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CALCULATION OF STRESSES IN A WATERED LAYER

A. R. DZHANDIGULOV1, A. L. KARCHEVSKY2, §

Abstract. In the paper the analitical expressions for computing stresses in a watered
layer have been obtained. It is not required to solve endless systems of equations.
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1. Introduction

The paper considers the plane problem of the deformation of the horizontal fluid-
saturated porous formation under the action of the overlying rocks. The novelty of the
approach lies in the fact that the analytical solution of the problem of the evolution of
the stress field in the formation is obtain, taking into account the fluid filtration from it,
which begins immediately after the opening of the watered layer.

Substantiation of optimum schemes of additional recovery of remaining reserves of hy-
drocarbons by flooding deposits [20], the implementation of measures to prevent the sud-
den emission of coal mining [26, 28], forecast for the rock mass in the vicinity of under-
ground disposal of liquid waste products [7] – this is not an exhaustive list of problems
to solve that require mathematical modeling of deformation and mass transfer in fluid-
saturated porous formations. A number of models poro-plastic and poroelastic have been
developed [3, 4, 6, 21, 23, 33], the implementation of which was carried out exclusively by
numerical methods [5, 8, 29]. Meanwhile, in the operation of space systems for monitoring
geomechanical mineral deposits [24, 31, 32] may be situations requiring a decision almost
instantly. In such cases, it is the analytical solutions which can provide a rapid assessment
of the state of the object.

2. Problem statement

It is necessary to calculate the stress field in the showdown watered formation. Initially,
the layer is opened, causing diffusion of water in the layer, which entails a change in stresse.
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Due to a large extent of the layer in comparison with its power and length we suppose
that the model of plane strain is applicable [25]. In this case, the Navier balance can be
written as follows:

∂σxx
∂x

+
∂σxz
∂z

= κ
∂p

∂x
,

(1)
∂σxz
∂x

+
∂σzz
∂z

= κ
∂p

∂z
,

where κ is the Biot coefficient, p – fluid pressure in the layer, which satisfies the diffusion
equation

∂p

∂t
= D∆p, ∆ =

∂2

∂x2
+

∂2

∂z2
, (2)

here D is fluid diffusion coefficient of the layer [6, 24].
The stress state in the formation of deformation is described by the Saint-Venant con-

tinuity equation

∂2εx
∂z2

+
∂2εz
∂x2

=
∂2γxz
∂x∂z

(3)

and by the Hooke’s law

εx =
1

E′
(σxx − ν ′σzz), εz =

1

E′
(σzz − ν ′σxx), γxz =

2(1 + ν ′)

E′
σxz. (4)

Boundary conditions:

σzz

∣∣∣
z=±lz

=

{
f1(x)
f2(x)

}
, σxz

∣∣∣
z=±lz

=

{
g1(x)
g2(x)

}
,

∂p

∂z

∣∣∣∣
z=±lz

= 0,

σxx|x=±lx = 0, σxz|x=±lx = 0, p|x=±lx = 0,

(5)

and the compatibility conditions at the corners: gj(±lx) = 0 (j = 1, 2).
Initial conditions:

p(x, z, 0) = p0(x, z). (6)

From physical considerations we suppose that the function p0(x, z) is even with respect
on the variable z. Compatibility conditions: p0(±lx, z) = 0.

Remark. Parity requirement is not restrictive, since it is possible to obtain formulas
for the general case. However, taking into account the physical setting, we did not set
such goals.

We assume that the boundary conditions (5) satisfy the conditions of equilibrium: the
torque and the sum of forces acting on a layer are zero. That is, the following equalities

Figure 1. Watered layer and coordinate system.
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hold [25]:

lx∫
−lx

[
xσzz(x, lz)− lzσxz(x, lz)

]
dx+

−lx∫
lx

[
xσzz(x,−lz) + lzσxz(x,−lz)

]
dx = 0,

(7)
lx∫
−lx

σzz(x, lz)dx =

lx∫
−lx

σzz(x,−lz)dx,
lx∫
−lx

σxz(x, lz)dx =

lx∫
−lx

σxz(x,−lz)dx

or, taking into account (5),

1

2

 lx∫
−lx

x f1(x) dx−
lx∫
−lx

x f2(x) dx

 = lz

lx∫
−lx

g1(x) dx,

(8)
lx∫
−lx

f1(x) dx =

lx∫
−lx

f2(x) dx,

lx∫
−lx

g1(x) dx =

lx∫
−lx

g2(x) dx.

3. Construction of analytical expressions for the stresses

The consequence of the relations (3)-(4) is the equation:

∂2

∂z2
(σxx − ν ′σzz) +

∂2

∂x2
(σzz − ν ′σxx) = 2(1 + ν ′)

∂2

∂x∂z
σxz. (9)

From (1) and (9) the relation is followed

∆(σxx + σzz) = κ(1 + ν ′)∆p. (10)

Input the Airy’s function so that the equation (1) automatically satisfied:

σxx − κp =
∂2Φ

∂z2
, σzz − κp =

∂2Φ

∂x2
, σxz = − ∂2Φ

∂x∂z
, (11)

then, from (10) it follows an inhomogeneous biharmonic equation

∆2Φ = −κ(1− ν ′)
D

∂p

∂t
. (12)

Thus, to calculate the stresses, it is necessary to find a solution of the equation (12),
satisfying the boundary conditions (5) [9]. Function p(x, z, t) is found in Appendix A.

First of all, let us introduce some notation. Let functions f j(x) and gj(x) (j = 1, 2) be
represented in the form

f j(x) = f j−2 · x+ f j−1 +

∞∑
m=0

f jmX
′′
m(x; lx),

f j−1 =
1

2lx

lx∫
−lx

fj(s)ds, f j−2 = − 3

2l3x

lx∫
−lx

sfj(s)ds,

gj(x) = gj−1 ·
(

1− x2

l2x

)
+
∞∑
m=0

gjmX
′
m(x; lx), gj−1 =

3

4lx

lx∫
−lx

gj(s)ds

(see Appendix B).



A. R. DZHANDIGULOV, A. L. KARCHEVSKY: CALCULATION OF STRESSES IN A ... 715

From the condition (8) follows:

f1−1 = f2−1 ≡ F , g1−1 = g2−1 ≡ G,
1

2
(f1−2 − f2−2) = −2

lz
l2x
G.

We seek a solution of the equation (12), satisfying the boundary conditions (5), as

Φ(x, z) =

4∑
j=1

Φj(x, z).

Each function Φj(x, z) is the solution of the biharmonic equation and satisfies part of
the boundary conditions, and their sum is the solution of our problem, i.e. the function
Φ(x, z) solves the differential equation (12) and satisfies (see (5) and (11)) the following
boundary conditions:

∂2Φ

∂x2

∣∣∣∣
z=±lz

=

{
f1(x)
f2(x)

}
− κp(x,±lz, t),

∂2Φ

∂x∂z

∣∣∣∣
z=±lz

= −
{
g1(x)
g2(x)

}
,

∂2Φ

∂z2

∣∣∣∣
x=±lx

= 0,
∂2Φ

∂x∂z

∣∣∣∣
x=±lx

= 0.

A search of solution as sum is a well-known mathematical technique, but in each case can
be non-obvious and time-consuming, may require a heuristic approach. In this case, to
obtain the expression of solutions of the biharmonic equations (12) two systems of basis
functions are used. This approach allows us to obtain the solution in simple form and
without solving the infinite algebraic systems that is main result of this work.

The variable t is included in some ratio as a parameter, for simplicity, obvious depen-
dence on t in the arguments of some variables we will omitted.

The function Φ1(x, z) is a solution to the homogeneous biharmonic equation that sat-
isfies the boundary conditions:

∂2Φ1

∂x2

∣∣∣∣
z=±lz

=

{
f1−2
f2−2

}
x+ F , ∂2Φ1

∂x∂z

∣∣∣∣
z=±lz

= G
(

1− x2

l2x

)
,

∂2Φ1

∂z2

∣∣∣∣
x=±lx

= 0,
∂2Φ1

∂x∂z

∣∣∣∣
x=±lx

= 0.

Due to the relations (8), function Φ1(x, z) can be found in the polynomial form

Φ1(x, z) = F+
x3

6
+ F x

2

2
− G

3l2x
x3z + Gxz, F+ =

1

2
(f1−2 + f2−2).

The function Φ2(x, z) can be found as solution of the equation (12), satisfying the
boundary conditions

∂2Φ2

∂x2

∣∣∣∣
z=±lz

= −κp(x, lz, t),
∂2Φ2

∂x∂z

∣∣∣∣
z=±lz

= 0. (13)

The function Φ2(x, z) can be represented as

Φ2(x, z) =

∞∑
k=1

Yk(z) cos(αkx) +

∞∑
k=1

Uk(z) sin(γkx). (14)

This is the standard periodic Filon-Ribier solution for the biharmonic equation [27]. Their
use satisfies the right side of equation (12) and some boundary conditions but introduces
extra values at the boundary, which will be offset by the following function Φ3(x, z).
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Substitute the expression (14) in the equation (12) and the boundary conditions (13).
To determine the functions Yk(z) and Uk(z) we obtain the following problems

Y ′′′′k − 2α2
kY
′′
k + α4

kYk = Ý (z), Y ′k(±lz) = 0, Yk(±lz) = κρ̂k(lz, t)/α2
k,

U ′′′′k − 2γ2kU
′′
k + γ4kUk = Ú(z), U ′k(±lz) = 0, Uk(±lz) = κρ̃k(lz, t)/γ2k ,

Ý (z) = κ(1−ν ′)
[
α2
kp̂0,k0 e−Dα

2
kt+

∞∑
n=1

(α2
k+β2n)p̂0,kn e−D(α2

k+β
2
n)t cos(βnz)

]
,

Ú(z) = κ(1−ν ′)
[
γ2k p̃0,k0 e−Dγ

2
kt+

∞∑
n=1

(γ2k+β2n)p̃0,kn e−D(γ2k+β
2
n)t cos(βnz)

]
whose solutions can be written as

Yk(z) = Âk cosh(αkz)+B̂kz sinh(αkz)+Ãk sinh(αkz)+B̃kz cosh(αkz)+Ȳk(z),

Uk(z) = Ĉk cosh(γkz)+D̂kz sinh(γkz)+C̃k sinh(γkz)+D̃kz cosh(γkz)+Ūk(z),

here Z̄k(z) and Ūk(z) are partial solutions:

Ȳk(z) = κ(1− ν ′)r̂k(z, t)/α2
k, Ūk(z) = κ(1− ν ′)r̃k(z, t)/γ2k ,

where

r̂k(z) = p̂0,k0 e−Dα
2
kt +

∞∑
n=1

α2
k

α2
k + β2n

p̂0,kn e−D(α2
k+β

2
n)t cos(βnz),

r̃k(z) = p̃0,k0 e−Dγ
2
kt +

∞∑
n=1

γ2k
γ2k + β2n

p̃0,kn e−D(γ2k+β
2
n)t cos(βnz),

and for constants we obtain

Âk =
sinh(αklz) + αklz cosh(αklz)

sinh(αklz) cosh(αklz) + αklz
b̂k, B̂k =

−αk sinh(αklz)

sinh(αklz) cosh(αklz) + αklz
b̂k,

Ãk = 0, B̃k = 0,

Ĉk =
sinh(γklz) + lzγk cosh(γklz)

sinh(γklz) cosh(γklz) + γklz
b̃k, D̂k =

−γk sinh(γklz)

sinh(γklz) cosh(γklz) + γklz
b̃k,

C̃k = 0, D̃k = 0,

where

b̂k = κ
[
ρ̂k(lz, t)− (1− ν ′)r̂k(lz)

]
/α2

k, b̃k = κ
[
ρ̃k(lz, t)− (1− ν ′)r̃k(lz)

]
/γ2k .

It is easy to see that each coefficient behaves like e−αklz and e−γklz , i.e. series in (14)
converges.

We compute

∂2Φ2

∂z2

∣∣∣∣
x=±lx

= 0,
∂2Φ2

∂x∂z

∣∣∣∣
x=±lx

= ±
∞∑
k=1

(−1)kαkY
′
k(z) +

∞∑
k=1

(−1)kγkU
′
k(z).

Consider the functions

y(z) =
∞∑
k=1

(−1)kαkYk(z), u(z) =
∞∑
k=1

(−1)kγkUk(z).
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Calculate the values of the functions y(z) and u(z) and their derivatives at the extreme
points:

∂

∂x
y(±lz) = 0, y(±lz) = κ

∞∑
k=1

(−1)kρ̂k(lz, t)/αk ≡ y0,

∂

∂x
u(±lz) = 0, u(±lz) = κ

∞∑
k=1

(−1)kρ̃k(lz, t)/γk ≡ u0.

The functions y(z) − y0 and u(z) − u0 on the interval [−lz, lz] can be expanded in a
uniformly convergent Fourier series for functions Xm(z; lz) (see Appendix B).

Let

y(z)− y0 =

∞∑
m=0

ymXm(z; lz), u(z)− u0 =

∞∑
m=0

umXm(z; lz),

from which obtain

y′(z) =
∞∑
m=0

ymX
′
m(z; lz), u′(z) =

∞∑
m=0

umX
′
m(z; lz).

Note that the function y(z) and u(z) are even, which means that ym and um with odd
numbers are zero.

The function Φ3(x, z) can be found as a solution of homogeneous biharmonic equation,
satisfying the following boundary conditions:

∂2Φ3

∂x2

∣∣∣∣
z=±lz

= 0,
∂2Φ3

∂x∂z

∣∣∣∣
z=±lz

= 0,

∂2Φ3

∂z2

∣∣∣∣
x=±lx

= 0,
∂2Φ3

∂x∂z

∣∣∣∣
x=±lx

= ∓
∞∑
m=0

ymX
′
m(z; lz)−

∞∑
m=0

umX
′
m(z; lz),

Approximate analytical solution of Φ3(x, z) can be found in the form [15]

Φ3(x, z) =
∞∑
m=0

Qm(x)Xm(z; lz).

Bubnov-Galerkin procedure is applied to the solution of homogeneous biharmonic equation
that leads to an infinite system of ordinary differential equations

∞∑
m=0

[
Qm〈X ′′m, X ′′s 〉 − 2Q′′m〈X ′m, X ′s〉+Q′′′′m δms

]
= 0, s = 0, 1, 2...

Here δms is the Kronecker’s symbol.
Use the property of quasi-orthogonal first and second derivatives of functions (see Ap-

pendix B). In this case, we get the problem (m = 0, 1, ...)

Q′′′′m − 2a2mQ
′′
m + b4mQm = 0, Qm(±lx) = 0, Q′m(±lx) = ∓ym − um

where a2m = ‖X ′m(· ; lz)‖2, b4m = ‖X ′′m(· ; lz)‖2. Since bm > am for all m [13], four roots

of the characteristic equation can be found: ±bme±iθm , where 2θm = arctg
√
b4m/a

4
m − 1.

Consequently, the solutions of the above problems are as follows

Qm(x) = M̂m sin(θmx) sinh(bmx) + N̂m cos(θmx) cosh(bmx)

+ M̃m sin(θmx) cosh(bmx) + Ñm cos(θmx) sinh(bmx),
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where

M̂m=
−2ym cos(θmlx) cosh(bmlx)

θm sinh(2bmlx)+bm sin(2θmlx)
, N̂m=

2ym sin(θmlx) sinh(bmlx)

θm sinh(2bmlx)+bm sin(2θmlx)
,

M̃m=
−2um cos(θmlx) sinh(bmlx)

θm sinh(2bmlx)−bm sin(2θmlx)
, Ñm=

2um sin(θmlx) cosh(bmlx)

θm sinh(2bmlx)−bm sin(2θmlx)
.

It is easy to see, first, the denominators of each factor will never vanish, and secondly,
each coefficient behaves like e−bmlx , i.e. series for the Φ3(x, z) converges.

The function Φ4(x, z) can be found as the solution of homogeneous biharmonic equation
that satisfies the boundary conditions

∂2Φ4

∂x2

∣∣∣∣
z=±lz

=

∞∑
m=0

{
f1m
f2m

}
X ′′m(x; lx),

∂2Φ4

∂x∂z

∣∣∣∣
z=±lz

= −
∞∑
m=0

{
g1m
g2m

}
X ′m(x; lx),

∂2Φ4

∂z2

∣∣∣∣
x=±lx

= 0,
∂2Φ4

∂x∂z

∣∣∣∣
x=±lx

= 0.

The expression for the function Φ4(x, z) is sought similar to the expression for the
function Φ3(x, z), i.e.

Φ4(x, z) =
∞∑
m=0

Rm(z)Xm(x; lx),

where

Rm(z) = L̂m sin(ϑmz) sinh(dmz) + K̂m cos(ϑmz) cosh(dmz)

+ L̃m sin(ϑmz) cosh(dmz) + K̃m cos(ϑmz) sinh(dmz),

where

L̂m =
ϑm sin(ϑmlz) cosh(dmlz)−dm cos(ϑmlz) sinh(dmlz)

∆1
(f1m + f2m)

− cos(ϑmlz) cosh(dmlz)

∆1
(g1m − g2m),

K̂m =
ϑm cos(ϑmlz) sinh(dmlz)+dm sin(ϑmlz) cosh(dmlz)

∆1
(f1m + f2m)

+
sin(ϑmlz) sinh(dmlz)

∆1
(g1m − g2m),

L̃m =
ϑm sin(ϑmlz) sinh(dmlz)−dm cos(ϑmlz) cosh(dmlz)

∆2
(f1m − f2m)

− cos(ϑmlz) sinh(dmlz)

∆2
(g1m + g2m),

K̃m =
ϑm cos(ϑmlz) cosh(dmlz)+dm sin(ϑmlz) sinh(dmlz)

∆2
(f1m − f2m)

+
sin(ϑmlz) cosh(dmlz)

∆2
(g1m + g2m),

∆1 = ϑm sinh(2dmlz)+dm sin(2ϑmlz),

∆2 = ϑm sinh(2dmlz)−dm sin(2ϑmlz),

c 2m = ‖X ′m(· ; lx)‖2, d 4
m = ‖X ′′m(· ; lx)‖2, 2ϑm = arctg

√
d4m/c

4
m − 1.
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Summarizing the above expressions, we obtain the following relationship:

Φ(x, z) =
1

6
F+ x

3 +
1

2
Fx2 − G

3l2x
x3z + Gxz

+

∞∑
k=1

Yk(z) cos(αkx) +

∞∑
k=1

Uk(z) sin(γkx)

+

∞∑
m=0

Qm(x)Xm(z; lz) +

∞∑
m=0

Rm(z)Xm(x; lx),

where all the values obtained above.
From the definition of (11) to stress we get

σxx(x, z) = κp(x, z, t)

+

∞∑
k=1

Y ′′k (z) cos(αkx) +

∞∑
k=1

U ′′k (z) sin(γkx)

+

∞∑
m=0

Qm(x)X ′′m(z; lz) +

∞∑
m=0

R′′m(z)Xm(x; lx),

σzz(x, z) = κp(x, z, t) + F+ x+ F − 2
G
l2x
xz

−
∞∑
k=1

Yk(z)α
2
k cos(αkx)−

∞∑
k=1

Uk(z)γ
2
k sin(γkx)

+
∞∑
m=0

Q′′m(x)Xm(z; lz) +
∞∑
m=0

Rm(z)X ′′m(x; lx),

σxz(x, z) = −G
(

1− x2

l2x

)
+

∞∑
k=1

Y ′k(z)αk sin(αkx)−
∞∑
k=1

U ′k(z)γk cos(γkx)

−
∞∑
m=0

Q′m(x)X ′m(z; lz)−
∞∑
m=0

R′m(z)X ′m(x; lx).

Appendix A. The solution of the diffusion equation

Consider the function p(x, z, t), which satisfies the problem:

∂p

∂t
= D∆p,

∂p

∂z

∣∣∣∣
z=±lz

= 0, p|x=±lx = 0, p|t=0 = p0(x, z).

We represent p0(x, z) as the sum of an even p̂0(x, z) and odd p̃0(x, z) parts, where
p̂0(x, z) = (p0(x, z) + p0(−x, z))/2 and p̃0(x, z) = (p0(x, z) − p0(−x, z))/2. Then the
function p(x, z, t) can be represented as the sum

p(x, z, t) = p̂(x, z, t) + p̃(x, z, t),
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where even p̂(x, z, t) and odd p̃(x, z, t) parts satisfy the following problems

∂p̂

∂t
= D∆p̂,

∂p̂

∂z

∣∣∣∣
z=±lz

= 0,
∂p̂

∂z

∣∣∣∣
x=0

= 0, p̂|x=lx = 0,

p̂|t=0 = p̂0(x, z),



∂p̃

∂t
= D∆p̃,

∂p̃

∂z

∣∣∣∣
z=±lz

= 0, p̃|x=0 = 0, p̃|x=lx = 0,

p̃|t=0 = p̃0(x, z).

The Fourier method gives the solution p(x, z, t) for diffusion equation (2) in [−lx, lx]×
[−lz, lz], which satisfies the initial and boundary conditions (5) and (6):

p(x, z, t) =

∞∑
k=1

ρ̂k(z, t) cos(αkx) +

∞∑
k=1

ρ̃k(z, t) sin(γkx),

where

ρ̂k(z, t) = p̂0,k0 e−Dα
2
kt +

∞∑
n=1

p̂0,kn e−D(α2
k+β

2
n)t cos(βnz),

ρ̃k(z, t) = p̃0,k0 e−Dγ
2
kt +

∞∑
n=1

p̃0,kn e−D(γ2k+β
2
n)t cos(βnz),

here p̂0,kn and p̃0,kn are the Fourier coefficients corresponding to even and odd parts of
the function p0(x, z), and αk = π(2k − 1)/2lx, γk = πk/lx, and βn = πn/lz.

Appendix B. Basic functions

To solve the biharmonic equation are proposed many algorithms. First of all it is
necessary to mention the decision in the forms of a polynomial, Filon, and Ribier. However,
these solutions are not suitable for every type of boundary conditions. There is a so-called
approach of an non-closed solution, where the solution is a sum of several rows, one row
when the coefficient is expressed through all the coefficients of the second row, i.e., we
obtain an endless system of linear equation. If you can prove it quite regularly, one can
use the method of simple reduction. Also one can search for solutions with the help of
the fundamental Krylov beam functions, but their records are present hyperbolic sines
and cosines that the calculations can lead to large errors. To solve biharmonic equation,
there are other approaches (see, for example, [1, 2, 19, 27]. Compare of solutions can
be obtained by different methods, and can be found in [16]. The most promising is the
approach suggested by S.A. Khalilov. He has proposed and investigated the functions
Hm(x) [10, 11], which in our case can be written as follows:

Hm(x) = P̄ 4
m+4(x), m = 0, 1, 2....

where P̄ 4
m+4(x) is the related normalized Legendre polynomials of degree m. The system

of unctions {Hm(x)}∞m=0 is complete and orthonormal on the interval [−1, 1]. Function
s(x) with the boundary values s(±1) = 0, s′(±1) = 0 can be expanded in the Fourier series
using the system of functions {Hm(x)}∞n=0, the series converges absolutely and uniformly.

We have the representation [10, 11]

Hm(x)=(1−x2)2
[m/2]∑
k=0

Wmk x
m−2k, Wmk=

(−1)k

2m+3

√
m!(2m+9)

2(m+8)!

(2m−2k+7)!

(m−k+3)!k!(m−2k)!
,

([ · ] is an integer part), the recurrence formula

Hm(x) = ξmxHm−1(x)− ζmHm−2(x), m=1, 2, ..., H−1(x)=0, H0(x)=W00(1−x2)2,
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ξm =

√
(2m+ 9)(2m+ 7)

m(m+ 8)
, ζm =

√
(m− 1)(m+ 7)(2m+ 9)

m(m+ 8)(2m+ 5)
,

and the following relations [13, 14]:

‖H ′n‖2[−1,1] =
1

15
(2n+ 9)(n2 + 9n+ 5),

‖H ′′n‖2[−1,1] =
1

4
(2n+ 9)

(
(n+ 2)(n+ 7)

[
1 +

1

60
n(n+ 2)(n+ 7)(n+ 9)

]
− n(n+ 9)

[
3 +

1

84
(n− 1)(n+ 4)(n+ 5)(n+ 10)

])
.

Proved and shown in numerical examples [10, 15, 16] that the functions H ′m(x) and
H ′′m(x) are quasi-orthogonal in the sense of fulfillment of the conditions:

〈H(k)
n (x), H

(k)
m (x)〉

‖H(k)
n (x)‖ · ‖H(k)

m (x)‖
= θ, |θ| ≈ 0, m 6= n, k = 1, 2.

This remarkable property of these functions are enabled to use the Bubnov-Galerkin pro-
cedure to find a solution to the biharmonic equation, and it is much easier. This approach
has been tested in the papers [10, 11, 12, 13, 14, 15, 17, 18, 22, 30] end others. It has been
shown that the numerical solution of the biharmonic equation through the use of functions
Hm(x) is calculated fairly accurately. The maximum deviation is localized near the corner
points of the field (see, for example, [10, 12, 15, 16] and othes) and is a small amount
(about 1.2%), the largest error is achieved for a square area, more than rectangular area:
the differs from the square, the less is the computing error.

We use the function Xm(x;L) = 1√
L
Hm(x/L), which are orthonormal on the interval

[−L,L] and their derivatives true

‖X ′m‖2[−L,L] = ‖H ′m‖2[−1,1]/L
2, ‖X ′′m‖2[−L,L] = ‖H ′′m‖2[−1,1]/L

4.

The expansion of functions in the derivatives of functions Xm can be found in [9].
Function s(x) (s(±L) = 0) can be represented as

s(x) =
3

4L

L∫
−L

s(y)dy ·
(

1− x2

L2

)
+
∞∑
n=0

ĉmX
′
m(x;L),

where ĉm are the coefficients of expansion of the function

Ŝ(x) = S(x) +
1

4L3
S(L)x3 − 3

4L
S(L)x− 1

2
S(L), S(x) =

x∫
−L

s(y)dy

in a series of functions Xm.
Functions s(x) (|s(x)| <∞) can be represented as

s(x) = − 3

2L3

L∫
−L

y s(y)dy · x+
1

2L

L∫
−L

s(y)dy +

∞∑
m=0

c̃mX
′′
m(x;L).
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where c̃m are the coefficients of expansion of the function

S̃(x) = S(x)− 1

4L2

(
S′(L) +

1

L
S(L)

)
x3 − 1

4L
S′(L)x2

− 1

4

(
3

L
S(L)−S′(L)

)
x− L

2

(
1

L
S(L)− 1

2
S′(L)

)
, S(x) =

x∫
−L

z∫
−L

s(y)dydz.
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