New Theory

ISSN: 2149-1402

31 (2020) 20-31 Journal of New Theory http://www.newtheory.org Open Access

Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator

Nasir Khan¹, Bakhtiar Ahmad², Bilal Khan³, Muhammad Nisar⁴

Article History

Received: 05.09.2019 Accepted: 31.05.2020 Published: 30.06.2020 Original Article

Keywords - Srivastava- Attia operator, Janowski functions, subordination, convolution, starlike convex functions

1. Introduction

Let A be the class of all functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in the open unit disk U, where

$$U = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}.$$

For two functions F(z) and G(z) analytic in U, we say that F(z) is subordinate to G(z), denoted by

$$F \prec G$$
 or $F(z) \prec G(z)$,

if there exists an analytic function w(z) with

 $|w(z)| \le |z|$ such that F(z) = G(w(z)).

Furthermore if the function G(z) is univalent in U then we have the following equivalence [1–3]

 $F(z)\prec G(z)\iff F\left(0\right)=G\left(0\right) \text{ and }F\left(U\right)\subset G\left(U\right).$

 $^{^1 \}rm dr.nasirkhan@fu.edu.pk$ (Corresponding Author); $^2 \rm pirbakhtiarbacha@gmail.com;$ $^3 \rm bilalmaths789@gmail.com;$ $^4 \rm m.nisar@fu.edu.pk$

^{1,4}Department of Mathematics FATA University TSD Darra, NMD Kohat, Pakistan

²Govt. Degree College Mardan, Pakistan

³School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, Peoples Republic of China

For two analytic functions f(z) given by (1) and g(z)

$$g(z) = z + \sum_{n=2}^{\infty} e_n z^n, \quad (z \in U),$$

their Convolution or Hadamard product is given by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n e_n z^n, \quad (z \in U).$$

For arbitrary fixed numbers A, B, α and β satisfying $-1 \leq B < A \leq 1$, $0 \leq \alpha < 1$ and $0 < \beta \leq 1$, let $P_{\beta}[A, B, \alpha]$ denote the family of functions

$$h(z) = 1 + h_1 z + h_2 z^2 + \cdots$$

regular in U and such that h(z) is in $P_{\beta}[A, B, \alpha]$ if and only if

$$h(z) \prec (1-\alpha) \left(\frac{1+Az}{1+Bz}\right)^{\beta} + \alpha.$$
(2)

Therefore, h(z) is in $P_{\beta}[A, B, \alpha]$ if and only if

$$h(z) = \frac{(1-\alpha)\left(1 + Aw(z)\right)^{\beta} + \alpha\left(1 + Bw(z)\right)^{\beta}}{(1 + Bw(z))^{\beta}},\tag{3}$$

for some w(z) with $|w(z)| \leq |z|$. By taking $\beta = 1$, then the class $P_{\beta}[A, B, \alpha]$, reduces to $P[A, B, \alpha]$, defined by Polatoglu in [4], if we take $\alpha = 0$, $\beta = 1$, then the class $P_{\beta}[A, B, \alpha]$, reduces to the well known class P[A, B], defined and studied by Janowski in [5] and setting $\alpha = 0$, $\beta = 1$, A = 1, B = -1, the class $P_{\beta}[A, B, \alpha]$, reduces to the class P of functions with positive real part. For more details see [6–15].

One can easily verify that $p \in P_{\beta}[A, B, \alpha]$, if and only if, there exists $g \in P[A, B]$, such that

$$p(z) = (1 - \alpha) g(z) + \alpha.$$

The Herglotz representation of the functions of the class $P_{\beta}[A, B, \alpha]$, is given by

$$h(z) = \alpha + \frac{1-\alpha}{2} \int_0^{2\pi} \left(\frac{1+Aze^{-i\theta}}{1+Bze^{-i\theta}}\right)^\beta \mathrm{d}\mu(\theta),$$

where μ is non decreasing function in $[0, 2\pi]$ such that $\int_0^{2\pi} d\mu(\theta) = 2$.

For A = 1, B = -1, the class $P_{\beta}[A, B, \alpha]$, reduces to the class $P_{\beta}(\alpha)$, presented by Dziok recently [16, Th.3] and further by setting $\alpha = 0, \beta = 1, A = 1, B = -1$, we obtain the class P of analytic functions with real part greater than zero.

Now we define the subclass $P_{m,\beta}[A, B, \alpha]$, of analytic functions as follows;

Definition 1.1. A function p(z) analytic in U belongs to the class $P_{m,\beta}[A, B, \alpha]$, if and only if

$$p(z) = \alpha + \frac{1-\alpha}{2} \int_0^{2\pi} \left(\frac{1+Aze^{-i\theta}}{1+Bze^{-i\theta}}\right)^\beta d\mu(\theta), \tag{4}$$

where $\mu(\theta)$ is non decreasing function in $[0, 2\pi]$ with

$$\int_0^{2\pi} \mathrm{d}\mu(\theta) = 2$$
 and $\int_0^{2\pi} |\mathrm{d}\mu(\theta)| \le m,$

where, $m \ge 2, -1 \le B < A \le 1, 0 \le \alpha < 1, 0 < \beta \le 1$.

Now using Horglotz-Stieltjes formula for the functions in the class $P_{m,\beta}[A, B, \alpha]$, given in (4), we obtain

$$p(z) = \left(\frac{m}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{m}{4} - \frac{1}{2}\right)p_2(z),$$

where $p_1, p_2 \in P_\beta[A, B, \alpha]$ see ([16], Theorem 3).

For $\beta = 1$, the class $P_{m,\beta}[A, B, \alpha] = P_m[A, B, \alpha]$ [33] and for $\alpha = 0, \beta = 1, A = 1, B = -1, P_{m,1}[1, -1, 0] = P_m$ [17].

We consider the function

$$\phi\left(z;s,b\right) = \sum_{n=0}^{\infty} \frac{z^n}{(b+n)^s},\tag{5}$$

where $b \in \mathbb{C} \setminus \mathbb{Z}_0^-$ and $s \in \mathbb{C}$. The function $\phi(z; s, b)$ contain many well known functions as a special case such as Riemann and Hurwitz Zeta functions for more details, see [18, 19].

Using the technique of convolution and the function $\phi(z; s, b)$ Srivastava and Attiya given in [20]. In addition see also ([21,22]) introduced and studied the linear operator

$$J_{s,b}f: A \to A,$$

defined, in terms of the Hadamard product (or convolution), by

$$J_{s,b}(f)(z) = \phi(z; s, b) * f(z), \quad f \in A, \ (z \in U),$$
(6)

where * denotes the convolution and

$$\psi(z;s,b) = (1+b)^s \left(\phi(z;s,b) - b^{-s}\right) = z + \sum_{n=2}^{\infty} \left(\frac{b+1}{b+n}\right)^s z^n, \quad (z \in U).$$
(7)

Therefore, using (6) and (7), we have

$$J_{s,b}(f)(z) = z + \sum_{n=2}^{\infty} \left(\frac{b+1}{b+n}\right)^s a_n z^n, \quad (z \in U).$$

For special values of b and s the operator contain many known operators, see [23,24].

With the help of the class $P_{m,\beta}[A, B, \alpha]$, along with generalized Srivastava and Attiya operator given in [20], we now define the following subclass of analytic functions;

Definition 1.2. A function $f \in A$, is in the class $R_{m,\beta}^{s,b}[A, B, \alpha]$, if and only if

$$\frac{z\left(J_{s,b}f(z)\right)'}{J_{s,b}f(z)} \in P_{m,\beta}\left[A,B,\alpha\right], \quad (z \in U).$$

Definition 1.3. A function $f \in A$, is in the class $V_{m,\beta}^{s,b}[A, B, \alpha]$, if and only if

$$1 + \frac{z \left(J_{s,b} f(z)\right)''}{\left(J_{s,b} f(z)\right)'} \in P_{m,\beta} \left[A, B, \alpha\right], \quad (z \in U).$$

where $m \ge 2, b \in \mathbb{C} \setminus (\mathbb{Z}_0^- = \{0, -1, -2, \ldots\}), s \in \mathbb{C}, -1 \le B < A \le 1, 0 \le \alpha < 1, 0 < \beta \le 1$. We also note that

$$f(z) \in V_m^{s,b}[A, B, \alpha, \beta] \Leftrightarrow zf(z)' \in R_{m,\beta}^{s,b}[A, B, \alpha].$$
(8)

Remarks:

(i) $R_{m,1}^{0,b}[A, B, 0] = R_m[A, B], V_{m,1}^{0,b}[A, B, 0] = V_m[A, B]$, the well known classes presented and studied in [25] and [26].

(*ii*) $R_{m,1}^{0,b}[1,-1,0] = R_m, V_{m,1}^{0,b}[A,B,0] = V_m$, we have the well known class introduced and studied in [17] and [27].

(*iii*) $R_{m,1}^{0,b}$ [2 $\zeta - 1, -1, 0$], $V_{m,1}^{0,b}$ [2 $\zeta - 1, -1, 0$], were presented and studied in [28].

To avoid repetition, it is admitted once that $m \geq 2, b \in \mathbb{C} \setminus (\mathbb{Z}_0^- = \{0, -1, -2, \ldots\}), s \in \mathbb{C}, -1 \leq B < A \leq 1, 0 \leq \alpha < 1, 0 < \beta \leq 1.$

2. Preliminary Lemma

We need the following Lemma which will be used in our main results.

Lemma 2.1. [29] Let f(z) be subordinate to g(z), with

$$f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n, \quad g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n.$$

If g(z) is univalent in U and g(U) is convex, then $|a_n| \leq |b_1|$.

Lemma 2.2. Let $p(z) \in P_{m,\beta}[A, B, \alpha]$, be of the form (1). Then

$$|q_n| \le \beta \left(A - B\right) |1 - \alpha|$$

The proof is immediate by using Lemma 2.1.

Lemma 2.3. Let $p(z) \in P_{m,\beta}[A, B, \alpha]$, be of the form (1). Then

$$|q_n| \le \frac{m}{2}\beta \left(A - B\right) |1 - \alpha|.$$

The proof is immediate by using Lemma 2.2.

Lemma 2.4. Let $p(z) \in P_{m,\beta}[A, B, \alpha]$, be of the form (1). Then

$$\frac{(1-\alpha)}{4} \left[(m+2)\left(\frac{1-Ar}{1-Br}\right)^{\beta} - (m-2)\left(\frac{1+Ar}{1+Br}\right)^{\beta} \right] + \alpha$$

$$\leq \Re \mathfrak{e} p(z) \leq |p(z)| \leq \frac{(1-\alpha)}{4} \left[(m+2)\left(\frac{1+Ar}{1+Br}\right)^{\beta} - (m-2)\left(\frac{1-Ar}{1-Br}\right)^{\beta} \right] + \alpha$$

This results is sharp.

The proof is immediate by using Lemma 2.3.

Lemma 2.5. [30] Let ψ be convex and let g be starlike in U. Then for F analytic in U with F(0) = 1, $\frac{\psi * Fg}{\psi * g}$ is contained in the convex hull of F(U).

3. Main Results

Theorem 3.1. Let $p(z) \in P_{m,\beta}[A, B, \alpha]$, with $m \ge 2$. Then, for |z| = r < 1,

$$\left|zp'(z)\right| \le \frac{(A-B)\,\beta r\left[\left(m+2\right)\frac{(1+Ar)^{\beta-1}}{(1+Br)^{\beta+1}} + (m-2)\frac{(1-Ar)^{\beta-1}}{(1-Br)^{\beta+1}}\right]\mathfrak{Re}p(z)}{\left[\left(m+2\right)\left(\frac{1+Ar}{1+Br}\right)^{\beta} - (m-2)\left(\frac{1-Ar}{1-Br}\right)^{\beta}\right] + \frac{4\alpha}{1-\alpha}}.$$

PROOF. The proof is immediate by using Lemma 2.4.

Putting $\alpha = 0, \beta = 1$ in Theorem 3.1, we can obtain Corollary 3.2, below which is comparable to the result obtained by Noor and Malik [31].

Corollary 3.2. Let $p(z) \in P_{m,\beta}[A, B, \alpha]$, with $m \ge 2$. Then, for |z| = r < 1,

$$|zp'(z)| \le \frac{(A-B)r\left\{m - 4Br + mB^2r^2\right\} \Re \mathfrak{e}p(z)}{(1 - Br^2)\left(2 + mr\left(A - B\right) - 2ABr^2\right)}$$

Theorem 3.3. Let $f(z) \in R^{s,b}_{m,\beta}[A, B, \alpha]$. Then

$$|a_n| \le \frac{(b+n)^s \left(\frac{m}{2}\beta \left(A-B\right) |1-\alpha|\right)_{n-1}}{(b+1)^s (n-1)!}.$$
(9)

This result is sharp.

PROOF. Let

$$\frac{z \left(J_{s,b} f(z)\right)'}{J_{s,b} f(z)} = p(z), \qquad (z \in U),$$
(10)

where $p(z) \in P_{m,\beta}[A, B, \alpha]$ and $p(z) = 1 + \sum_{n=1}^{\infty} q_n z^n$. Then from the definition we have

$$J_{s,b}f(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$
(11)

where

$$b_n = \left(\frac{b+1}{b+n}\right)^s a_n. \tag{12}$$

From (10) and (11), we have

$$z + \sum_{n=2}^{\infty} nb_n z^n = \left(z + \sum_{n=2}^{\infty} b_n z^n\right) \left(1 + \sum_{n=1}^{\infty} q_n z^n\right)$$
$$= \left(\sum_{n=1}^{\infty} b_n z^n\right) \left(1 + \sum_{n=1}^{\infty} q_n z^n\right), \quad b_1 = 1$$
$$= \sum_{n=1}^{\infty} b_n z^n + \left(\sum_{n=1}^{\infty} b_n z^n\right) \left(\sum_{n=1}^{\infty} q_n z^n\right).$$

By using the Cauchy's product formula [32], for the power series we have

$$z + \sum_{n=2}^{\infty} nb_n z^n = \sum_{n=1}^{\infty} b_n z^n + \sum_{n=1}^{\infty} \left(\sum_{j=1}^{n-1} b_j q_{n-j} \right) z^n.$$

Equating the coefficient of z^n , we have

$$nb_n = b_n + \sum_{j=1}^{n-1} b_j q_{n-j}.$$

By using induction on n, and Lemma 2.3, we obtain

$$b_n = \frac{\left(\frac{m}{2}\beta \left(A - B\right) |1 - \alpha|\right)_{n-1}}{(n-1)!}.$$

Using the value of b_n , we obtain (9).

Sharpness is given for the functions $f_1 \in A$ such that

$$\frac{z \left(J_{s,b} f_1(z)\right)'}{J_{s,b} f_1(z)} = \left(\frac{m}{2} + \frac{1}{2}\right) \left(\left(1 - \alpha\right) \left(\frac{1 + Az}{1 + Bz}\right)^{\beta} + \alpha\right) - \left(\frac{m}{2} - \frac{1}{2}\right) \left(\left(1 - \alpha\right) \left(\frac{1 + Az}{1 + Bz}\right)^{\beta} + \alpha\right).$$

This complete the proof of Theorem 3.3.

Putting $s = 0, \beta = 1$ in Theorem 3.3, we can obtained the following Corollary. Corollary 3.4. Let $f(z) \in R_{m,1}^{0,b}[A, B, \alpha]$. Then

$$|a_n| \le \frac{\left(\frac{m}{2} \left(A - B\right) |1 - \alpha|\right)_{n-1}}{(n-1)!}.$$

This result is sharp.

Putting $s = 0, \beta = 1, A = 1, B = -1$ in Theorem 3.3, we can obtain Corollary 3.5, below which is comparable to the result obtained by Noor [33].

Corollary 3.5. Let $f(z) \in R_{m,1}^{0,b}[1, -1, \alpha] = R_m(\alpha)$. Then

$$|a_n| \le \frac{(m|1-\alpha|)_{n-1}}{(n-1)!}, \text{ for all } n \ge 2.$$

This result is sharp.

Theorem 3.6. Let $f(z) \in V^{s,b}_{m,\beta}[A, B, \alpha]$. Then

$$|a_n| \le \frac{(b+n)^s \left(\frac{m}{2}\beta \left(A-B\right) |1-\alpha|\right)_{n-1}}{(b+1)^s n!}.$$
(13)

This result is sharp.

PROOF. The proof of Theorem 3.6 is similar to that of Theorem 3.3, so the details are omitted. \Box

For an analytic functions f(z), we consider the operator

$$F(z) = I_c(f(z)) = \frac{1+c}{z^c} \int_0^z t^{c-1} f(t) \,\mathrm{d}t, \quad c > -1.$$
(14)

The operator I_c , when $c \in \mathbb{N}$, was introduced by Bernardi [24]. The operator I_1 , was studied by Libera [34] and Livingston [35].

Theorem 3.7. If f(z) is of the form of (1), belongs to $R_{m,\beta}^{s,a}[A, B, \alpha]$ and $F(z) = z + \sum_{n=2}^{\infty} d_n z^n$, where F(z), is an integral operator given by (14). Then

$$\left|d_{n}\right| \leq \frac{\left(1+c\right)\left(b+n\right)^{s}\left(\frac{m}{2}\beta\left(A-B\right)\left|1-\alpha\right|\right)_{n-1}}{\left(n+c\right)\left(b+1\right)^{s}\left(n-1\right)!}$$

PROOF. From (14), we can easily write

$$(1+c) f(z) = cF(z) + zF'(z),$$

or equivalently,

$$(1+c)z + \sum_{n=2}^{\infty} (1+c)a_n z^n = cz + \sum_{n=2}^{\infty} cd_n z^n + z + \sum_{n=2}^{\infty} nd_n z^n.$$

Thus we have,

$$(n+c) d_n = (1+c) a_n,$$

using the estimate from Theorem 3.3, we have

$$|d_n| \le \frac{(1+c) (b+n)^s \left(\frac{m}{2} \beta \left(A-B\right) |1-\alpha|\right)_{n-1}}{(n+c) (b+1)^s (n-1)!}$$

we obtain the required result.

Putting $s = 0, \beta = 1$, in Theorem 3.7, we can obtained the following Corollary.

Corollary 3.8. If f(z) is of the form of (1), belongs to $R_{m,1}^{0,a}[1,-1,\alpha]$ and $F(z) = z + \sum_{n=2}^{\infty} d_n z^n$, where F(z), is an integral operator given by (14), then

$$|d_n| \le \frac{(1+c)\left(\frac{m}{2}\left(A-B\right)|1-\alpha|\right)_{n-1}}{(n+c)\,n!}.$$

Putting $s = 0, \beta = 1, A = 1, B = -1$, in Theorem 3.7, we can obtained the following Corollary.

Corollary 3.9. If f(z) is of the form of (1), belongs to $R_{m,\beta}^{s,a}[A, B, \alpha]$ and $F(z) = z + \sum_{n=2}^{\infty} d_n z^n$, where F(z), is an integral operator given by (14), then

$$|d_n| \le \frac{(1+c) \left(m \left| 1 - \alpha \right| \right)_{n-1}}{(n+c) \, n!}$$

Theorem 3.10. If f(z) is of the form of (1), belongs to $R_{m,\beta}^{s,a}[A, B, \alpha]$ and $F(z) = z + \sum_{n=2}^{\infty} d_n z^n$, where F(z), is an integral operator given by (14), then

$$|d_n| \le \frac{(1+c) (b+n)^s \left(\frac{m}{2}\beta (A-B) |1-\alpha|\right)_{n-1}}{(n+c) (b+1)^s n!}.$$

PROOF. The proof of Theorem 3.10 is similar to that of Theorem 3.7 so the details are omitted. \Box **Theorem 3.11.** If f(z) is of the form of (1), belongs to $R_{2,\beta}^{s,b}[A, B, \alpha]$ if and only if

$$\frac{1}{z} \left\{ f * \left\{ \begin{array}{l} \left(z + \sum_{n=2}^{\infty} nb_n z^n\right) \left(1 + B(e^{i\theta})\right)^{\beta} - \left(z + \sum_{n=2}^{\infty} b_n z^n\right) \\ \times \left(\left(1 - \alpha\right) \left(1 + A(e^{i\theta})\right)^{\beta} - \alpha \left(1 + B(e^{i\theta})\right)^{\beta}\right) \end{array} \right\} \right\} \neq 0, \quad (15)$$

where b_n is given by (12) and $0 \le \theta < 2\pi$.

PROOF. Assume that $f(z) \in R^{s,b}_{2,\beta}[A, B, \alpha]$, then, we have

$$\frac{z\left(J_{s,b}f(z)\right)'}{J_{s,b}f(z)} \prec (1-\alpha)\left(\frac{1+Az}{1+Bz}\right)^{\beta} + \alpha,$$

if and only if

$$\frac{z\left(J_{s,b}f(z)\right)'}{J_{s,b}f(z)} \neq (1-\alpha)\left(\frac{1+A(e^{i\theta})}{1+B(e^{i\theta})}\right)^{\beta} + \alpha,\tag{16}$$

for all $z \in U$, and $0 \le \theta < 2\pi$. The condition (16) can be written as

$$z\left(J_{s,b}f(z)\right)'\left(1+B(e^{i\theta})\right)^{\beta}-J_{s,b}f(z)\left(\left(1-\alpha\right)\left(1+A(e^{i\theta})\right)^{\beta}-\alpha\left(1+B(e^{i\theta})\right)^{\beta}\right)\neq0.$$
(17)

On the other hand we know that

$$z (J_{s,b}f(z))' = z + \sum_{n=2}^{\infty} nb_n z^n.$$
 (18)

Combining (5), (6), (18) and (17) we get the convolution property (15) asserted by Theorem 3.11. \Box

Putting $s = 0, \alpha = 0, m = 2$ and $\beta = 1$ in Theorem 3.11, we can obtain Corollary 3.12, below which is comparable to the result obtained by Silverman and Silvia [36].

Corollary 3.12. A function f defined by (1) is in the class S[A, B], if and only if

$$\frac{1}{z}\left\{f(z) * \frac{z - Lz^2}{(1-z)^2}\right\} \neq 0, \quad (z \in U),$$
(19)

for all $L = L_{\theta} = \frac{e^{-i\theta} + A}{A - B}$ and also L = 1.

Putting $s = 0, \alpha = 0, m = 2, \beta = 1, A = 1 - 2\sigma$ and B = -1 in Theorem 3.11, we can obtain Corollary 3.13, below which is comparable to the result obtained by Silverman and Silvia [37].

Corollary 3.13. A function f defined by (1) is in the class $S^*(\alpha)$, if and only if

$$\frac{1}{z} \left\{ f(z) * \frac{z - M z^2}{(1 - z)^2} \right\} \neq 0, \quad (z \in U),$$
(20)

for all $M = M_{\theta} = \frac{e^{-i\theta} + 1 - 2\sigma}{2(1-\sigma)}$, $(0 \le \sigma < 1)$ and also M = 1.

Theorem 3.14. A function $f(z) \in V^{s,b}_{2,\beta}[A, B, \alpha]$ if and only if

$$\frac{1}{z} \left\{ f * \left\{ \begin{array}{c} \left(1 + \sum_{n=2}^{\infty} n^2 b_n z^{n-1}\right) \left(1 + B\left(e^{i\theta}\right)\right)^{\beta} - \left(1 + \sum_{n=2}^{\infty} n b_n z^{n-1}\right) \\ \times \left(\left(1 - \alpha\right) \left(1 + A(e^{i\theta})\right)^{\beta} - \alpha \left(1 + B(e^{i\theta})\right)^{\beta}\right) \end{array} \right\} \right\} \neq 0.$$

$$(21)$$

for all $b_n = \left(\frac{1+b}{n+b}\right)^s a_n$ and $0 \le \theta < 2\pi$.

PROOF. The proof of Theorem 3.14 is similar to that of Theorem 3.11 so the details are omitted. \Box **Theorem 3.15.** Let $f(z) \in R^{s,b}_{2,\beta}[A, B, \alpha]$. Then

$$f(z) = \left(z \cdot \exp\left((1-\alpha)\int_0^z \frac{\left((1+Aw(t))^\beta - (1+Bw(t))^\beta\right)}{t\left(1+Bw(t)\right)^\beta} dt\right)\right) * \left(\sum_{n=0}^\infty (b+n)^s z^n\right), \quad (22)$$

where $\omega(z)$ is analytic in U, with $\omega(0) = 0$ and $|\omega(z)| < 1$.

PROOF. For $f(z) \in R^{s,b}_{2,\beta}[A, B, \alpha]$, then from definition of subordination we can have

$$\frac{z \left(J_{s,b} f(z)\right)'}{J_{s,b} f(z)} = (1 - \alpha) \left(\frac{1 + Aw(z)}{1 + Bw(z)}\right)^{\beta} + \alpha,$$
(23)

where w(z) analytic in U, with w(0) = 0 and |w(z)| < 1.

$$\frac{(J_{s,b}f(z))'}{J_{s,b}f(z)} - \frac{1}{z} = \frac{(1-\alpha)\left((1+Aw(z))^{\beta} - (1+Bw(z))^{\beta}\right)}{z\left(1+Bw(z)\right)^{\beta}},$$
(24)

which, upon integration, yield

$$\log \frac{J_{s,b}f(z)}{z} = (1-\alpha) \int_0^z \frac{\left((1+Aw(t))^\beta - (1+Bw(t))^\beta\right)}{t\left(1+Bw(t)\right)^\beta} dt.$$
 (25)

From (5) and (6), we obtain

$$f(z) * \left(\sum_{n=0}^{\infty} \frac{z^n}{(b+n)^s}\right) = z \cdot \exp\left((1-\alpha) \int_0^z \frac{\left((1+Aw(t))^\beta - (1+Bw(t))^\beta\right)}{t (1+Bw(t))^\beta} dt\right),$$
 (26)

and our assertion follows immediately.

Putting $\alpha = 0, \beta = 1$ and m = 2 in Theorem 3.15, we can obtain the following Corollary Corollary 3.16. Let $f(z) \in R_{2,1}^{s,b}[A, B, 0]$. Then

$$f(z) = \left(z \cdot \exp\left((A - B)\int_0^z \frac{w(t)}{t\left(1 + Bw(t)\right)} dt\right)\right) * \left(\sum_{n=0}^\infty z^n\right),$$

where $\omega(z)$ is analytic in U, $\omega(0) = 0$ and $|\omega(z)| < 1$.

Putting $s = 0, \alpha = 0, \beta = 1, A = 1$ and B = -1 in Theorem 3.15, we can obtain the following Corollary.

Corollary 3.17. Let $f(z) \in R_{2,1}^{s,b}$ [1, -1, 0]. Then

$$f(z) = z \cdot \exp\left(2\int_0^z \frac{w(t)}{t\left(1 - w(t)\right)} dt\right)\left(\sum_{n=0}^\infty z^n\right),$$

where $\omega(z)$ is analytic in U, $\omega(0) = 0$ and $|\omega(z)| < 1$.

Putting $\alpha = 0, \beta = 1, A = 1, B = -1$ and m = 2 in Theorem 3.15, we can obtain the following Corollary.

Corollary 3.18. Let $f(z) \in R_{2,1}^{s,b} [1, -1, 0]$. Then

$$f(z) = z \cdot \exp\left(2\int_0^z \frac{w(t)}{t(1-w(t))} dt\right)\left(\sum_{n=0}^\infty z^n\right),$$

where $\omega(z)$ is analytic in U, $\omega(0) = 0$ and $|\omega(z)| < 1$.

Theorem 3.19. Let $f(z) \in V^{s,b}_{2,\beta}[A, B, \alpha]$. Then

$$f(z) = \left(\int_0^z \exp\left((1-\alpha) \int_0^\zeta \frac{\left((1+Aw(t))^\beta - (1+Bw(t))^\beta \right)}{t \left(1+Bw(t) \right)^\beta} dt \right) d\zeta \right) \\ * \left(\sum_{n=0}^\infty (n+b)^s a_n z^n \right),$$

where $\omega(z)$ is analytic in U, $\omega(0) = 0$ and $|\omega(z)| < 1$.

PROOF. The proof of Theorem 3.19 is similar to that of Theorem 3.15 so the details are omitted. \Box **Theorem 3.20.** Let $\psi \in C$ and $f(z) \in R^{s,b}_{2,\beta}[A, B, \alpha]$. Then $\psi * f \in R^{s,b}_{2,\beta}[A, B, \alpha]$.

PROOF. Let $F(z) = \psi * f$. Then by using some properties of convolution we have

$$\frac{z \left(J_{s,b}F(z)\right)'}{J_{s,b}F(z)} = \frac{\psi * z \left(J_{s,b}f(z)\right)'}{\psi * J_{s,b}f(z)}$$
$$= \frac{\psi * \frac{z\left(J_{s,b}f(z)\right)'}{J_{s,b}f(z)}J_{s,b}f(z)}{\psi * J_{s,b}f(z)}$$
$$= \frac{\psi * p(z)J_{s,b}f(z)}{\psi * J_{s,b}f(z)},$$

where $p(z) = \frac{z(J_{s,b}f(z))'}{J_{s,b}f(z)}$. Since $f(z) \in R_{2,\beta}^{s,b}[A, B, \alpha]$, therefore $\frac{z(J_{s,b}f(z))'}{J_{s,b}f(z)} \in P_{\beta}[A, B, \alpha] \subset P[A, B, \alpha] \subset P[A, B, \alpha] \subset P[38]$ and hence $J_{s,b}f(z) \in S^*$. Then by Lemma 2.5, F(z), lies in the convex hull of p(z) and consequently, $F \in R_{2,\beta}^{s,b}[A, B, \alpha]$.

Theorem 3.21. Let $f \in V_{m,\beta}^{s,b}[A, B, \alpha]$ and $h \in R_{m,\beta}^{s,b}[A, B, \alpha]$. Let H(z) be defined as

$$J_{s,b}H(z) = \int_{0}^{z} \left[(J_{s,b}f(t))' \right]^{\lambda_{1}} \left[\frac{J_{s,b}h(t)}{z} \right]^{\lambda_{2}} \mathrm{d}t,$$
(27)

where λ_1 and λ_2 are positive real numbers with $\lambda_1 + \lambda_2 = 1$. Then $H \in V^{s,b}_{m,\beta}[A, B, \alpha]$.

PROOF. Suppose $f(z) \in V_{m,\beta}^{s,b}[A, B, \alpha]$, and $h(z) \in R_{m,\beta}^{s,b}[A, B, \alpha]$. From (27), we have

$$J_{s,b}H(z) = \left[(J_{s,b}f(z))' \right]^{\lambda_1} \left[\frac{J_{s,b}h(z)}{z} \right]^{\lambda_2}.$$
 (28)

Logarithmic differentiation implies that

$$\frac{z (J_{s,b}H(z))'}{J_{s,b}H(z)} = \frac{\left(z (J_{s,b}f)'\right)'}{(J_{s,b}f)'} + \frac{z (J_{s,b}h)'}{J_{s,b}h}$$
(29)

$$= \lambda_1 p_1(z) + \lambda_2 p_2(z), \tag{30}$$

for all $p_1, p_2 \in P_{m,\beta}[A, B, \alpha]$. Using the fact that the class $P_{m,\beta}[A, B, \alpha]$, is convex set. Therefore $\lambda_1 p_1(z) + \lambda_2 p_2(z) \in P_{m,\beta}[A, B, \alpha].$ Hence

$$\frac{z\left(J_{s,b}H(z)\right)'}{J_{s,b}H(z)} \in P_{m,\beta}\left[A,B,\alpha\right]$$

and consequently $H \in V_{m,\beta}^{s,b}[A, B, \alpha]$.

References

- [1] A. Aral, V. Gupta, On q-Baskakov Type Operators, Demonstratio Mathematica 1(42) (2009) 109-122.
- [2] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientic Book Publ. Cluj-Napoca, 2005.
- [3] S. S. Miller, P. T. Mocanu, Subordinates of Differential Superordinations, Complex Variables 48(10) (2003) 815-826.
- [4] Y. Polatoglu, M. Bolcal, A. Sen, E. Yavuz, A Study on The Generalization of Janowski Functions in The Unit Disc, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 22 (2006) 27-31.
- [5] W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions, Annales Polonici Mathematici 28 (1973) 297–326.
- [6] N. Khan, B. Khan, Q. Z. Ahmad, S. Ahmad, Some Convolution Properties of Multivalent Analytic Functions, AIMS Mathematics 2(2) (2017) 260–268.
- [7] S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper Bound of The Third Hankel Determinant for a Subclass of q-Starlike Functions, Symmetry 11 (2019) Article ID $347 \ 1-13.$
- [8] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A Certain Subclass of Meromorphically q-Starlike Functions Associated with The Janowski Functions, Journal of Inequalities and Applications 2019 (2019) Article ID 88 1–11.
- [9] K. I. Noor, N. Khan, M. Darus, Q. Z. Ahmad, B. Khan, Some Properties of Analytic Functions Associated with Conic Type Regions, International Journal of Analysis and Applications 16(5) (2018) 689–701.
- [10] K. I. Noor, N. Khan, K. Piejko, Alpha Convex Functions Associated with Conic Domain, International Journal of Analysis and Applications 11(2) (2016) 70–80.
- [11] K. I. Noor, N. Khan, Some Variations of Janowski Functions Associated with m-Symmetric Points, Journal of New Theory 11 (2016) 16–28.
- [12] K. I. Noor, N. Khan, Q. Z. Ahmad, N. Khan, Y. L. Chung, On Certain Subclass of Analytic Functions, Armenian Journal of Mathematics 10(11) (2018) 1–15.

29

- [13] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz Determinants for A Subclass of q-Starlike Functions Associated with A General Conic Domain, Mathematics 7 (2019) Article ID 181 1–15.
- [14] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some General Classes of q-Starlike Functions Associated with The Janowski Functions, Symmetry 11 (2019) Article ID 292 1–14.
- [15] M. Sabil, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of Certain Subclasses of Analytic and bi-univalent Functions, Maejo International Journal of Science and Technology 13(01) (2019) 1–9.
- [16] J. Dziok, Meromorphic Functions with Bounded Boundary Rotation, Acta Mathematica Scientia 34(2) (2014) 466–472.
- [17] B. Pinchuk, Functions of Bounded Boundary Rotation, Israel Journal of Mathematics 10 (1971) 6–16.
- [18] H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, The Netherlands 2001.
- [19] H. M. Srivastava, A. A. Attiya, An Integral Operator Associated with The Hurwitz-Lerch Zeta Function and Differential Subordination, Integral Transforms and Special Functions 18 (2007) 207–216.
- [20] J. L. Liu, Subordinations for Certain Multivalent Analytic Functions Associated with The Generalized Srivastava-Attiya Operator, Integral Transforms and Special Functions 19 (2008) 893–901.
- [21] S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Applied Mathematics and Computation 154 (2004) 725–733.
- [22] D. Raducanu, H. M Srivastava, A New Class of Analytic Functions Defined by means of A Convolution Operator Involving The Hurwitz-Lerch Zeta Function, Integral Transforms and Special Functions 18 (2007) 933–943.
- [23] J. W. Alexander, Functions Which Map The Interior of The Unit Circle upon Simple Regions, Annals of Mathematics Second Series 17(1) (1915) 12–22.
- [24] S. D. Bernardi, Convex and Starlike Univalent Functions, Transactions of the American Mathematical Society 135 (1969) 429–446.
- [25] K. I. Noor, K. Yousaf, On Classes of Analytic Functions Related with Generalized Janowski Functions, World Applied Sciences Journal 13 (2011) 40–47.
- [26] K. I. Noor, M. Arif, Mapping Properties of An Integral Operator, Applied Mathematics Letters 25 (2012) 1826–1829.
- [27] V. Paatero, Uber Die Konforme Abbildung Von Gebieten, Deren Ränder Vonbeschränkter Drehung Sind, Annales Academiae Scientiarum Fennicae: Series A. 33(9) (1931) page 77.
- [28] K. S. Padmanabhan, R. Parvatham, Properties of A Class of Functions with Bounded Boundary Rotation, Annales Polonici Mathematici 31 (1975) 311–323.
- [29] W. Rogosinski, On The Coefficients of Subordinate Functions, Proceedings of the London Mathematical Society 48(2) (1943) 48–82.
- [30] S. Ruscheweyh, T. Shiel-small, Hadamard Product of Schlicht Functions and Polya-Schoenberg Conjecture, Commentarii Mathematici Helvetici 48 (1973) 119–135.
- [31] K. I. Noor, S. N. Malik, M. Arif, M. Raza, On Bounded Boundary and Bounded Radius Rotation Related with Janowski Function, World Applied Sciences Journal 12 (6) (2011) 895–902.

- [32] A. W. Goodman, Univalent Functions, Vol. I & II, polygonal Publishing House, Washington, New Jersey, 1983.
- [33] K. I. Noor, Higher Order Close-to-Convex Functions, Math. Japonica 37(1) (1992) 1–8.
- [34] R. J. Libera, Some Classes of Regular Univalent Functions, Proceedings of the American Mathematical Society 16 (1965) 755–758.
- [35] A. E. Livingston, On The Radius Of Univalence Of Certain Analytic Functions, Proceedings of the American Mathematical Society 17 (1996) 352–357.
- [36] H. Silverman, E. M. Silvia, Subclasses of Starlike Functions Subordinate to Convex Functions, Canadian Journal of Mathematics 1 (1985) 48–61.
- [37] H. Silverman, E. M. Silvia, D. Telage, Convolution Conditions for Convexity, Starlikeness and Spiral-Likeness, Mathematische Zeitschrift 162 (1978) 125–130.
- [38] S. Hussain, M. Arif, S. N. Malik, Higher Order Close-to-Convex Functions Associated with Attiya-Srivastava Operator, Bulletin of the Iranian Mathematical Society 40(4) (2014) 911–920.