Corollary.
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Corollary 3.9. If f(z) is of the form of (1), belongs to Rs,am,β [A,B, α] and F (z) = z+
∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c) (m |1− α|)n−1

(n+ c)n!
.

Theorem 3.10. If f(z) is of the form of (1) , belongs to Rs,am,β [A,B, α] and F (z) = z +
∞∑
n=2

dnz
n,

where F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s n!
.

Proof. The proof of Theorem 3.10 is similar to that of Theorem 3.7 so the details are omitted.

Theorem 3.11. If f(z) is of the form of (1) , belongs to Rs,b2,β [A,B, α] if and only if

1

z

f ∗


(
z +

∞∑
n=2

nbnz
n

)(
1 +B(eiθ)

)β − (z + ∞∑
n=2

bnz
n

)

×
(
(1− α)

(
1 +A(eiθ)

)β − α
(
1 +B(eiθ)

)β)

 ̸= 0, (15)

where bn is given by (12) and 0 ≤ θ < 2π.

Proof. Assume that f(z) ∈ Rs,b2,β [A,B, α], then, we have

z (Js,bf(z))
′

Js,bf(z)
≺ (1− α)

(
1 +Az

1 +Bz

)β
+ α,

if and only if

z (Js,bf(z))
′

Js,bf(z)
̸= (1− α)

(
1 +A(eiθ)

1 +B(eiθ)

)β
+ α, (16)

for all z ∈ U , and 0 ≤ θ < 2π. The condition (16) can be written as

z (Js,bf(z))
′
(
1 +B(eiθ)

)β
− Js,bf(z)

(
(1− α)

(
1 +A(eiθ)

)β
− α

(
1 +B(eiθ)

)β)
̸= 0. (17)

On the other hand we know that

z (Js,bf(z))
′ = z +

∞∑
n=2

nbnz
n. (18)

Combining (5), (6), (18) and (17) we get the convolution property (15) asserted by Theorem 3.11.

Putting s = 0, α = 0,m = 2 and β = 1 in Theorem 3.11, we can obtain Corollary 3.12, below
which is comparable to the result obtained by Silverman and Silvia [36].

Corollary 3.12. A function f defined by (1) is in the class S [A,B], if and only if

1

z

{
f(z) ∗ z − Lz2

(1− z)2

}
̸= 0, (z ∈ U) , (19)

for all L = Lθ =
e−iθ+A
A−B and also L = 1.

Putting s = 0, α = 0,m = 2, β = 1, A = 1 − 2σ and B = −1 in Theorem 3.11, we can obtain
Corollary 3.13, below which is comparable to the result obtained by Silverman and Silvia [37].
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Corollary 3.13. A function f defined by (1) is in the class S∗ (α), if and only if

1

z

{
f(z) ∗ z −Mz2

(1− z)2

}
̸= 0, (z ∈ U) , (20)

for all M =Mθ =
e−iθ+1−2σ

2(1−σ) , (0 ≤ σ < 1) and also M = 1.

Theorem 3.14. A function f(z) ∈ V s,b
2,β [A,B, α] if and only if

1

z

f ∗


(
1 +

∞∑
n=2

n2bnz
n−1

)(
1 +B

(
eiθ
))β − (1 + ∞∑

n=2
nbnz

n−1

)

×
(
(1− α)

(
1 +A(eiθ)

)β − α
(
1 +B(eiθ)

)β)

 ̸= 0. (21)

for all bn =
(

1+b
n+b

)s
an and 0 ≤ θ < 2π.

Proof. The proof of Theorem 3.14 is similar to that of Theorem 3.11 so the details are omitted.

Theorem 3.15. Let f(z) ∈ Rs,b2,β [A,B, α]. Then

f(z) =

z · exp
(1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 ∗

( ∞∑
n=0

(b+ n)s zn

)
, (22)

where ω(z) is analytic in U , with ω (0) = 0 and |ω(z)| < 1.

Proof. For f(z) ∈ Rs,b2,β [A,B, α], then from definition of subordination we can have

z (Js,bf(z))
′

Js,bf(z)
= (1− α)

(
1 +Aw(z)

1 +Bw(z)

)β
+ α, (23)

where w(z) analytic in U , with w(0) = 0 and |w(z)| < 1.

(Js,bf(z))
′

Js,bf(z)
− 1

z
=

(1− α)
(
(1 +Aw(z))β − (1 +Bw(z))β

)
z (1 +Bw(z))β

, (24)

which, upon integration, yield

log
Js,bf(z)

z
= (1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt. (25)

From (5) and (6), we obtain

f(z) ∗

( ∞∑
n=0

zn

(b+ n)s

)
= z · exp

(1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 , (26)

and our assertion follows immediately.

Putting α = 0, β = 1 and m = 2 in Theorem 3.15, we can obtain the following Corollary

Corollary 3.16. Let f(z) ∈ Rs,b2,1 [A,B, 0]. Then

f(z) =

(
z · exp

(
(A−B)

∫ z

0

w(t)

t (1 +Bw(t))
dt

))
∗

( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.
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Putting s = 0, α = 0, β = 1, A = 1 and B = −1 in Theorem 3.15, we can obtain the following
Corollary.

Corollary 3.17. Let f(z) ∈ Rs,b2,1 [1,−1, 0]. Then

f(z) = z · exp
(
2

∫ z

0

w(t)

t (1− w(t))
dt

)( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Putting α = 0, β = 1, A = 1, B = −1 and m = 2 in Theorem 3.15, we can obtain the following
Corollary.

Corollary 3.18. Let f(z) ∈ Rs,b2,1 [1,−1, 0]. Then

f(z) = z · exp
(
2

∫ z

0

w(t)

t (1− w(t))
dt

)( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Theorem 3.19. Let f(z) ∈ V s,b
2,β [A,B, α]. Then

f(z) =

∫ z

0
exp

(1− α)

∫ ζ

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 dζ


∗

( ∞∑
n=0

(n+ b)s anz
n

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Proof. The proof of Theorem 3.19 is similar to that of Theorem 3.15 so the details are omitted.

Theorem 3.20. Let ψ ∈ C and f(z) ∈ Rs,b2,β [A,B, α]. Then ψ ∗ f ∈ Rs,b2,β [A,B, α].

Proof. Let F (z) = ψ ∗ f . Then by using some properties of convolution we have

z (Js,bF (z))
′

Js,bF (z)
=

ψ ∗ z (Js,bf(z))′

ψ ∗ Js,bf(z)

=
ψ ∗ z(Js,bf(z))

′

Js,bf(z)
Js,bf(z)

ψ ∗ Js,bf(z)

=
ψ ∗ p(z)Js,bf(z)
ψ ∗ Js,bf(z)

,

where p(z) =
z(Js,bf(z))

′

Js,bf(z)
. Since f(z) ∈ Rs,b2,β [A,B, α], therefore

z(Js,bf(z))
′

Js,bf(z)
∈ Pβ [A,B, α] ⊂ P [A,B, α] ⊂

P [38] and hence.Js,bf(z) ∈ S∗. Then by Lemma 2.5, F (z), lies in the convex hull of p(z) and conse-

quently, F ∈ Rs,b2,β [A,B, α].

Theorem 3.21. Let f ∈ V s,b
m,β [A,B, α] and h ∈ Rs,bm,β [A,B, α]. Let H(z) be defined as

Js,bH(z) =

∫ z

0

[
(Js,bf (t))

′]λ1 [Js,bh (t)
z

]λ2
dt, (27)

where λ1 and λ2 are positive real numbers with λ1 + λ2 = 1. Then H ∈ V s,b
m,β [A,B, α].
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Proof. Suppose f(z) ∈ V s,b
m,β [A,B, α], and h(z) ∈ Rs,bm,β [A,B, α].

From (27), we have

Js,bH(z) =
[
(Js,bf(z))

′]λ1 [Js,bh(z)
z

]λ2
. (28)

Logarithmic differentiation implies that

z (Js,bH(z))′

Js,bH(z)
=

(
z (Js,bf)

′)′
(Js,bf)

′ +
z (Js,bh)

′

Js,bh
(29)

= λ1p1(z) + λ2p2(z), (30)

for all p1, p2 ∈ Pm,β [A,B, α]. Using the fact that the class Pm,β [A,B, α], is convex set. Therefore
λ1p1(z) + λ2p2(z) ∈ Pm,β [A,B, α]. Hence

z (Js,bH(z))′

Js,bH(z)
∈ Pm,β [A,B, α] ,

and consequently H ∈ V s,b
m,β [A,B, α].
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