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ON GRAY IMAGES OF CONSTACYCLIC CODES OVER THE FINITE

RING F2 + u1F2 + u2F2

MUSTAFA ÖZKAN1, ABDULLAH DERTLI2, YASEMIN CENGELLENMIS1, §

Abstract. We introduce the finite ring F2 + u1F2 + u2F2, u1
2 = u1 , u2

2 = 0 , u1.u2 =
u2.u1 = 0 which is not a finite chain ring. We focus on (1 + u2) -constacyclic codes over
F2 + u1F2 + u2F2 of odd length. We prove that the Gray image of a linear (1 + u2)
-constacyclic code over F2 + u1F2 + u2F2 of odd length n is a quasi-cyclic code of index
4 and length 4n over F2.
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1. Introduction

In [6], Wolfman showed that the Gray image of a linear negacyclic code over Z4 of
length n is distance invariant (not necessarily linear) cyclic code. It was shown that, for
odd n, the Gray image of a linear cyclic code over Z4 of length n is equivalent to a binary
cyclic code. In 2006, J.F. Qian et al. introduced linear (1 + u)-constacyclic codes and
cyclic codes over F2 + uF2 and characterized codes over F2 which are the Gray images
of (1 + u)-constacyclic codes or cyclic codes over F2 + uF2 in [4]. In [1] , they extended
the result of [4] to codes over the commutative ring Fpk + uFpk where p is a prime,k ∈ N

and u2 = 0 , In [5], it was introduced (1 + u2) -constacyclic codes or cyclic codes over
F2 + uF2 + u2F2, u

3 = 0 and characterized codes over F2 which are the Gray images of
(1 + u2) -constacyclic or cyclic codes over F2 + uF2 + u2F2. In [2], it was introduced
(1−um)-constacyclic codes over F2+uF2+ ... +umF2 , u

m+1 = 0 and characterized codes
over F2. In 2011, (1+v)-constacyclic codes over F2+uF2+vF2+uvF2 were studied. (1+v)
-constacyclic codes over F2 + uF2 + vF2 + uvF2 , u

2 = v2 = 0 , u.v− v.u = 0 of odd length
were characterized with the help of cyclic codes over F2 + uF2 + vF2 + uvF2 . A new Gray
map was defined. It was shown that the image under the Gray map of (1+v)-constacyclic
codes over F2+uF2+vF2+uvF2 are cyclic codes over F2+uF2 in [3]. In 2013, X. Xiaofang
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studied (1+v)-constacyclic codes over the ring F2+uF2+vF2, u
2 = v2 = 0 , u.v = v.u = 0,

(1 + v)-constacyclic codes over F2 + uF2 + vF2 of odd length are characterized with the
help of cyclic codes over F2 + uF2 + vF2 in [7].

This paper is organized as follows. In section 2, we give some knowledge about the ring
R = F2 + u1F2 + u2F2 , u1

2 = u1 , u2
2 = 0 , u1.u2 = u2.u1 = 0 and the codes over R .

In section 3, we have the relationship between cyclic code over and (1 + u2)-constacyclic
code over R . In section 4, the Gray image of (1 + u2)-constacyclic code over R of odd
length is obtained.

2. Preliminaries

The ring R = F2 + u1F2 + u2F2 is defined as a chacteristic 2 ring subject to the
restrictions u1

2 = u1 , u2
2 = 0 , u1.u2 = u2.u1 = 0. The isomorphism F2 + u1F2 + u2F2

∼=
F2[u1, u2]/ < u21 = u1, u

2
2 = 0, u1u2 = u2u1 = 0 > is obvious to see. The elements of R

may be written as 0, 1, u1, u2, 1+u1, 1+u2, u1+u2, 1+u1+u2. Addition and multiplication
operations over R are given in the following tables :

Table 1

⊕ 0 1 u1 u2 1 + u1 1 + u2 u1 + u2 1 + u1 + u2

0 0 1 u1 u2 1 + u1 1 + u2 u1 + u2 1 + u1 + u2

1 1 0 1 + u1 1 + u2 u1 u2 1 + u1 + u2 u1 + u2
u1 u1 1 + u1 0 u1 + u2 1 1 + u1 + u2 u2 1 + u2
u2 u2 1 + u2 u1 + u2 0 1 + u1 + u2 1 u1 1 + u1

1 + u1 1 + u1 u1 1 1 + u1 + u2 0 u1 + u2 1 + u2 u2
1 + u2 1 + u2 u2 1 + u1 + u2 1 u1 + u2 0 1 + u1 u1
u1 + u2 u1 + u2 1 + u1 + u2 u2 u1 1 + u2 1 + u1 0 1
1 + u1 + u2 1 + u1 + u2 u1 + u2 1 + u2 1 + u1 u2 u1 1 0

Table 2

⊗ 0 1 u1 u2 1 + u1 1 + u2 u1 + u2 1 + u1 + u2
0 0 0 0 0 0 0 0 0
1 0 1 u1 u2 1 + u1 1 + u2 u1 + u2 1 + u1 + u2
u1 0 u1 u1 0 0 u1 u1 0
u2 0 u2 0 0 u2 u2 0 u2

1 + u1 0 1 + u1 0 u2 1 + u1 1 + u1 + u2 u2 1 + u1 + u2
1 + u2 0 1 + u2 u1 u2 1 + u1 + u2 1 u1 + u2 1 + u1
u1 + u2 0 u1 + u2 u1 0 u2 u1 + u2 u1 u2

1 + u1 + u2 0 1 + u1 + u2 0 u2 1 + u1 + u2 1 + u1 u2 1 + u1

The units of R can be found to be following R∗ = {1, 1 + u2} . It can be easily find all
the ideals of R to be listed as,

{0} = I0 ⊂ Iu 1 ⊂ Iu 1+u 2 ⊂ R = I1+u 2

{0} = I0 ⊂ Iu 2 ⊂ I1+u 1 = I1+u 1+u 2 ⊂ R = I1+u 2

R is not a finite chain ring. It has got two maximal ideals, Iu 1+u 2 and Iu 1 . It is semi
local ring. Morever, R is principal ring. We take R to be a natural extension of the ring
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R2 = F2 + u2F2, u2
2 = 0 . The elements of R2 may be written as 0, 1, u2, 1 + u2 where 1

and 1 + u2 are only units in R2. R2 has three ideals (0) , (1) and (u2).
A linear code C over R(or R2 ) of length n is a R (or R2 ) submodule of Rn (or

R2
n). A linear code C over F2 of length n is a F2 subvector space F2

n. An element of
C is called a codeword . Each codeword c in such a code C is an n-tuple of the form
c = (co, c1, ..., cn−1) ∈ Rn ( or R2

n , Fn
2 ) and can be represented by

c = (c0, c1, ..., cn−1) ←→ c(x) =
n−1∑
i=0

cix
i ∈ R[x] (or R2[x] , F2[x] ).

The Gray map Φ1 on R is given by

Φ1 : R −→ R2
2

a+ u1b+ u2 c 7→ Φ1(a+ u1b+ u2c) = Φ1(r + u1q) = (u2.r, q)

where r = a + u2c and q = b + u2c. We will extend Φ1 to Rn naturally as follows
Φ1(c0, c1, ..., cn−1) = (u2.r0, u2.r1, ..., u2.rn−1, q0, q1, ..., qn−1) where ci = ri + u2.qi for all
i = 0, 1, ..., n− 1.

The Gray map Φ2 on R2 is given by

Φ2 : R2 −→ F2
2

s+ u2t 7→ (s, t)

where s, t ∈ F2. We will extend Φ2 to Rn
2 naturally as follows

Φ2 : Rn
2 −→ F2n

2

(c0, ....., cn−1) 7→ (s0, ......, sn−1, t0, ...., tn−1)

where ci = si + u2.ti , si, ti ∈ F2 for all i = 0, 1, ..., n− 1.
The weight w1(r) of r ∈ R is given by

w1(r) =


0 ; r = 0

1 ; r = 1, u1, u2

2 ; r = 1 + u1, 1 + u2, u1 + u2

3 ; r = 1 + u1 + u2

This extends to a weight function in Rn. If r = (r0, r1, ..., rn−1) ∈ Rn then w1(r)

=
n−1∑
i=0

w1(ri) . The distance d1(x, y) between any distinct vectors x, y ∈ Rn is defined to

be w1(x− y) . The d1 minimum distance of C is defined as d1(C) = min{d1(x, y)} for any
x, y ∈ C , x 6= y .

The weight w2(t) of t ∈ R2 is given by

w2(t) =


0 ; t = 0

1 ; t = 1, u2

2 ; t = 1 + u2

This extends to a weight function in Rn
2 . If t = (to, t1, ..., tn−1) ∈ Rn

2 then w2(t)=
n−1∑
i=0

w2(ti). The distance d2(x, y) between any distinct vectors x, y ∈ Rn
2 is defined to be

w2(x − y) . The d2 minimum distance of C is defined as d2(C) = min{d2(x, y)} for any
x, y ∈ C , x 6= y.

Let C be a code over F2 of length n and let c = (c0, c1, ..., cn−1) be a codeword of C.
The Hamming weight of C is defined as

wH(c)=
n−1∑
i=0

wH(ci)
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where wH(ci) = 1 if ci = 1 and wH(ci) = 0 if ci = 0 . The minimum Hamming distance
of C is defined as dH = min{dH(c, c′)} for any c, c′ ∈ C, c 6= c′.

Φ1 and Φ2 are distance preserving map from (Rn, d1) to (R2n
2 , d2) and (R2n

2 , d2) to
(F4n

2 , dH), respectively.
Expressing elements of R as a+ u1b+ u2c = r+ u1q where r = a+ u2c and q = b+ u2c

are both in R2, we see that

w1(a+ u1b+ u2c) = w1(r + u1q) = w2(u2r, q) = wH(0, b, a, c)

A cyclic shift on Rn is a permutation σ such that

σ(c0, c1, ..., cn−1) = (cn−1, c0, ..., cn−2)

A linear code C over R of length n is said to be cyclic code if it is invariant under the
cyclic shift σ(C) = C.

A (1 + u2)-constacyclic shift γ act on Rn as

γ(c0, c1, ..., cn−1) = ((1 + u2)cn−1, c0, ..., cn−2)

A linear code C over R of length n is said to be (1 + u2)-constacyclic code if it is
invariant under the (1 + u2)-constacyclic shift γ(C) = C.

Let C be a code of length n over R and P (C) be its polynomial representation,

P (C) =

{
n−1∑
i=0

rix
i : (r0, r1, ..., rn−1) ∈ C

}
A code C of length n over R is cyclic if and only if P (C) is an ideal of R[x]/ 〈xn − 1〉.
A code C of length n over R is (1 + u2)-constacyclic if and only if P (C) is an ideal of

R[x]/ 〈xn − (1 + u2)〉
Let a ∈ R2n

2 with a = (a0, a1, ..., a2n−1) = (a(0)|a(1)), a(i) ∈ Rn
2 for all i = 0, 1. Let σ⊗2

be the map from R2n
2 to R2n

2 given by

σ⊗2(a) =
(
σ(a(0))|σ(a(1))

)
where σ is the usual cyclic shift. A code Ĉ of length 2n over R2 is said to be quasi-cyclic
code of index 2 of σ⊗2(Ĉ) = Ĉ.

Let a ∈ F4n
2 with a = (a0, a1, ..., a4n−1) = (a(0)|a(1)|a(2)|a(3)), a(i) ∈ Fn

2 for all
i = 0, 1, 2, 3. Let σ⊗4 be the map from F4n

2 to F4n
2 given by

σ⊗4(a) =
(
σ(a(0))|σ(a(1))|σ(a(2))|σ(a(3))

)
where σ is the usual cyclic shift. A code Ĉ of length 4n over F2 is said to be quasi-cyclic
code of index 4 of σ⊗4(Ĉ) = Ĉ.

3. The relationship between Cyclic Codes Over R and (1 + u2)-Constacyclic
Codes Over R

Suppose n is odd. Let

µ : R[x]/ 〈xn − 1〉 −→ R[x]/ 〈xn − (1 + u2)〉
r(x) 7−→ r((1 + u2)x)

The µ is a ring isomorphism. So I is an ideal of R[x]/ 〈xn − 1〉 if and only if µ(I) is an
ideal of R[x]/ 〈xn − (1 + u2)〉 .
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If µ is given as follows,

µ : Rn −→ Rn

r = (r0, ..., rn−1) = (r0, (1 + u2)r1..., (1 + u2)
n−1rn−1)

then we have,

Proposition 3.1. A code C of length n over R is cyclic code if and only if µ(C) is linear
(1 + u2)-constacyclic code.

4. (1 + u2)-Constacyclic Codes Over R of Odd Length and Their Images

Firstly, we obtained even length quasi-cyclic codes of index 2 over R2 as the Φ1 Gray
images of (1 + u2)-constacyclic codes over R, later we obtained the Φ2 Gray image of
quasi-cyclic code of index 2 over R2 with length even.

Proposition 4.1. σ⊗2Φ1 = Φ1γ

Proof. Let c = (c0, c1, ..., cn−1) ∈ Rn where ci = ri + u1qi for i = 0, 1, ..., n − 1. If
Φ1(c0, c1, ..., cn−1) = Φ1(r0+u1q0, r1+u1q1, ..., rn−1+u1qn−1) = (u2r0, u2r1, ..., u2rn−1, q0, ..., qn−1)
then σ⊗2Φ1(c) = (u2rn−1, u2r0, ..., u2rn−2, qn−1, q0, ..., qn−2).

On the other hand γ(c0, ..., cn−1) = ((1 + u2)cn−1, c0, ..., cn−2) where (1 + u2)cn−1 =
rn−1+u2rn−1+u1qn−1. Then Φ1(γ(c)) = Φ1((rn−1+u2rn−1)+u1qn−1, r0+u1q0, ..., rn−2+
u1qn−2) = (u2rn−1, u2r0, ..., u2rn−2, qn−1, q0, ..., qn−2). �

Theorem 4.1. A code C of length n over R is (1 + u2)-constacyclic code if and only if
Φ1(C) is quasi-cyclic code of index 2 and length 2n over R2.

Proof. Suppose C is (1 + u2)-constacyclic code, then γ(C) = C. By applying Φ1, we have
Φ1(γ(C)) = Φ1(C). By using the Proposition 4.1 , we have σ⊗2(Φ1(C)) = Φ1(γ(C)) =
Φ1(C). So Φ1(C) is quasi-cyclic code of index 2. Conversely, if Φ1(C) is quasi-cyclic
code of index 2, then σ⊗2(Φ1(C)) = Φ1(C). By using the Proposition 4.1, we have
σ⊗2(Φ1(C)) = Φ1(γ(C)) = Φ1(C). Since Φ1 is injective it follows that γ(C) = C. �

Now, we will obtain the Φ2 Gray image of even length quasi-cyclic code of index 2 over
R2.

Proposition 4.2. σ⊗4Φ2 = Φ2σ
⊗2

Proof. It is proved as in the proof of the Proposition 4.1. �

Theorem 4.2. A code B length 2n over R2 is quasi-cyclic code of index 2 if and only if
Φ2(B) is quasi-cyclic code of index 4 over F2 with length 4n.

Proof. It is proved as in the proof of the Theorem 4.1. . �

Corollary
A code C odd length n over R is (1 + u2)-constacyclic if and only if Φ2(Φ1(C)) is

quasi-cyclic code of index 4 and length 4n over F2.

5. conclusion

It is introduced that the finite ring F2 + u1F2 + u2F2,u
2
1 = u1, u

2
2 = 0, u1u2 = u2u1 = 0.

Also, it is obtained that the Gray image of linear (1 +u2)-constacyclic code over R of odd
length n.
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