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ON NEW GRUSS TYPE INEQUALITIES FOR CONFORMABLE
FRACTIONAL INTEGRALS

I. MUMCU!, E. SET', §

ABSTRACT. We use conformable fractional integral, recently introduced by Khalil et. al.
and Abdeljavad, to obtain some new integral inequalities of Griiss type. We show two
new theorems associated with Griiss inequality, as well as state and show new identities
related to this fractional integral operator.
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1. INTRODUCTION

In 1935, Griiss [5] proved the well known inequality:

e [ ([ rww) (1 [ awa) < D )

provided that f and g are two integrable functions on [a, b] and satisfying the conditions

m<f@) <M, p<g@) <P, mMpPeRzE/ab. (2)

For some recent counterparts, generalizations of Griiss inequality, the reader is refer to
[7, 8]. The Beta function:

['(a)T'(b)
I'(a+0)
where I’ (a) = [;¥ e"*u*"du is Gamma function.

Definition 1.1. Let f € Li[a,b]. The Riemann-Liouville integrals J& f and J f of
order o > 0 are defined by

7o, fla) = F(la) /:(m _ 0oL (dt, > a

1
B (a,b) = :/ 1 =) tdt,  a,b>0,
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and

b
Jo ) = F(la) / (t— ) f()dt,  w<b

respectively. Here JO, f(z) = J2_f(z) = f(z).
In [2], Dahmani et al. gave following theorems for the Griiss inequalities.

Theorem 1.1. Let f and g be two integrable functions on [0,00) satisfying the condition
(2) on [0,00). Then for allt >0, a > 0., we have:

‘ ¢ ¢

2
a0~ 00| < (s ) (me -, @

Theorem 1.2. Let f and g be two integrable functions on [0,00) satisfying the condition
(2) on [0,00). Then for allt >0, a >0, >0, we have:

o 8
( 0 UELURS vy

< [(vragy ) (750 -y
# (0 -y (Mrwti n 7 Zf )]
[(PP - )) (ﬂf(t) —pwfﬂ))
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In [6], Khalil et al. define a new well-behaved simple fractional derivative called con-
formable fractional derivative depending just on the basic limit definition of the derivative.
They also defined the fractional integral of order 0 < o < 1 only.

In [1], Abdeljawad gave the definition of left and right conformable fractional integrals
of any order o > 0.

2
e gt — e () () Jﬂf(t)J“g(t)>

X

Definition 1.2. Let o € (n,n+ 1], n = 0,1,2,... and set f = o — n. Then the left
conformable fractional integral of any order a > 0 is defined by

I ~
@) = o [ (=2 =) (o) 9
Analogously, the right conformable fractional integral of any order o > 0 is defined by
1 -
CIaf)(t) = n! / (@ —1)"(b— 33)6 Lf(2)da. (6)

Recently many authors have presented a number of interesting integral inequalities using
conformable fractional integrals. For instance, see [4, 9, 10, 11, 12, 13, 14].
Note that, we present our new results associated with the conformable fractional integral
using the left-sided conformable fractional integral , only. Moreover, we admit ¢ = 0 in
(5) in order to get

1 t
1)) = [ (¢ =a2ya™ f@)a

The main purpose of this paper is to establish some new Griiss type inequalities in the
form of conformable fractional integral.
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2. GRUSS TYPE INEQUALITIES

Lemma 2.1. Let f be an integrable function on [0,00) satisfying the condition (2) on
[0,00). Then for allt >0, a € (n,n+ 1], n=0,1,2,..., we have:

%taB(” +1La—=n)a(f)(t) - (Ia(f)* (¢)
) (iM”BW+La—n%%hﬂ@O(uqxw—;mw3m+La_m)
_%ﬂ3m+La—nme—f@xﬂo_my @

Proof. For any z,y € [0,00), we have

(M = f(y))(f(x) —m) + (M = f(2))(f(y) —m)
—(M = f(2))(f(x) =m) = (M = f(y))(f(y) —m)
= @)+ Fy) - 2f (@) () (8)

Multiplying (8) by %(t —2)"2* "1 and integrating the resulting identity with respect to
x over [0,t] we have

(M = () (La(D(®) = 5t°Bn+ 1,0 ~n))
+ (Bl La =)~ (D) (F) ~ m)
LM~ FE)F(E) ~m) — Bt L~ m)(M ~ f())(f(y) ~m)
= L))+ gt Bt La— ) ) - 21O ) )
where
t 1
jg(t——x)"xa_"_ldx _ Jé (t — tu)" (ut)*=" du

= t*B(n+1,aa—n)

n, a—n—1

Now, we multiplying (9) by %(t —y)"y and integrating the resulting identity with
respect to y over [0,¢] we have

(%w3m+La—ny4@ﬂ@O(@gxw—Zme+La—n0
+<MﬂBm+La—n%JMﬂ@0<@Jﬂﬂ—§ﬂBW+La—nD
B+ Lo~ (M — fO)(F(1) ~ m)
B+ L= (M ~ fO)(F(1) — m)

= Bln+ La— ()0 + Bt L - m)u(£)(0) — 2 () OT()0

So we have (7) and the proof is completed. O
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Theorem 2.1. Let f and g be two integrable functions on [0,00) satisfying the condition
(2) on [0,00). Then for allt >0, a € (n,n+ 1], n=0,1,2,..., we have

«

LB+ 1,0 - ) L(fo)(t) — (Inf(£)) Lag(t))

n!

o 2
< (thB(n+1,a—n)> (M —m)(P —p). (10)

Proof. We define

H(z,y) = (f(z) — f(¥)(9(x) — 9(v)); z,y € [a, ). (11)

We multiplying both sides of obtained identity by ﬁ(t — )t — )2 L and
integrating the resulting identity with respect to over [0,¢] we have
1 t t 1 1
o [, [ oy i ey (12)
2

= B+ 1a—n)l(fo)t) = 2(Laf (1) (Tag(t))-
Using Cauchy-Schwarz inequality <ffgh — ffl/ngl/Zh < (ff92)1/2(ffh2)1/2>, we
have

o [ [ = e gy i ) dady

- <n1!>z /0 /0 (t — 2)"t2 7Lt — )" (f (@) — f(y))(9(x) — g(y))dady

(nl!)2 </ot /ot(t — )M (¢ — e (f(x) — f(y))2da dy) 1/2
([ [emere ey g ran)
1

— Mt (/Ot(t—x)"to‘_"_lfQ(:v)dx—2/Ot(t—iﬁ)nta_n_lf(ﬂﬁ)f(y)daf

IN

n!
1/2

# [y s ) e )
<ol [ ([e=areig@as—2 [ @ -ore gt

n!
1/2

+ [t ore ) - e )
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1 2 ! nyoa—n—1 2 ¢ nyjoa—n—1
= | Uaf)E) [ (E—y)"t dy — =T f)(E) [ t—y)"t fy)dy
n. 0 . 0
1 t 1/2
+EtO‘B(n + 1,0 —n) / (t — y)"to‘_"_lfQ(y)>
: 0
1 2 ¢ nia—nm—1 2 ¢ nyja—nm—1
<\ = ag?)(t) | (t—y)"t dy — = (Lag)(t) | (t—y)"t 9(y)dy
n: 0 n! 0
1 t 1/2
+t"B(n+1a—n) / (t— y)”ta‘”‘lgz(y)>
: 0

= <2taB(n +1,a— n)([an)(t) - 2(Iaf)2> <2nt('lB(n +1,a— n)(Iag2)(t) - 2(Iag)2> :

n!

So we obtain

2
B+ L = L)) — (D) Ta () ) (13

(i
(

%tO‘B(n +1,a—n)(Iaf?)(t) - (Iaf(t))2>

<

X (;lt“B(n + 1,0 —n)(Iag®)(t) — (Iag(t))2>
Since (M — f(x))(f(z) —m) >0 and (P — g(z))(g(x) — p) > 0, we have
LB 10— m)La(M — FO)((1) ~m) > 0
and
LB+ 10— m) (P~ g(0)(9(t) ~ P) > 0.
So, from Lemma 2.1, we have
LB+ 10— m) (L)1) — (Taf(1)) (14)
M m
< (n!tO‘B(n +1l,aa—n)— (Iaf)(t)> <(Iaf)(t) - EtaB(n +1,a— n))
and

%tO‘B(n + 1,00 — n)(Iag®)(t) — (Lag(t))? (15)

< (T];taB(n +1,a-n)— (Iag)(t)) ((Iag)(t) - %t"‘B(n +1,0- n)) .

By using the inequalities (14), (15) and (13), we get

1 2
(" B+ 10 = )L (£0)(0) = (L f(O) T (1)
< (i\j t*B(n+1,a —n) = (L f)(t>) ((Iaf)<t) - gt“B(n +1la— n))

X <:‘t°‘B n+1l,a—n) (Iag)(t)> ((Iag)(t) - %tO‘B(n +1l,a— n)) . (16)
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Then, using the elementary inequality 4rs < (r + 5)? r, s € R, we obtain

4 <i\gto‘B(n +1l,a—n)— (Iaf)(t)> ((Iaf)(t) — gt“B(n +1,a— n))

< <$!t0‘B(n+ 1,0z—n)(M—m)>2 (17)
and
4 (ZtO‘B(n t1l,a—n)— (Iaf)(t)> (( Iof)(t) — ;taB(n Y10 n))
< <$!to‘B(n+1,oz—n)(P—p)>2. (18)
From (16), (17) and (18), we get desired result. O

Remark 2.1. If we take o = n+1 in Theorem 2.1, the inequality (10) becomes inequality

(3).

Theorem 2.2. Let f and g be two integrable functions on [0,00). Then for all t > 0,

a € [n,n+

1) and B € [k, k+ 1), n,k=0,1,2,..., we have

(B0 10— n)1afo)e) + 5 B+ 1.5 - B(1ao)()

2
—(Laf)(t)(Ipg)(t) — (fﬁf)(t)(fag)(t)>

tOé
< (
~—\n!

(Bt L= )0 + LB+ 1,8 - k)(ag®)() - Alag) O(T20)(1) ).

n!

B(n+1,a = n)(Isf*)(t) + k,B(kJr 1,8 —k)(Laf?)(t) - 2(Iaf)(t)(fﬁf)(t))

Proof. Multiplying (11) by —L(t — 2)"t* =1 (¢t — y)*##~*~! and integrating the resulting
identity with respect to = and y over (0,¢)?, we get

n,k,/ / 2)" o (- )M H (2, ) daedy

= EB(” +1,a—n)(Isfg)(t) + k,B(k + L8 = k)af9)(t)
—(Laf)()(Ipg)(t) = (s F)()(I"9)(F)-

Then, applying Cauchy-Schwarz inequality for double integrals similarly Theorem 2.1, we
obtain desired results. O
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Lemma 2.2. Let f be an integrable function on [0,00) satisfying the condition (2) on
[0,00). Then for allt >0, a € (n,n+1], B € [k, k+ 1),n,k=0,1,2,..., we have:

%O;(Iﬁfz)( )+ (I ) =201 (&)L f)(2)
a B
- (Mt B(n+1,a—n)—(Iaf)(t)> (Iﬁf)(t)—k,B(kJrl,ﬂ—k))

n!

«

Bt 10— n)(I5) (M ~ f(0)(f() ~m)

—EB(k + Lo —k)(la)(M = f()(f(t) —m).

Proof. Multiplying (9) by %(t — y)*t8=F=1 and integrating the resulting identity with
respect to y from 0 to ¢, we have

(Iaf()—mtB(nJrla >)k/< )M )y

+(]\/{TiQB(n+l a—n) > tﬁ "N f(y) — m)dy

I (M~ FO)( (1) - >>,j/< >ktﬂ“dy

(67

B+, a_m/o (t =y 7N (M = f(y)(f(y) — m)dy

= %B(eraa—n)(fﬁf )(t) + k‘B(k;+1 B = k)(Laf?)(t) = 2(Laf) () Ts£)(1).

So, we obtain desired results. O

Theorem 2.3. Let f and g be two integrable functions on [0, 00) satisfying the conditions
(2) on [0,00). Then for allt >0, o € [n,n+1), B € [k, k+1)], n,k=0,1,2,..., we have

(i:B(n—i— La—n)Tsfo)(t) + k|3<k+1 a = k)(Lafg)()
DO ~ UHOU)))

[(‘]\/;[faB(n+1a—n )(Iﬁf _73(’”15 k))
(@02 s 0-m) (s 11 w0 |

(67

() (®) - 22 B+ 1.0 -m)) (5

.
(DB La—n - (L) <(IB9)()—B(/€+15 )
+ <k

B+ 1,6~ 1) - ()0 |
(19)
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Proof. Since (M — f(x))(f(x) —m) >0 and (P — g(x))(g(x) — p), we can write

*%O;B(nﬂa an)(fﬁ(Mf(t))(f(t)m))ijB(kH, B—=k)(La(M—f())(f(t)=m)) <0
and .
—gB(nJr La—n)(Is(P—g(t)(9(t) —p) - ZB(H 1,B=k)Ia(P—g(t)(g(t) —p)) < 0.
Appllifing Lemma 2.2 to f and g, then using Teorem 2.2, (20) and (21), we obtained desgfeléi

Remark 2.2. If we take o = 3 we obtain Theorem 2.1.
Remark 2.3. If we take o = n + 1 in Theorem 2.3 , we get inequality (4).
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