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GEOMETRIC FUNCTION OPTIMIZATION SUBJECT TO MIXED
FUZZY RELATION INEQUALITY CONSTRAINTS

BEHNAZ HEDAYATFAR', ALI ABBASI MOLATI', §

ABSTRACT. In this paper, the mixed fuzzy relation geometric programming problem
is considered. The Mixed Fuzzy Relation Inequality (MFRI) system is an importance
extension of FRI. It is shown that its feasible domain is non-convex and completely de-
termined by its maximum solution and all its minimal solutions. A combination of the
components of maximum solution and one of the minimal solutions solves the optimiza-
tion problem. Some simplification procedures are proposed to solve the problem. An
algorithm is finally designed to solve the problem.

Keywords: Geometric programming, Mixed fuzzy relation inequality, Max-product com-
position, Max-hamacher composition, Non-convex optimization.
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1. INTRODUCTION

One of the interesting and on-going research topics is the optimization of objective
functions on the region defined by FRE or FRI system, for example, see Refs. [1, 2, 3, 4,
5,6,8,9,10, 11, 12, 14, 15, 16, 17, 18, 19]. Fang and Li [2] firstly studied the minimization
problem of a linear objective function provided to a max-min FRE system. Fang and Li’s
method was improved by Wu et al. [13]. The Wu et al.’s method considers much fewer
nodes with respect to Fang and Li’s method. Some simplification rules were given to
reduce the rate of computations to find the optimal solution [14]. A review of the done
works from Fang and Li’s model with different composition operators can be seen in Li
and Fang [7]. Zhang et al. [18] developed the constraints of the model as FRI system.
Then, some researchers improved their method to solve the problem with FRI constraints
[4, 10]. However, all problems and phenomena of real-world cannot be formulated by
linear objective functions. On the other hand, the development of nonlinear objective
function optimization provided to FREs or FRIs is very slowly. Lu and Fang [9] firstly
investigated to this topic with the max-min FRE constraints using Genetic Algorithm
(GA). Then, some researchers followed their works by improving the GA [5, 6]. Recently,
to overcome this topic, some researchers focused on the problem with objective functions
in the different forms such as latticized linear [12, 17], linear fractional [15], quadratic
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[1], geometric [11, 16, 19]. The nonlinear optimization problem with a non-differential
objective function provided to a system of Mixed FREs (MFREs) with the max-min and
max-product composition operator have been considered by Li et al. [8]. They studied
some properties of the problem and presented an algorithm for its resolution. Later, Feng
et al. [3] investigated to the problem with the max-min and max-average composition
operator in a similar method with Li et al’s method. Then, an algorithm was designed
to solve the problem by them. The MFRE programming with a non-differential nonlinear
objective function has only been studied by Li et al. [8] and Feng et al. [3] in literature.
The nonlinear programming problem with MFRI constraints have not been considered up
to now. Motivated from the importance of geometric programming problem and the MFRI
in theory and application, we are interested to consider an extended version of the fuzzy
relation geometric programming problem. This problem is as a geometric programming
problem provided to the mixed fuzzy relation inequality constraints with two operators of
the max-product and max-hamacher composition. In some problems such as covering and
investing problem, we need to variables which should satisfy FRI system with two different
operators and FRI and FRE with an operator cannot handle such situations. We are
motivated to consider the optimization problem on the defined region by the MFRI system.
In this paper, we introduce the MFRI system with the max-product and max-hamacher
composition operators. Then, a closed form is presented to compute its maximum solution.
Moreover, its (quasi-)minimal solutions are obtained using the concept of mixed fuzzy
relation inequality path. It is shown that its solution set is completely obtained by the
maximum solution and the (quasi-)minimal solutions. Also, a necessary and sufficient
condition is proposed for its solution existence. Then, the geometric programming problem
subject to MFRI is decomposed to two sub-problems. They are solved by the maximum
solution and one of the (quasi-)minimal solutions. The optimal solution of the original
problem is computed based on the optimal solutions of the two sub-problems. Some
simplification procedures are given to determine some components of optimal solution of
the original problem. Due to NP-hardness of the problem, each simplification in this area
can be very important. With regard to the above points, an algorithm is designed to solve
the geometric programming problem provided to the MFRI system. The structure of
this paper is as follows. The problem of geometric programming problem provided to the
MFRI system is formulated in Section 2. In Section 3, the feasible solution set of its feasible
domain is completely determined and some of its properties are studied. A necessary and
sufficient condition is also presented for feasibility of the problem. The resolution process
of the problem is expressed in Section 4. In Section 5, some simplification procedures are
given to accelerate the resolution process. Then in Section 6, an algorithm is designed with
regard to the mentioned points in Sections 3,4, and 5. Moreover, a numerical example is
given to illustrate the algorithm. Finally, the conclusions are presented in Section 7.

2. FORMULATION OF GEOMETRIC PROGRAMMING PROBLEM SUBJECT TO MFRI
CONSTRAINTS

The geometric programming problem subject to the MFRI is formulated as follows:
P: Min{ Z(x) = B-Tj_yz;’|Aex’ > d', Box" > d?,Cey < f', Eoy" < f*,z €[0,1]",}

where 8,a; € R, 8> 0,J = {1,...n},I = {1,....,m}, I\B I8 KAB [AB [CE [OF KCE
and LCF are index sets and I{/P N I58 = 0, IFENISE = 0, KAB, LAB KCE [CF C
J, KAB ULAB = J, and KF ULCE = J. Moreover, assume that the following vectors
and matrices are given d' = [d%]iellAs, d? = [d?]ieléw, fl= [fil]iellc’E, A= [ff]ieIQCE, A=

[aij]ieI{‘B,jeKABv B = [bij]ielg‘B,jeLABa ¢ = [Cij]ieIICE,jeKCEa and E = [6ij]ieI§E,jeL0E-
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The components of the vectors and matrices belong to [0,1]. The operators of ”e” and
”70” denote the max-product and the max-hamacher product composition, respectively.
We will now find the vector z = [z;];cs such that it satisfies the constraints of problem
(P) and minimizes its objective function. In the problem (P), we have ' = [z;];c a5,

a" = [rjliepan, ¥ = [vjljexcr, and y" = [zj];cp0m, respectively. problem (P) can
equivalently be written as follows:
Min Z(x) = 3 -117_, J:ij (1)
s.t. max {aw x;} > d} Vi e I8, (2)
JEKA
b;
max Ut s @2 vie 4B, (3)
JELAB “byj + xj — bij - xj
1 ;- 7CE
Jg}?g‘E{QJ ’ ‘T]} < fz 7V7J € Il ’ (4)
Cij * j 2 \; ~ JCE
max < fAvie Iy ™, 5
jELCE{eij+-Tj_€ij'ﬂfj}_fz 2 ( )
0<z;<1, Vje (6)

First of all, we investigate to the structure of its feasible in the next section.

3. THE STRUCTURE OF FEASIBLE DOMAIN OF PROBLEM (1)-(6)

In this section, the structure of feasible domain of problem (1)-(6) is discussed and its
solution set is completely determined. First of all, we introduce some notations as follows.
Assume that a;, b;, ¢;, and e; are the i'h row of the matrices A, B,C, and F, respectively.

S(A,dY); = {z = (¢, 2") € [0, )51 x [0,1)/5""|a; @ 2’ > d, for each i € I*B, (7)
S(B,d2); = {z = (/,2") € [0, 1] K"l x [0, 1]E*"|bjox”" > d2}, for each i € I{B,  (8)
S(C, Y = {z = (/. y") € [0, K" x [0,1]E " c; oy < f11, for each i € ICE,  (9)
S(E, )i = {z = (v,y") € [0, [0, ejoy” < f2}, for each i € IS, (10)

S(A.d) = [ S(Ad) ={z=(2") e [0, x [0,1]#"" |40’ > d'}, (11
i€IpB
S(B,d*) = () S(B,d%); = {z = (2,2") € [0, 15" x [0,1]2""| Boa” > d*}, (12)

icI)B

S(C. M= () SO fMi={z="y") €05 x (o, NCey < f1}, (13)

ielfE

S(E, )= () SE )= {r="y") € 0" x 0,15 Boy” < £}, (14)
i€IFE
S(A,B,d",d?) = S(A,d')S(B,d*),S(C, E, f*, f*) = S(C, [1) N S(E, f?) and
S(A,B,C,E,d*,d? f', f?) = S(A,B,d,d>)NS(C,E, f1, %) = {x € [0,1]"|A e 2’ >
d*, Box" > d?,C ey < 1, Eoy’ < f2}.
With regard to relations (2)-(5), we can obtain the necessary and sufficient conditions of
solution existence for set (7)-(10) in the following lemmas.

Lemma 3.1. (1) = € S(A,dY);, for each i € I{\B, if and only if there exists some
Ji € KAB such that Qij; - Tj; > dil.
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(2) = € S(B,d?);, for each i € I8, if and only if there exists some j; € LAP such
that (biji — d? + bij, df) T, > bij, dl2

(3) = € S(C, f1;, for each i € IFF, if and only if cij-w; < fl,Vj€ KCE,

(4) = € S(E, f2);, for each i € IS, if and only if (e;; — f2 + eij - f2) - x5 < ey - [,

7

Vj e LCE,
Proof. The proofs of parts (1)-(4) can be obtained using the definitions of sets S(4,d");,
S(B,d?);, S(C, f1);, and S(E, f?);, respectively. O

It is necessary to recall the following remark.
Remark1.With regard to Lemma 3.1 (2), € S(B, d?); if and only if there exist j € LAB
such that (b;; — d? + b;; - d?) - z; > b;; - d? . Since b;; - d?,z; € [0,1] it is concluded that
bij — df + byj - d? > 0. Therefore, the following points can be obtained:

(1) We don’t consider the components b;; and d? in the computations that they satisfy
the relation b;; —d? +b;; - d? < 0 and b;; - d? > 0. These components have no effect
on finding the feasible solution set.

(2) If bij—d?—i—bij-d? =0, then bij-d? = 0. Therefore, the relation (bij—d?+b¢j-d?)-$j >
bi; ‘d? is always true, for each x; € [0, 1]. Therefore, we can remove the components
b;; and d? that they satisfy the relation b;; — d% + bij - d? =0.

(3) If d? > 0 and bi; = 0, then x; can only take zero value for satisfying the relation.
Hence, we exclude the obvious cases mentioned in Remark 1 from my considerations. We
are now ready to express the necessary and sufficient conditions for existence of solution
set S(A,db) .

Lemma 3.2. (1) S(A,d") # O if and only if for each i € I{'B there exists some
i € KAB gych that aij; > d}.
(2) S(B,d?) # 0 if and only if for each i € I{\B there exists some j; € LAP such that

bij, > d3.
(3) If S(A,dY) #0, then 1= [1,1,...,1]1,, is the greatest element in set S(A,d").
(4) If S(B,d?) # 0, then T =[1,1,...,1]1,, is the greatest element in set S(B,d?).

Proof. The proofs of parts (1) and (3) are similar to the proofs of parts (2) and (4),
respectively. We present the proof of part (2). Assume that S(B,d?) # () and (2/,2") €
S(B,d?*). Hence, we can write (z',2") € S(B,d?);,Vi € I5*P. Therefore, it is concluded
that for each i € I3'P, there exist some j; € LAP such that (b;;, — d? + by, - d?) - xj, >
bij, - d? > 0 with regard to part (2) of Lemma 3.1. Since (2/,2") € S(B,d?), we have
z" € [0, 1]|LAB|. Hence, we have b;j, —d? +b;j, -d? > b;;, -d2,Vi € I8, Then it implies that
there exists an j; € L8 such that bij, > d%. Conversely, assume that there exists j; € LAP
such that b;;, > d?,Vi € I8 or equivalently,b;;, — d? + b;;, - d2 > b;j, - d?,Vi € I#B. Let

r=1=][1,1,.., 1%, . Since 2’ € [0,1]IF "I and zj, =1> bi]_i_d%’w,w € I4'B, then
x € S(B,d?);,Vi € I8, Therefore x € S(B,d?).
(4) Tt is easily proved by using part (2) and x € [0,1]™. O

We are now ready to present the conditions of solution existence and introduce the
greatest and smallest element of the sets in (21)-(24) in the following lemmas.

Lemma 3.3. (1) S(A, B,d',d*) # 0 if and only if we have (a) Yi € I{'B,3j; €
KABs.t. a;;, > d}, and (b) Vi € 3B, 3j; € LAPs.t. by, > d?.
(2) If S(A,B,d,d?) # 0, then T = [1,1,...,1]},,, is the greatest element in the set
S(A,B,d', d?).
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Proof. They are direct result from Lemma 3.2. O

Lemma 3.4. (i)S(C, 1) # 0, (ii)S(E, %) # 0, (iii)S(C, E, f', f2) # 0, (iv)the smallest
element in sets S(C, f1),S(E, f?), and S(C, E, f1, f?) is vector 0 = [0,0,...,0]1, . .

Proof. Tt is obvious that 0 is a feasible solution in sets S(C, f1), S(E, f?) and S(C, E, £, f?).
Therefore, the sets of S(C, f1), S(E, f?) and S(C, E, f!, ?) are not empty. On the other
hand, since x € [0,1]", it is easily seen that 0 is the smallest element of the sets of

S(C, f1), S(E, f?) and S(C, E, f*, f*). .

Definition 3.1. Let T = [Tj],x1 where

Necres {2\ f} < e}, G € KOPA\ LOF,

Ej = /\ZEIC {%_;277—"_;]02‘ ij > f2} ] I~ LCE\KCE

(/\zEICE{i |f1 Clj}) /\(/\16120 {ei,efgﬁkzj > f }) VES LCEHKCE
where A0 = 1.

Lemma 3.5. (i) T € S(C, E, f', f?), (ii) the vector of T = [Tj]nx1 defined in Definition
3.1 is the mazimum solution of set S(C, E, !, f?).

Proof. Assume that j € K¢F\ L¢F. If {%Lf} < ¢ij} # 0, then z; < %, for each
1 € IlcE. Hence, we have c;; - 7; < fil, for each i € IlcE. Thus, it is concluded that
maX;egee{cij - Tj} < fl, for each i € IFF. Now, suppose that j € LEF\ K¢F. Then if
{%Mg > f2}) # 0, we have T; < % Hence, % < f2,Vie
ISP, Therefore, we obtain that maxjech{%} < f2, for each i € I{F. If
j € L°F N KYF we can obtain a similar result with the above. Hence it is concluded that

z € S(C,E, f', f?). If the sets of {%Lﬁ < ¢} or {%km > f2} be empty, the

proof becomes easier and we can again obtain a similar result. Hence, T € S(C, E, f1, f?).
(ii) The proof is obvious according to the definition of T. O

Corollary 3.1. S(C, E, f', f*) = {z = (v,y") € [0,1]"|C ey < f!, Eoy” < f*} = [0,7]
where 0 and T are the zero vector and the mazximum solution according to Definition 3.1,
respectively.

Lemma 3.6. The mazimum solution of two sets S(A, B,C, E,d', d?, f!, f?) and S(C, E, f!
, [?) is the same.

Proof. Suppose that Z and T are the maximum solutions of sets S(A4, B, C, E, d", d?, f!, f?)
and S(C, E, f, f?), respectively. By contradiction, assume that Z # Z. Since

S(A,B,C,E,d",d?, ', f?) C S(C,E, f, f?), we have & € S(C, E, f', f?). On the other
hand, 7 is the maximum solution of S(C, E, f!, f?). Hence, it is concluded that T > %,
& #7, and T ¢ S(A,B,C,E,d",d? f!, f?). Since z ¢ S(A,B,C,E,d",d?, f!, f?), there
exists i € I\ or i € I3 such that a; ¢ 7 < dl < a; e &' or bor" < d? < bjod".
Moreover, since T > &, we have 7; > &, for each j € K AB ULAB . On the other hand,
we have 0 < a;5,b;; < 1, for each 7 and j. Hence, it is concluded that for each i, we have
a; 8T > alo:fu and b;ox” > b;0z"”. However, these statements contradict with a;ex’ < a;ei’
and b;0x” < bjoz”. Therefore & = 7. O

With regard to the above lemma, we can obtain a necessary and sufficient condition for
existence of solution of set S(A, B,C, E,d',d?, f!, f?) in the following lemma.
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Lemma 3.7. The set of S(A, B,C, E,d',d?, f', f2) # 0 if and only if vector T defined by
Definition 3.1 satisfies relations (2)-(6).

Proof. if S(A, B,C, E,d",d?, f', f?) is nonempty, then the maximum solution of S(4, B, C
JE,d', d?, f1, f?) is computed by Definition 3.1 with regard to Lemma 3.6. Moreover, the

vector T satisfies the relations (2)-(6) with attention to the definition of set S(A, B, C, E, d*,
d?, f1, f?) . The proof of its converse is obvious. O

The solution set of a mixed FRI problem, i.e., S(A4, B,C, E,d",d?, f!, f?), is determined
by a unique maximum solution and a finite number of minimal solutions. The maximum
solution is easily computed by Definition 3.1 compared with computing the minimal so-
lutions. We know that obtaining the minimal solutions of S(A, B,C, E,d',d?, f!, f?) is
more difficult. We investigate below the method for obtaining the minimal solutions of
mixed FRI in details. Some concepts and theorems related to the minimal solutions are
first given.

Definition 3.2. Suppose that T is the maximum solution of set S(C, E, f1, f?), the matrix

RA = [’I”g]ielle’jeKAB and RP = [Tg]ieléqBJeLAB are called FRI characteristic matrices

corresponding to the matrices of A and B, respectively, where Yi € If‘B,j e KAB, rl’;‘- =
{ 1 Qi+ Ti > d 1 bﬁ# d;
ij s ¢ JAB ;i o [AB B _ itz b w; = i
UoandVie Iy, je L ) T = Tl 1

O T <d N T A

Define a series of index sets by J{ = {j € KAB|T;;‘- =1}, for each i € I{*¥, and JP =
{j e LAB|7“5 = 1}, for each i € I{\B, and a series of index sets by I]A ={ie If‘B]r:g- =1},
for each j € KAB and I]B ={ie€ I{‘Bmg =1}, for j € LAB.

Definition 3.3. (i)A vector p? = (pf)iejfxs is called a FRI path of inequality (2) if for

any i € I{*, we have p{* € JA. Denote P4 the set of all the FRI paths of (2).
(ii)A vector pP = (pf)ieléw is called a FRI path of inequality (3) if for any i € I3\B, we
have pP € JP. Denote P4 the set of all the FRI paths of (3).

We are now ready to present the necessary and sufficient conditions for solution existence
of system (2)-(6).

Theorem 3.1. The solution set of system (2)-(6) is not empty if and only if every row
of the FRI characteristic matrices R4 and RP has at least one non-zero component.

Proof. (Sufficiency)suppose that every row of R4 and RP has at least one non-zero com-
ponent. For any i € I{B(JI5'P, there exists j; € KAB|JLAP such that rA # 0 or

rgi # 0. Define p = p*|Jp® where p?t = (pfl)ielf‘B and p? = (p? )ZEIQAB and compute
a? = (2%) jexan s as follows:

\/ZGI B{am ‘pz it iijKAB\LAB,
ot =3 Viepsly =iz ,dzzH; 2’ =i}, if je LA\ KAP,
(\/zGIAB{aZ ‘Pz _J})\/(\/iejng{m’Pz =j}), ifje€ KABHLAB,

where \/ () = 0 is defined.
For any j satisfying x? = 0, we will have three cases as follows:

(1) If j € KAB\ LA, then 2 = \/;cpan{2: Ipz =j}> & -, Vi € I{'P
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: AB\ JrAB p_ bij-d? B _ bij-d? :
(2) If j € L2% \ K77, then 2} = \/iEI{‘B{bij—deerij-df lpP = j} > bij_d§+bij'd?7VZ €
158

. dl . ij-d?
(3) If j € KAPNLAP, then af(Viepan{zlpi = 7DV Viers B{b._dﬁw!pz =

. d} . bij-d? . AB
Jj}) > @,VZEII oraj > 7zj—d?+bij‘d?7VZ612 )

With regard to parts (1) and (3), it is concluded that for each j € K48 a;;- xf > d},Vie

I{*B. Hence we have max ;e gas{a;; - :U } > d}, Vi € I{*B. Therefore, A - 2?" > d. With

2

regard to parts (2) and (3), it is concluded that for each j € LAP f > %,W €
B

— > d?,Vi € I3'B. Hence, we have

b¢j+x§ 71)7;]'-33?

IQAB , or equivalently for each j € LAB,
J

bij d} _
max;cyas{ 3 i B} > d?,Vi € I3'B. Therefore, BoxP® > @2 2P = 4 < 7,
JeL J a J
bZJ-I—.Z‘ —bij" J ©]
bi;-d?
or of = —24% > 7. V) € LAB. Thus 2” solves C oy < f! and Eoy” < f2.
J bij—d2+b;;-d2 J

Consequently we conclude that z? is a solution of (2)-(6).

(Necessity) Suppose that the solution set of (2)-(6) is not empty. If there exists a row of
matrices R4 or RE, say the i*" row of matrix R4, i € I f‘B , whose components are all zero,
then a;;-T; < d, for each j € KAB_ Since an arbitrary solution 20 of S(C, E, f', f?) must
satisfy 20 < 7, one has a;; -mg < d} for any j € KAB_ Consequently, A e z0 < d'. This
implies that the solution set of (2)-(6) is empty. This contradicts the assumption that the
solution set of (2)-(6) is not empty. We can similarly obtain the contradiction if the it"
row of matrix RP, i € I{‘B , is empty. ]

The following theorem determines the structure of feasible domain of problem (1)-(6).
Theorem 3.2. Suppose that S(A, B,C, E,d',d?, f!, f?) # 0. Let p € P be a mized FRI

path of (1)-(6) and T be the mazimum solution of (2)-(6). Define xP = (:cf)jeKAB ULAB
by

Viera B{% it =4}, if j € KAB\ LAB,
byj-d2 : e
x; = VieIQB{m“%B:]}a if j€ LAB\ KAB,
(\/iejfl {az |pz —]})\/(\/iejé‘lB{bﬁﬁ\Pz =7}, ifjeKABﬁLAB,
(15)

where \/ 0 = 0 is defined and j € J. Then the solution set of mized FRI (2)-(6)is as
follows: S(A,B,C, E,d', d?, f!, f?) = Upep{x|x7’ <z <7}

Proof. Suppose that z is an arbitrary solution of system (2)-(6). Then x satisfies inequality
Cey < fl and Eoy” < f2. Hence, z < Z. On the other hand, x satisfies inequality
Aoz’ > d' and Box” > d*. Therefore, we have:Vi € I{'B mazx e as{aij.z;} > di,

AB b;j.x
and VI3'®, maz;cpas {53

W} > d?. With regard to above statements, there exists
) J VR

b’l
ji € KAP such that a;;, - z;, > d} and there exists j; € LAP such that M—_gtm > d2.
i3y T3 Vigy g

Let qi1 = j; and ql-2 = j;. Thus , for any j € K AB | JLAB | we have the following three cases:

(1) If 4§ GKAB\LAB then x; >\/161A {am|qz =7} >\/161A {am |PZ —J}_95
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2 . bij-d?
(2) Ifj € LAB\KAPB then x; > \/ZGIAB{m\% =j} = \/ielé“B{W’piB

=j} =1,

(3) If j € KAB(NLAB, then x; > (Viera B{a”‘qz = J})\/(\/igzg\B{mmz =
, byj-d? o
it) = (\/zEIAB{a” pit = j}) \/(\/ig;B{bij_dlzjwM =Jj}= 90?-

Therefore, we conclude that = € S(A, B,C, E,d',d?, f', f?). To compute the proof, we
show that for any p € P vector zP is a solution of system (2)-(6). For any i, if p; = pf‘,

dl
then IziA = Vierar {a ” lpt = pit} > ;,A and hence \/;cean (az; - 27) > d}. Therefore,
ped2

b
. . k
the inequality A e zP > d! holds. If p; = p?, then 1:;3 = \/keIQAB{—bk ~ dp’“er & |pk =

bij-x; . .
v and hence \/ ;¢ LAB(W%) > d?. Therefore, the inequality

dl
BoxP > d2. If pi € LAB ﬂKAB, then we have xié = (VieIle{%‘pl =pi}) VVieraz
pd? Z
{m\pl = p{l}) > -*-. We can conclude that Vjeras(ai - %) > >dl If pP e
AB AB p di | A_ B bipr 7 B
2 1

-d;
B k3 bzg x]

2— We can conclude that AB > d2 Therefore, we
B—di+b,, JjeL bij+al

—bjj- ac
have Boa:p > d2. Wlth regard to definition z?, for any j € J, there exist some k; such
1

d
p_ kK —
that T = ar.s and pg; = j or @

p bk]Jdk
j_bkj d +bkjd2

and pg; = j. Since ay,; - Tj > d,lcj
or W d2 , we have x <7j,j € J,ie., aP < 7. This implies that xP solves
the inequality C e 3/ § ' and Eoy” < f2. Since the solution set is not empty, vector T
must be one of the solutions. Therefore, we conclude that S(A, B,C, E,d",d?, f', f?) is
the solution set of the inequalities (2)-(6). The proof is completed. O

From the above theorem, we conclude that for any p € P, vector «P is a solution of
inequality (2)-(6). We call 2P a quasi-minimal solution of system (2)-(6). The above
theorem also shows that X C {2P|p € P} where X denote the set of all the minimal
solutions of system (2)-(6). We are now ready to present the resolution process of problem
(1)-(6) in the next section.

4. THE RESOLUTION PROCESS OF PROBLEM (1)-(6)

In order to solve the problem (1)-(6), we first convert it into two sub-problems as
follows: SP1: Min{f-[;cp+ 2;’ |z € S(A, B,C, E,d",d? f', f*)}, and SP2: Min{§-
[Ticr- 2’|z € S(C,E, f', )}, where R* = {jlaj; > 0,5 € J} and R~ = {j[ey < 0,5 €
J}. We now focus on the resolution of sub-problems (SP1) and (SP2), respectively, in
two following lemmas.

Lemma 4.1. The optimal solution of sub-problem (SP2) is T, i.e., the mazimum solution
Of S(A7 B? C? E? dl? d27 f17 f2) or S(C’ E? f17 f2)'

Proof. Since function Hje - m]% is a decreasing function with respect to each variable
€ [0,1], for j € R™, then the optimal solution of sub-problem (SP2) is T. O
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Lemma 4.2. The optimal solution of sub-problem (SP1) is one of the element of set
{zP|p € P}.

Proof. with regard to Theorem 3.1, S(A, B,C, E,d",d?, f1, f?) = Upep[ajp,f]. On the
other hand, since ] JER+ IL‘?j is an increasing function with respect to each variable z; €
[0,1], for each j € RT, then for each x € S(A4,B,C, E,d',d?, f!, f?), there exist some
p € P such that 2P < x. Therefore, one of elements z?,p € P, such that HjeR+ (ZL‘?*)aj =
minpep{[];cp+ (%)% |p € P} solves the sub-problem (SP1). O

With regard to two Lemmas 4.1 and 4.2, we present the following theorem to find the
optimal solution of the original problem (1)-(6). Let Z* and z* be the optimal solutions of
sub-problems (SP1) and (SP2), respectively. A new vector z* = (z%,...,2%)7 is defined
as:a:; is equal to g}‘f, ifc; > 0, and T;, ifcj < 0,Vj € J. Then we have the following

theorem.
Theorem 4.1. The vector of x* is an optimal solution of the problem (1)-(6).
Proof. With regard to two Lemmas 4.1 and 4.2, we have Z(z*) = B(][;cg-(2])7) X

(Mjere (£5)%) = BTTen- @) ([epe (02)%) < BTTen- ()™ x [epe (a)%) =
Z(z). For each x € S(A, B,C, E,d',d?, f!, f?). Therefore, z* is an optimal solution of the
problem (1)-(6). O

In order to compute the optimal solution z*, we need to find the vectors of T and 2P
with regard to Theorem 4.1. The vector T is easily computed from Definition 3.1. The
vector of 27" is obtained by pairwise comparison between the elements of set {xP|p € P}.
The computation of vector P is usually hard and time-consuming, if the set P has many
elements. Therefore some rules are proposed to simplify the problem (1)-(6). Under these
rules, some of rows and columns of problem (1)-(6) are removed and its original problem
is decomposed into several sub-problems with smaller dimensions. Then we can find the
vector 2P~ in a smaller search domain and the operations accelerate the resolution process
of the sub-problem (SP1).

5. SOME RULES FOR REDUCTION OF PROBLEM (SP1)

In this section, some theorems are presented to reduced the size of problem (SP1).
Applying these theorems, some of the z’s of optimal of the problem (SP1) can be deter-
mined immediately without solving the problem (SP1). At first, it is necessary to recall
the notation A C B, for the set A and B, is equivalent to A C B and A # B. We assume
that S(A, B,C, E,d',d?, f', f?) # 0 in the following theorems and corollaries.

Theorem 5.1. If for some ig € I{'B, there exists jo € KAP\ LAP such that (1) |J{3| =1

d} dl
A . " i . A . .
and Ji = {ji,}, and (2) ﬁ > . for each i € 1Ijo, then for any optimal solution
d'L'
x* = (2%, ...,2%)T of problem (SP1), we have T, = az‘o(;‘o'

d}
Proof. Since J5§ = {ji,} and —> > % for each i € I#, then for each FRI path
i50

Aigjg — @ Jo?

p = p*Up” where p* = (p);eran, 0¥ = (P)serpn, and jo € KAP N\ LAP, ol =
1 d} . . .
Vier a B{j—;j|pf =jo} = ai;(g)'o with regard to Theorem 3.1. Hence, for any optimal solution
d!

* Lok g
x*, we have: Tho = argse” ]
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Theorem 5.2. If for some ig € 138, there exists jo € LAP \ KAP such that (1) |Jz-]03\ =1

and JB = {jio}, and (2) iy Vi iy
io — WioJ> bigio— 2+ bigje = byg—ditdr-

, for each i € IB, then for any
1050 1090 bijo J0
2
d2 iy,

optimal solution x* = (x%,...,x%)T of problem (SP1), we have x% = 0 2 )
Jo bigjg—djy +di -bigjo

n

di) bigdo d?-bij,

1040 _dgo +d120 bigio T big _d12+d12'bij0
_ LA B A _ A B __ B .

for each FRI path p = p*Jp” where p* = (p; )z‘eI{‘B and p” = (p; >i612AB7 and jo €

d2-by, . 2 big
KABN\ LAB 2P =/, i |pF = jo} = g . O
VAT a0 = Viengo i, 00 = 0o} = 55 =i s a v,

Proof. Due to Jf = {Jio} and 3 , for each i € IP, then

Jo?

1070

We are now ready to design an algorithm for solving the problem (1)-(6) with regard
to the mentioned points in Sections 2,3, and 4.

6. AN ALGORITHM FOR SOLVING PROBLEM (1)-(6)

We present an algorithm to solve problem (1)-(6) with regard to the expressed points
up to now.
Algorithm 1. Suppose that the problem (1)-(6) has been given.
Stepl. Compute the maximum solution Z by Definition 3.1.
Step2. Compute the characteristic matrices R and R? corresponding to matrices A and
B, respectively.
Step3. Check the feasibility of problem (1)-(6) with regard to Theorem 3.1. If the problem
is infeasible then stop! Otherwise go to Step 4.
Step4. Create tow sub-problem (SP1) and (SP2).
Step5. The maximum solution solves the problem (SP2) with regard to Lemma 4.1.
Then z} = T;, for each j € J~ = {j € J]a; < 0}. Delete the columns corresponding to
these variables from the constraints.
Step6. 1Check the condition of Theorem 5.1. If the conditions are satisfied, then set

x;o = a”ﬂ) and delete the column corresponding to this variable from the constraints, i.e.,
030
column 7.
Step7. Check the condition of Theorem 5.2. If the conditions are satisfied, then set
d2 -big; . . .
xt = ——0-99 _ and delete the column corresponding to this variable from the
Jo bigio—d2,+d2 bigjq

constraints, i.e., column jg.
Step8. Compute the MFRI paths of the reduced system (2)-(6) and call it as P. Find

the optimal solution of reduced problem using the following 1"ela‘cion:1_[jE R+ (xg’*)aj =
minpeP{ngR+ (aé?)%' lp € P}.

Step9. Obtain the optimal solution of problem (1)-(6)using Steps 1-8.

We now illustrate the algorithm by an example.

Example 6.1. Consider the problem (P), where z = z3 x 292 Pxaptxadd xag?a =

[$17$4>$5]T7 = [ZL‘Q,ZII?,,ZIIG]T, y/ = [':Ulal'%xﬁ]T) y” = [x37$47$5>$6]T7

Xﬂfg

1 09 0.85 0.3 0.2 0.5 0.3 0.18
01 02 08 |,B=| 06 07 04 |,dt=| 025 |,d®>=| 03 |,
03 04 1 0.8 0.5 0.1 0.15 0.4

A
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0.6 0.3 0.8 0.3
1 02 01 04 (02 04 05 03 1| 0.2 9 [ 0.45
¢= 0.5 0.6 0.7 B = ( 1 06 03 0.5 > = 0.4 = < 0.2 ) ’
0.4 0.3 0.2 0.5
Column numbers of matrices A, B, C, and E are 1,4,5; 2,3,6; 1,2,6; and 3,4,5,6, respec-

tively.
Step1. The mazximum solution is as: T = [0.5,0.6667,0.2,0.2308,0.375,0.25]7".
Step2. The characteristic matrices R and RP are as follows:

1 01 101
RA=1 011 |andRBE=|1 0 0
1 01 100

Step3. Since each row of matrices R and RP has at least one non-zero component, the
feasible domain of the problem is not empty.
Step4. Sub-problem 1: min{z} x 29? x 29%x € S(A,B,C,E,d',d?, f1, f*)} and sub-
problem 2: min{x;4 X x;l X 336_2|x € S(C,E, f1, f3)}.

Stepd. x5 =73 = 0.2, 23y =74 = 0.2308, and x5 = Te = 0.25. Remove the columns 3,4,
and 6 from R* and RE.
Steps 6 and 7. The conditions of Theorem 5.2 are only hold for this problem. Then we
have: x% = max{0.3103,0.375,0.4444} = 0.4444. Remove column 2 from updated matric
RB. Hence RP = .
Step8. P4 = {(1,5,1),(1,5,5),(5,5,1),(5,5,5)}. The xP’s corresponding to them are
as: XP* = {(0.5,0.3125), (0.3,0.3125), (0.3529,0.5), (0,0.3529) }. Hence, x; = 0.3529 and
xt = 0. Therefore, we conclude that z* = [0.3529,0.6667,0.2,0.2308,0,0.25]7 with 2* = 0.

7. CONCLUSIONS

The geometric programming problem subject to MFRI with two operators of max-
product and max-Hamacher composition is studied in this paper. The structure of feasible
domain was completely determined by its unique maximal solution and minimal solutions.
Then the resolution process of the problem was expressed. Moreover, some sufficient
conditions were presented to simplify the problem. Finally, an algorithm was designed
to solve the problem. With regard to the structure of MFRI system, the procedures
are not only rules to simplify the problem. Due to NP-hardness of the problem, each
simplification in this area can be very important. Obtaining other procedures in this area
can be considered as a research work in future.
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