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SOME INCLUSION RELATIONS BETWEEN VARIOUS SUBCLASSES

OF PLANAR HARMONIC MAPPINGS INVOLVING CONFLUENT

HYPERGEOMETRIC DISTRIBUTION SERIES

S. PORWAL, §

Abstract. The purpose of the present paper is to establish connections between various
subclasses of harmonic univalent functions by applying certain convolution operator in-
volving Confluent Hypergeometric distribution series. To be more precise, we investigate
such connections with Goodman-Rønning-type harmonic univalent functions in the open
unit disc U.

Keywords: Harmonic, Univalent functions, Confluent Hypergeometric Distribution Se-
ries.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Recently, Porwal [12] introduced a Poisson
distribution series as

K (m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn.

The Poisson distribution series is a recent topic of study in Geometric Function Theory
and co-relates G.F.T. with Probability distribution. It opened up a new and interesting
direction of research in G.F.T. After the appearence of this paper some researchers ([1],
[2], [15]) investigated hypergeometric distribution series, hypergeometric-type distribution
series and confluent hypergeometric distribution series and give some beautiful applica-
tions on various subclasses of analytic and harmonic univalent functions. Noteworthy
contribution in this direction are given in ([5], [6], [10], [14] and [16]). Very Recently, Por-
wal and Kumar [15] generalized the Poisson distribution series by introducing confluent
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hypergeometric distribution series in the following way. For this purpose first we recall
the following definitions.

The confluent hypergeometric function is given by the power series

F (a; c; z) =

∞∑
n=0

(a)n
(c)n(1)n

zn,

where a, c are complex numbers such that c 6= 0,−1,−2, . . . and (a)n is the Pochhammer
symbol defined in terms of the Gamma function, by

(a)n =
Γ(a+ n)

Γ(a)

=

{
1, if n = 0

a(a+ 1) . . . (a+ n− 1), if n ∈ N = {1, 2, 3, . . .}

is convergent for all finite value of z.
Now we define for a, c,m > 0 such that the series

F (a; c;m) =

∞∑
n=0

(a)n
(c)n(1)n

mn

is convergent.
Porwal and Kumar [15] introduce the confluent hypergeometric distribution whose prob-

ability mass function is
(a)nm

n

(c)nn!F (a; c;m)
,

n = 0, 1, 2, . . ..
If we put a = c then it reduce to the Poisson distribution.
Now, we introduce a new series I(a; c;m; z) whose coefficients are probabilities of con-

fluent hypergeometric distribution

I(a; c;m; z) = z +

∞∑
n=2

(a)n−1m
n−1

(c)n−1(n− 1)!F (a; c;m)
zn,

where a, c,m > 0.
Denote by SH the class of functions f = h+ g that are harmonic univalent and sense-

preserving in the open unit disc U for which f(0) = fz(0)−1 = 0. Then for f = h+g ∈ SH ,
we may express the analytic functions h and g as

h(z) = z +

∞∑
n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, |B1| < 1. (2)

We also let the subclass S0
H of SH

S0
H =

{
f = h+ g ∈ SH : g′ (0) = B1 = 0

}
.

The classes S0
H and SH were first studied in [7]. Also, we let K0

H , S∗,0H and C0
H denote

the subclasses of S0
H of harmonic functions which are, respectively, convex, starlike and

close-to-convex in U. Also, let T 0
H be the class of sense-preserving, typically real harmonic

functions f = h + g in SH . For definitions and properties of these classes, one may refer
to [7] or [8], (see also [19]).

For 0 ≤ γ < 1, let

NH (γ) =

{
f ∈ SH : <

(
f ′ (z)

z′

)
≥ γ, z = reiθ ∈ U

}
,
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and

GH(γ) =

{
f ∈ SH : <

{(
1 + eiα

) zf ′(z)
f(z)

− eiα
}
≥ γ, α ∈ R, z ∈ U

}
,

where

z′ =
∂

∂θ

(
z = reiθ

)
, f ′ (z) =

∂

∂θ
f
(
reiθ

)
.

Define

TNH (γ) ≡ NH (γ) ∩ T and TGH(γ) ≡ GH(γ) ∩ T,
where T consists of the functions f = h+ g in SH so that h and g are of the form

h(z) = z −
∞∑
n=2

|An| zn, g(z) =
∞∑
n=1

|Bn| zn. (3)

The classes NH(γ), TNH(γ), GH(γ) and TGH(γ) were initially introduced and studied, re-
spectively, in ([4], [17]). A function f in GH(γ) is called Goodman-Rønning-type harmonic
univalent functions in U.

Now, for a1, c1, a2, c2,m1,m2 > 0, we introduce the operator Ω (f) = Ω

(
a1, c1, m1

a2, c2, m2

)
f(z)

for f(z) ∈ SH as

Ω

(
a1, c1, m1

a2, c2, m2

)
f(z) = I(a1; c1;m1; z) ∗ h(z) + I(a2; c2;m2; z) ∗ g(z) = H(z) +G(z),

where

H(z) = z+

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)
Anz

n, G(z) = B1z+

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)
Bnz

n.

(4)
Throughout this paper, we will frequently use the notation

Ω (f) = Ω

(
a1, c1, m1

a2, c2, m2

)
f,

The purpose of the present paper is an attempt to interconnect between distribution func-
tion and Geometric Function Theory. Motivated by results on connections between various
subclasses of analytic and harmonic univalent functions by using hypergeometric functions,
generalized Bessel functions, Poisson distribution series, hypergeometric distribution se-
ries, hypergeometric-type distribution series and confluent hypergeometric distribution
series (see [1], [2], [3], [9], [11], [13] and [18]), we establish a number of connections be-

tween the classes GH(γ), K0
H , S∗,0H , C0

H and NH(β) by applying the convolution operator
Ω.

2. Main Results

In order to establish connections between harmonic convex functions and Goodman-
Rønning-type harmonic univalent functions, we need following results in Lemma 2.1 and
Lemma 2.2.

Lemma 2.1. (see [7], [8]). If f = h+g ∈ K0
H where h and g are given by (2) with B1 = 0,

then

|An| ≤
n+ 1

2
, |Bn| ≤

n− 1

2
.
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Lemma 2.2. (See [17]). Let f = h+ g be given by (2). If 0 ≤ γ < 1 and

∞∑
n=2

(2n− 1− γ) |An|+
∞∑
n=1

(2n+ 1 + γ) |Bn| ≤ 1− γ, (5)

then f is sense-preserving, Goodman-Rønning-type harmonic univalent functions in U and
f ∈ GH(γ).

Remark 2.1. In [17], it is also shown that f = h+g given by (3) is in the family TGH(γ),
if and only if the coefficient condition (5) holds. Moreover, if f ∈ TGH(γ), then

|An| ≤
1− γ

2n− 1− γ
, n ≥ 2,

|Bn| ≤
1− γ

2n+ 1 + γ
, n ≥ 1.

Theorem 2.1. Let a1, c1, a2, c2,m1,m2 > 0. If for some γ(0 ≤ γ < 1), the inequality

1

F (a1; c1;m1)

{
2
a1(a1 + 1)

c1(c1 + 1)
m2

1F (a1 + 2; c1 + 2;m1) + (7− γ)
a1
c1
m1F (a1 + 1; c1 + 1;m1)

+2(1− γ) (F (a1; c1;m1)− 1)}+
1

F (a2; c2;m2)

{
2
a2(a2 + 1)

c2(c2 + 1)
m2

2F (a2 + 2; c2 + 2;m2)

+ (5 + γ)
a2
c2
m2F (a2 + 1; c2 + 1;m2)

}
≤ 2(1− γ),

is satisfied then Ω
(
K0
H

)
⊂ GH(γ).

Proof. Let f = h + g ∈ K0
H where h and g are of the form (2) with B1 = 0. We need

to show that Ω (f) = H + G ∈ GH (γ), where H and G defined by (4) with B1 = 0 are
analytic functions in U.

In view of Lemma 2.2, we need to prove that

P1 ≤ 1− γ,

where

P1 =

∞∑
n=2

(2n− 1− γ)

∣∣∣∣ (a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)
An

∣∣∣∣+ ∞∑
n=2

(2n+ 1 + γ)

∣∣∣∣ (a2)n−1m
n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)
Bn

∣∣∣∣ .
(6)

In view of Lemma 2.1, we have
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P1 ≤
1

2

[ ∞∑
n=2

(n+ 1)(2n− 1− γ)
(a1)n−1m

n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)

+
∞∑
n=2

(n− 1)(2n+ 1 + γ)
(a2)n−1m

n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)

]

=
1

2

[ ∞∑
n=2

{2(n− 1)(n− 2) + (7− γ) (n− 1) + 2(1− γ)} (a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)

+

∞∑
n=2

{2(n− 2) + (5 + γ)} (a2)n−1m
n−1
2

(c2)n−1(n− 2)!F (a2; c2;m2)

]

=
1

2

[
1

F (a1; c1;m1)

{
2
∞∑
n=3

(a1)n−1m
n−1
1

(c1)n−1(n− 3)!
+ (7− γ)

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 2)!
+ 2(1− γ)

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 1)!

}

+
1

F (a2; c2;m2)

{
2
∞∑
n=3

(a2)n−1m
n−1
2

(c2)n−1(n− 3)!
+ (5 + γ)

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1(n− 2)!

}]

=
1

2

[
1

F (a1; c1;m1)

{
2
a1(a1 + 1)

c1(c1 + 1)
m2

1F (a1 + 2; c1 + 2;m1) + (7− γ)
a1
c1
m1F (a1 + 1; c1 + 1;m1)

+2(1− γ) (F (a1; c1;m1)− 1)}+
1

F (a2; c2;m2)

{
2
a2(a2 + 1)

c2(c2 + 1)
m2

2F (a2 + 2; c2 + 2;m2)

+ (5 + γ)
a2
c2
m2F (a2 + 1; c2 + 1;m2)

}]
≤ 1− γ,

by given hypothesis.
This completes the proof of Theorem 2.1. �

Analogous to Theorem 2.1, we next find conditions of the classes S∗,0H , C0
H with GH(γ).

However we first need the following result which may be found in [7], [8].

Lemma 2.3. If f = h + g ∈ S∗,0H or C0
H , where h and g are given by (2) with B1 = 0,

then

|An| ≤
(2n+ 1)(n+ 1)

6
, |Bn| ≤

(2n− 1)(n− 1)

6
.

Theorem 2.2. Let a1, c1, a2, c2,m1,m2 > 0. If for some γ(0 ≤ γ < 1) and the inequality

1

F (a1; c1;m1)

{
4
a1(a1 + 1)(a1 + 2)

c1(c1 + 1)(c1 + 2)
m3

1F (a1 + 3; c1 + 3;m1) + (28− 2γ)
a1(a1 + 1)

c1(c1 + 1)
m2

1F (a1 + 2; c1 + 2;m1)

+(39− 9γ)
a1
c1
F (a1 + 1; c1 + 1;m1)m1 + 6(1− γ) (F (a1; c1;m1)− 1)

}
+

1

F (a2; c2;m2)

{
4
a2(a2 + 1)(a2 + 2)

c2(c2 + 1)(c2 + 2)
m3

2F (a2 + 3; c2 + 3;m2)

+(20 + 2γ)
a2(a2 + 1)

c2(c2 + 1)
m2

2F (a2 + 2; c2 + 2;m2)

+ (15 + 3γ)
a2
c2
m2F (a2 + 1; c2 + 1;m2)

}
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≤ 6(1− γ),

is satisfied, then

Ω(S∗,0H ) ⊂ GH(γ) and Ω(C0
H) ⊂ GH(γ).

Proof. Let f = h+ g ∈ S∗,0H (C0
H where h and g are given by (2) with B1 = 0). We need

to show that Ω (f) = H + G ∈ GH (γ), where H and G defined by (4) with B1 = 0 are
analytic functions in U. In view of Lemma 2.2, it is enough to show that P1 ≤ 1 − γ,
where P1 is given by (6).

In view of Lemma 2.3, we have

P1 ≤
1

6

[ ∞∑
n=2

(2n+ 1)(n+ 1)(2n− 1− γ)
(a1)n−1m

n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)

+
∞∑
n=2

(2n− 1)(n− 1)(2n+ 1 + γ)
(a2)n−1m

n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)

]

=
1

6

[
1

F (a1; c1;m1)

{ ∞∑
n=2

{4(n− 1)(n− 2)(n− 3) + (28− 2γ)(n− 1)(n− 2)

+(39− 9γ)(n− 1) + 6(1− γ)}} (a1)n−1m
n−1
1

(c1)n−1(n− 1)!

+
1

F (a2; c2;m2)

{ ∞∑
n=2

{4(n− 2)(n− 3) + (20 + 2γ)(n− 2) + (15 + 3γ)}

}
(a2)n−1m

n−1
2

(c2)n−1(n− 2)!

]

=
1

6

[
1

F (a1; c1;m1)

{
4
∞∑
n=4

(a1)n−1m
n−1
1

(c1)n−1(n− 4)!
+ (28− 2γ)

∞∑
n=3

(a1)n−1m
n−1
1

(c1)n−1(n− 3)!

+ (39− 9γ)

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 2)!
+6(1− γ)

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 1)!

}
+

1

F (a2; c2;m2){
4
∞∑
n=4

(a2)n−1m
n−1
2

(c2)n−1(n− 4)!
+ (20 + 2γ)

∞∑
n=3

(a2)n−1m
n−1
2

(c2)n−1(n− 3)!
+ (15 + 3γ)

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1(n− 2)!

}]

=
1

6

[
1

F (a1; c1;m1)

{
4
a1(a1 + 1)(a1 + 2)

c1(c1 + 1)(c1 + 2)
m3

1F (a1 + 3; c1 + 3;m1)

+ (28− 2γ)
a1(a1 + 1)

c1(c1 + 1)
m2

1F (a1 + 2; c1 + 2;m1)

+(39− 9γ)
a1
c1
F (a1 + 1; c1 + 1;m1)m1 + 6(1− γ) (F (a1; c1;m1)− 1)

}
+

1

F (a2; c2;m2)

{
4
a2(a2 + 1)(a2 + 2)

c2(c2 + 1)(c2 + 2)
m3

2F (a2 + 3; c2 + 3;m2)

+ (20 + 2γ)
a2(a2 + 1)

c2(c2 + 1)
m2

2F (a2 + 2; c2 + 2;m2) + (15 + 3γ)
a2
c2
m2F (a2 + 1; c2 + 1;m2)

}]
≤ 1− γ,

follows from the given condition. �

In order to determine connection between TNH(β) and GH(γ), we need the following
result in Lemma 2.4.
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Lemma 2.4. (See [4]). Let f = h + g where h and g are given by (2) with B1 = 0, and
suppose that 0 ≤ β < 1. Then

f ∈ TNH (β)⇔
∞∑
n=2

n |An|+
∞∑
n=2

n |Bn| ≤ 1− β.

Remark 2.2. If f ∈ TNH(β), then |An| ≤ 1−β
n , n ≥ 2 and |Bn| ≤ 1−β

n , n ≥ 1.

Theorem 2.3. If a1, c1, a2, c2 > 1,m1,m2 > 0. If for some β(0 ≤ β < 1) and γ(0 ≤ γ <
1) and the inequality

(1− β)

[
1

F (a1; c1;m1)

{
2 (F (a1; c1;m1)− 1)− (1 + γ)(c1 − 1)

m1(a1 − 1)

(
F (a1 − 1; c1 − 1;m1)− 1− (a1 − 1)

(c1 − 1)
m1

)}
+ 2 (F (a2; c2;m2)− 1) +

(1 + γ)(c2 − 1)

m2(a2 − 1)

(
F (a2 − 1; c2 − 1;m2)− 1− (a2 − 1)

(c2 − 1)
m2

)]
+ (3 + γ) |B1|
≤ 1− γ

is satisfied then

Ω (TNH(β)) ⊂ GH(γ).

Proof. Let f = h + g ∈ TNH(β) where h and g are given by (2). In view of Lemma 2.2,
it is enough to show that P2 ≤ 1− γ, where P2 is given by the following expression

P2 =

∞∑
n=2

(2n− 1− γ)

∣∣∣∣ (a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)
An

∣∣∣∣+ ∞∑
n=2

(2n+ 1 + γ)

∣∣∣∣ (a2)n−1m
n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)
Bn

∣∣∣∣+(3 + γ) |B1|.

(7)

Using Remark 2.2, we have

P2 ≤ (1− β)

[ ∞∑
n=2

{
2− (1 + γ)

n

}
(a1)n−1m

n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)

+
∞∑
n=2

{
2 +

(1 + γ)

n

}
(a2)n−1m

n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)

]
+ (3 + γ) |B1|

= (1− β)

[
1

F (a1; c1;m1)

{
2
∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 1)!
− (1 + γ)

∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1n!

}

+
1

F (a2; c2;m2)

{
2

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1(n− 1)!
+ (1 + γ)

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1n!

}]
+ (3 + γ) |B1|

= (1− β)

[
1

F (a1; c1;m1)
{2 (F (a1; c1;m1)− 1)

−(1 + γ)(c1 − 1)

m1(a1 − 1)

(
F (a1 − 1; c1 − 1;m1)− 1− (a1 − 1)

(c1 − 1)
m1

)}
+ 2 (F (a2; c2;m2)− 1) +

(1 + γ)(c2 − 1)

m2(a2 − 1)

(
F (a2 − 1; c2 − 1;m2)− 1− (a2 − 1)

(c2 − 1)
m2

)]
+ (3 + γ) |B1|
≤ 1− γ,

by the given hypothesis. �

In next theorem, we establish connections between TGH(γ) and GH(γ).
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Theorem 2.4. Let a1, c1, a2, c2,m1,m2 > 0. If for some γ(0 ≤ γ < 1) the inequality

1

F (a1; c1;m1)
(F (a1; c1;m1)− 1) +

1

F (a2; c2;m2)
(F (a2; c2;m2)− 1) ≤ 1− 3 + γ

1− γ
|B1| (8)

is satisfied, then Ω (TGH(γ)) ⊂ GH(γ).

Proof. Making use of Lemma 2.2, we only need to prove that P2 ≤ 1−γ, where P2 is given
by (7). Using Remark 2.1, it follows that

P2 =
∞∑
n=2

(2n− 1− γ)

∣∣∣∣ (a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)
An

∣∣∣∣
+
∞∑
n=2

(2n+ 1 + γ)

∣∣∣∣ (a2)n−1m
n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)
Bn

∣∣∣∣+ (3 + γ) |B1|

≤ (1− γ)

[ ∞∑
n=2

(a1)n−1m
n−1
1

(c1)n−1(n− 1)!F (a1; c1;m1)
+

∞∑
n=2

(a2)n−1m
n−1
2

(c2)n−1(n− 1)!F (a2; c2;m2)

]
+ (3 + γ) |B1|

= (1− γ)

[
1

F (a1; c1;m1)
(F (a1; c1;m1)− 1) +

1

F (a2; c2;m2)
(F (a2; c2;m2)− 1)

]
+ (3 + γ) |B1|

≤ (1− γ),

by the given condition and this completes the proof. �

In next theorem, we present conditions on the parameters a1, c1, a2, c2,m1,m2 and ob-
tain a characterization for operator Ω which maps TGH(γ) on to itself.

Theorem 2.5. If a1, c1, a2, c2,m1,m2 > 0 and γ(0 ≤ γ < 1). Then

Ω (TGH(γ)) ⊂ TGH(γ),

if and only if, the condition (8) is satisfied.

Proof. The proof of above theorem is similar to that of Theorem 2.4. Therefore we omits
the details involved. �

Remark 2.3. If we put a1 = c1; a2 = c2 then we obtain the corresponding results for the
Poisson distribution series.
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