
TWMS J. App. Eng. Math. V.9, N.2, 2019, pp. 186-197

EXPONENTIAL DOMINATION OF TREE RELATED GRAPHS

A. AYTAÇ1, B. ATAY ATAKUL2, §

Abstract. The well-known concept of domination in graphs is a good tool for analyzing
situations that can be modeled by networks. Although a vertex in the graph can exert
influence on, or dominate, all vertices in its immediate neighbourhood, in some real world
situations, this can be change. The vertex can also influence all vertices within a given
distance. This situation is characterized by distance domination. The influence of the
vertex in the graph doesn’t extend beyond its neighbourhood and even this influence
decreases with distance. Up to the present, no framework for this situation has been put
forward yet. The dominating power of the vertex in the graph decreases exponentially,
with distance by the factor 1/2. Hence a vertex v can be dominated by a neighbour of
v or by a number of vertices that are not too far from v. In this paper, we study the
vulnerability of interconnection networks to the influence of individual vertices, using
a graph-theoretic concept of exponential domination number as a measure of network
robustness.

Keywords: Graph vulnerability, Network design and communication, Domination, Ex-
ponential domination number, Trees.
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1. Introduction

Network designers attach importance of reliability and stability of a network. If the
network begins losing communication links or processors, then there is a loss in its ef-
fectiveness. This event is called as vulnerability of communication networks[11, 12]. The
vulnerability of communication networks measures the resistance of a network to a disrup-
tion in operation after the failure of certain processors and communication links. Network
designs require greater degrees of stability and reliability or less vulnerability in commu-
nication networks.
Graph theory has become one of the most powerful mathematical tools in the analysis
and study of the architecture of an interconnection network. It is well known that the
underlying topology of an interconnection network is modeled by the graph. Throughout
this paper, all graphs considered are simple and connected. Let G = (V,E) be a simple
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connected graph with a vertex set V = V (G) and an edge set E = E(G). For any vertex
v ∈ V (G), the open neighbourhood of v is N(v) = {u ∈ V (G)|uv ∈ E(G)} and closed
neighborhood of v is N [v] = N(v) ∪ {v}. The degree of v in G denoted by deg(v), is the
size of its open neighborhood. The distance d(u, v) between two vertices u and v in G is
the length of a shortest path between them. The diameter of G, denoted by diam(G) is
the largest distance between two vertices in V (G)[13, 27].
Many graph theoretical parameters such as connectivity, toughness, integrity, binding
number, domination number etc., have been used in the past to describe the stability of
communication networks [2, 4, 5, 6, 7, 8, 9, 10, 24, 25, 26].
Domination in graphs is one of the concepts in graph theory which has attracted many
researchers to work on it because of its many and varied applications in such fields as lin-
ear algebra and optimization, design and analysis of communication networks, and social
sciences and military surveillance [23]. A set S ⊆ V (G) is a dominating set if every vertex
in V (G)− S is adjacent to at least one vertex in S. The minimum cardinality taken over
all dominating sets of G is called the domination number of G and is denoted by γ(G).
Many variants of dominating models are available in the existing literature. The expo-
nential domination number is one of these. It has been defined recently by Dankelmann
et al. [16]. In their model, the dominating power of a vertex decreases exponentially, with
distance by the factor 1/2. Hence a vertex v can be dominated by a neighbour of v or by a
number of vertices that are not too far from v. Such a model could be used, for example,
for the analysis of dissemination of information in social networks, where the impact of
the information decreases every time it is passed on.
Let S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) to
be the length of a shortest u − v path in V (G) − (S − {u}) if such a path exists, and ∞
otherwise. If, for each v ∈ V (G) we have

ws(v) =

{ ∑
u∈S 1/2d(u,v)−1, if v /∈ S

2, if v ∈ S
wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinality of an
exponential dominating set is the exponential domination number,γe(G) such a set is a
minimum exponential dominating set, or γe -set for short. If u ∈ S and v ∈ V (G)−S and

1/2d(u,v)−1 > 1, then we say that u exponentially dominates v. This can be thought in the
following way: each vertex dominates its neighbours, 1/2-dominates those at distance 2,
and so on. Note that if S is an exponential dominating set, then every vertex of V (G)−S
is exponentially dominated, but the converse is not true [1, 16].
Throughout this article, the largest integer not larger than x is denoted by bxc and the
smallest integer not smaller than x is denoted by dxe .
The paper proceeds as follows. In Section 2, some known results are given. There are
different classes of tree related graphs that have been studied for variety of purposes such
as binomial tree, comet graph, complete k − ary tree, Et

p graph and regular caterpillar
graph. The exponential domination number values for tree related graphs are developed
in Section 3. Finally, concluding remarks of this paper are given in Section 4.

2. Basic Results

In this section, we give some known results on exponential domination number and
definition of complementary prisms. We determine the exponential domination number of
complementary prisms. We obtained new result.
The complement G of a simple graph G is the simple graph with vertex set V (G) defined



188 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

by uv ∈ E(G) if and only if uv /∈ E(G).
Complementary prisms were first introduced by Haynes, et al. in [22]. For a graph G,
its complementary prism, denoted by GG, is formed from a copy of G and a copy of G
by adding a perfect matching between corresponding vertices. For each v ∈ V (G) let v
denote the vertex v in the copy of G. Formally GG is formed from G ∪G by adding the
edge vv for every v ∈ V (G) [21, 22].

Definition 2.1. [18] The graph with n vertices labeled x1, x2, ..., xn and edges x1x2, x2x3, ..., xn−1xn
is called a path of length n− 1, denoted Pn. The cycle of length n, Cn is the graph with n
vertices x1, x2, ..., xn and the edges x1x2, x2x3, ..., xnx1.

Theorem 2.1. [16] For every positive integer n, γe(Pn) = d(n+ 1)/4e.

Theorem 2.2. [16] For every positive integer n ≥ 3,

γe(Cn) =

{
2, if n = 4
dn/4e, if n 6= 4

.

Theorem 2.3. [16] If G is a connected graph of diameter d, then γe(G) ≥ dd+2
4 e.

Theorem 2.4. [16] If G is a connected graph of order n, then γe(G) ≤ 2
5(n+ 2).

Theorem 2.5. [16] Let G be a connected graph of order n and T a spanning tree of G.
Then γe(G) ≤ γe(T ).

Theorem 2.6. [16] For every graph G, γe(G) ≤ γ(G). Also, γe(G) = 1 if and only if
γ(G) = 1.

Lemma 2.1. [16] There exists a tree T of order 375 with γe(T ) = 144.

Lemma 2.2. Let G be any connected graph of order n. If G has a vertex with degree
n− 1, then γe(G) = 1

Proof. Let S be γe -set of G. If we add the vertex v with deg(v) = n − 1 to S, then
wS(u) = 1 satisfies for all vertices of G. Hence, we have γe(G) = 1. �

Lemma 2.3. Let G be any connected graph of order n and diameter 2. If G has not a
vertex with degree n− 1, then γe(G) = 2.

Proof. Let S be γe -set of G. Since there is not a vertex which is adjacent to all vertices of
G, d(u, v) ≤ 2 for u in V (G)− S and every v in S . Hence, the vertices of S contribute at
least 1/2 to wS(u). Thus, at least two vertices must be in S to satisfy wS(u) ≥ 1. Then,
we have γe(G) = 2. �

Definition 2.2. [19] The corona (G1 ◦ G2) of two graphs G1 and G2 is defined as the
graph G obtained by taking one copy of G1 (which has p1 points) and p1 copies of G2, and
then joining the ith point of G1 to every point in the ith copy of G2.

Definition 2.3. [20] Let G1 and G2 be two graphs with vertex sets are V (G1) and V (G2);
edge sets are E(G1) and E(G2) respectively. Then, the join of G1 + G1 of two graphs
G1 and G2 is the graph with vertex set V (G1 + G2) = V (G1) ∪ V (G2) and edge set
E(G1 +G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

Theorem 2.7. [3] Let G1 and G2 be any two graphs. Let (G1 ◦ G2) and (G1 + G2) be
corona and join operations of G1 and G2, respectively.

a) For any two graphs G1 and G2, γe(G1 ◦G2) ≥ ddiam(G1◦G2)
2 e.

b) Let G1 and G2 be any two graphs. If diam(G1) < diam(G2), then γe(G1+G2) = γe(G1).
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Theorem 2.8. [13, 27] If G is a simple graph and diam(G) ≥ 3, then diam(G) ≤ 3.

Corollary 2.1. [13, 27] If the diameter of G is at least 3, then γ(G) ≤ 2.

Theorem 2.9. Let G be a connected graph with n vertices. The exponential domination
number for GG with 2n vertices is 2.

Proof. The graph GG contains two subgraphs G and G. Although the graph G is con-
nected, the complement graph G can be disconnected. There are two important cases for
creating γe−set of GG. Let S be a γe−set of GG. (1) The vertices of S are selected from
the vertices of connected subgraphs G or G, that is S ⊆ V (G) or S ⊆ V (G). (2) If both
of subgraphs G and G are connected, then diameters of these subgraphs are compared.
If diam(G) < diam(G), then S ⊆ V (G), otherwise S ⊆ V (G). Hence, we have two cases
depending on diam(G).
Case 1: If diam(G) ≥ 3, then we get diam(G) ≤ 3 by Theorem 2.8. Thus, vertices of
S must be selected from G due to the above mentioned cases for creating S. It is clear
that γ(G) ≤ 2 by Corollary 2.1. Hence, |S| ≤ 2 by Theorem 2.6. But, S can not contain
only one vertex. Because, the shortest path between a vertex u in V (G) and a vertex v in
V (G)− {u} is 2. Thus, it is clear that |S| = 2. Hence, we get γe(GG) = 2.
Case 2: If diam(G) ≤ 2, then we have the following subcases.

Subcase 2.1. If there is a vertex that is adjacent to all vertices in the graph G, then
G is disconnected. Hence, S is obtained from V (G). The distance between two vertices
in V (G) and the distance between the vertices of V (G) and V (G) is at most two. That
is, d(u, v) = 2 for u ∈ V (G) and v ∈ {V (GG)−N(u)}, where u ∈ V (G). Hence, if v /∈ S,
then S contributes 1/2 to wS(v) and the condition wS(v) ≥ 1 does not satisfy. So, we
must add one more vertex to S. Hence, we have γe(GG) = 2.

Subcase 2.2. If there is not any vertex that is adjacent to all vertices in the graph
G, then diam(GG)=2 or diam(GG)=3. If diam(GG)=2, then we have γe(GG) = 2 by
Lemma 2.3. If diam(GG)=3, then G is disconnected. Hence, the vertices of S are selected
from G. In this case, diam(G)=2. Therefore, all the vertices of GG are exponentially
dominated by two vertices of G and we get γe(GG) = 2.
By case 1 and case 2, the exponential domination number of GG is γe(GG) = 2.
This completes the proof. �

3. Exponential Domination Number in Trees

In this section, we calculate exponential domination number of trees and some related
networks namely binomial tree, comet graph, complete k − ary tree, and Et

p graph.

Definition 3.1. [13] The binomial tree Bn is an ordered tree defined recursively. The
binomial tree B0 consists of a single vertex. The binomial tree Bn consists of two binomial
trees Bn−1 that are linked together: the root of one is the leftmost child of the root of the
other. The tree B0 as a single vertex, and then the rooted tree Bn+1 is obtained by taking
one copy of each of B0 through Bn , adding a root, and making the old roots the children
of the new root.

Theorem 3.1. Let Bn be a binomial tree with n ≥ 3. Then, γe(Bn) = 2n−2 + 1.

Proof. The binomial tree Bn has 2n vertices and Bn contains previous two subgraphs
Bn−1. Also, Bn−1 contains previous two subgraphs Bn−2. Finally, if we continue with this
manner, we see that the graph Bn contains all previous binomial trees except B0 and B1.



190 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

Figure 1. Binomial tree Bn

Hence, the resursive formula for Bn is

Bn = 2(Bn−1)

= 2(2(Bn−2)) = 22(Bn−2)

= 22(2(Bn−3)) = 23(Bn−3)

...

= 2n−3(2(Bn−(n−2)))

= 2n−2(Bn−(n−2)).

Hence, we obtain Bn = 2i(Bn−i) for 1 ≤ i ≤ n− 2. The proof of exponential domination
number of Bn is examined depending on the value n. For n < 3, γe(B0) = γe(B1) = 1 and
since B2

∼= P4 by Theorem 2.1 we have γe(B2) = γe(P4) = 2.

Figure 2. Graph B2

From Figure 2, we can easily see that γe − set S of Bn is {v2, v3}. Actually, these
vertices are root vertices of B2.

Figure 3. Graph B3
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From Figure 3, we can easily see that B3 includes two subgraphs B2. We assume
that γe − set S′ of B3 is formed by the minimum exponential dominating set of B2.
That is, the root vertices of each subgraph B2 are in S. Hence, S′ = {v2, v3, v6, v7} and
wS′(v) ≥ 1 for all vertices of B3. But, in this case S′ is not minimum set. Since the
vertices v3, v7 ∈ S are adjacent, we must remove any one from the S. Hence, we have
γe(B3) = 2(γe(B2)− 1) + 1 = 3.
For n > 3, in a similar manner, the minimum exponential domination number of Bn is

γe(Bn) = 2(γe(Bn−1)− 1) + 1. (1)

When we use this result in recursive formula which we have obtained for Bn, we have
γe(Bn) = 2i(γe(Bn−i)− 1) + 1 for 1 ≤ i ≤ n− 2. We must prove this formula by induction
on i. Let ∀n ∈ Z+ and n ≥ 3.
When i = 1, we have γe(Bn) = 2(γe(Bn−1)− 1) + 1 and it is true by (1). We assume that
the result is true for i = k and prove it for i = k+ 1. By induction hypothesis and (1), we
get

γe(Bn) = 2k(γe(Bn−k)− 1) + 1

= 2k(2(γe(Bn−k−1)− 1) + 1− 1) + 1

= 2k(2(γe(Bn−k−1)− 1)) + 1

= 2k+1(γe(Bn−k−1)− 1) + 1.

That is, the formula is true for i = k + 1. Hence, we have γe(Bn) = 2i(γe(Bn−i)− 1) + 1
for 1 ≤ i ≤ n−2. Initial condition n = 2 is achieved for i = n−2. We obtain the following
formula.

γe(Bn) = 2i(γe(Bn−i)− 1) + 1

= 2n−2(γe(Bn−(n−2))− 1) + 1

= 2n−2(γe(B2)− 1) + 1

= 2n−2(2− 1) + 1

= 2n−2 + 1.

The proof is completed. �

Definition 3.2. [15] For integer t ≥ 2 and r ≥ 1, the comet graph Ct,r is defined to be
the graph of order t+ r obtained from disjoint union of a star K1,t−1 and a path Pr with r
vertices by adding an edge joining the central vertex of the star with an end-vertex of the
path.

Theorem 3.2. The exponential domination number of a comet graph is given by γe(Ct,r) =
γe(Pr+2) = d(r + 3)/4e.

Proof. Comet graph Ct,r includes the subgraphs Pr+2 and K1,t−1. One of Pr+2 is center
vertex c ∈ V (K1,t−1) and the other one is pendant vertex v ∈ V (K1,t−1). We know that,
there is only center vertex c in γe − set of K1,t−1 and γe(K1,t−1) = 1. Also, we know
that by Theorem 2.1, the exponential domination number of Pr+2 is d(r + 3)/4e. If one
of the vertices of γe − set of Ct,r is c ∈ V (K1,t−1), then all vertices of K1,t−1 and Pr+2 are
exponentially dominated. Hence, we have

γe(Ct,r) = d(r + 3)/4e.

The proof is completed. �
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Definition 3.3. [16] The complete k− ary tree Hk
n of depth n is the rooted tree in which

all vertices at level n − 1 or less have exactly k children, and all vertices at level n are
leaves.

Theorem 3.3. The exponential domination number of a complete k−ary tree Hk
n is given

by γe(H
k
n) = kn−1.

Proof. The graph Hk
n has k children for every vertices except leaves. For example, the

graph Hk
2 is obtained by combining k graphs Hk

1 with a root vertex. Similarly, the graph
Hk

3 is obtained by combining k graphs Hk
2 with a root vertex. If we continue in a similar

manner, we can easily see that the graph Hk
n is obtained by combining k graphs Hk

n−1 with

a root vertex. Hence, the graph Hk
n contains previous ki graphs Hk

n−i for 1 ≤ i ≤ n − 1.
Then, we have the following generalized formula.

Hk
n = kHk

n−1

= k(k(Hk
n−2))

= k(k(k(Hk
n−3)))

...

= ki(Hk
n−i).

So, we obtain Hk
n = ki(Hk

n−i) for 1 ≤ i ≤ n − 1. The proof of exponential domination

number of Hk
n is examined on the value n.

Figure 4. Graph H2
1

From Figure 4, we can easily see that γe − set S of H2
1 is {v1}. This vertex is also the

root vertex.

Figure 5. Graph H2
2

From Figure 5, we can easily see that H2
2 includes two subgraphs H2

1 . γe− set of H2
2 is

{v2, v3}. The vertices of this set are the vertices of γe − set of two H2
1 . Hence, for n ≥ 1

and 1 ≤ i ≤ n− 1
γe(H

k
n) = kγe(H

k
n−1). (2)

When we use this result in recursive formula which obtained for Hk
n, we have γe(H

k
n) =

kiγe(H
k
n−i) for n ≥ 1 and 1 ≤ i ≤ n − 1. We must prove this formula by induction for

every value i. Let ∀n ∈ Z+ and n ≥ 1.
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When i = 1, we have γe(H
k
n) = k . γe(H

k
n−1) and it is true by (2). We assume that the

result is true for i = 5 and prove it for i = s+ 1. By induction hypothesis and (2), we get

γe(H
k
n) = ksγe(H

k
n−s)

= ks(kγe(H
k
n−s−1))

= ks+1γe(H
k
n−s−1).

That is, the formula is true for i = s+ 1. Hence, we have γe(H
k
n) = kiγe(H

k
n−i) for n ≥ 1

and 1 ≤ i ≤ n− 1. Initial condition n = 1 is achieved for i = n− 1. Hence, we obtain the
following formula.

γe(H
k
n) = kiγe(H

k
n−i)

= kn−1γe(H
k
n−(n−1))

= kn−1γe(H
k
1 )

= kn−1.

The proof is completed. �

Definition 3.4. [17]
A tree T is called a caterpillar, if removal of all its pendant vertices results in a path

called the spine of T , denoted by sp(T ). If all vertices of sp(T ) have equal number
of pendant vertices, then the resulting graph is called a regular caterpillar. A regular
caterpillar can also be defined as the corona of two special graph types. That is, if Tn,m is
a regular caterpillar, then Tn,m ∼= Pn ◦mK1.

Theorem 3.4. The exponential domination number of regular caterpillar Tn,m is given
by γe(Tn,m) = d(n+ 1)/2e.

Proof. Regular caterpillar Tn,m has vertices of Pn (or the spine) and m the pendant vertices
that attached each vertex of Pn. Let S be γe−set of Tn,m. Assume that, we add all vertices
of Pn to S to dominate all pendant vertices. Hence, the condition wS(v) ≥ 1 satisfy for
all pendant vertices. But this set is not minimum exponential dominating set. Thus, S
must consist of the vertices with d(u, v) = 2 in < V (Tn,m) − (S − {u}) >, where u ∈ S,

v ∈ V (Tn,m)− S. If d(u, v) = 2, we must add a vertex w in Pn to S that this vertex is at
distance 2 from u. Hence, the condition wS(v) = 1 satisfy.
If n is odd, it is clear to see that the vertices which generate S are also the vertices of
independent set of the spine graph Pn. Hence, for every vertex x in V (Pn)−S, wS(x) = 1.
We have γe(Tn,m) = dn/2e = (n+ 1)/2 = d(n+ 1)/2e.
If n is even, unlike the previous condition it is not enough to exponential dominate the
last vertex vn of spine graph Pn with dn/2e vertices from the graph Pn. Because, the
weight of S at the vertex vn is 1/2. Hence, we must also add vn to S. Thus, we have
γe(Tn,m) = dn/2e+ 1 = n/2 + 1 = n/2 + 2 = d(n+ 1)/2e.
Whether n is odd or even, combining two cases we have, γe(Tn,m) = d(n+ 1)/2e.
The proof is completed. �

Definition 3.5. [14] The graph Et
n is a tree which has t legs and each leg has n vertices.

Thus, Et
n has nt+ 2 vertices. We have labeled the vertices of Et

n as follows.
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Figure 6. Tree Et
n

Theorem 3.5. The exponential domination number of tree Et
n is given by

γe(E
t
n) =



 dn+ 1/4et, if t ≤ 2n

, n ≡ 2 (mod 4)
dn+ 1/4e2n, if t > 2n
bn+ 1/4ct+ 1, if t < 2d(u1,v)

bn+ 1/4ct, if 2d(u1,v) ≤ t < 2n+d(u2,v)−1 , n ≡ 0, 1, 3 (mod 4)

bn+ 1/4c2n+d(u2,v)−1, if t ≥ 2n+d(u2,v)−1

where,

d(u1, v) =

 3, if n ≡ 3 (mod 4)
4, if n ≡ 0 (mod 4)
5, if n ≡ 1 (mod 4)

and,
d(u2, v) = d(u1, v)− 1,
where u1, u2 vertices not in legs of Et

n and v is vertex of legs.

Proof. Let S be γe − set of Et
n. For the vertex vin (1 ≤ i ≤ t) on all legs, deg(vin) = 1.

The vertex vin−1of some legs must be added to S to exponentially dominate the vertex
vin. Each leg has the path graph Pn. The proof can be proved as the proof of Theorem
2.1. We start constructing S starting with the vertex vin−1 (i = 1) on the first leg and
take each vertex at distance 4 from selecting vertex on the leg. Hence, we add d(n+ 1)/4e
vertices to S from the first leg in Et

n. We use similar argument for other legs. Thus, we
have four cases depending on |V (Pn)| in the graph Et

n.
For n ≡ 0, 1, 3 (mod 4), we get same results. Therefore we examine the proof into two
cases.
Case 1: Let n ≡ 2 (mod 4).
If S is constructed as described above for any leg of Et

n, then we get S = {vin−1, ..., vi5, vi1}.
Similar argument is not applied for each leg in Et

n. Because, this approach is contradict
with the definition of the minimum exponential dominating set.
It is easy to see that u2 ∈ V (Et

n) is adjacent to vi1 ∈ S in Figure 5. Therefore, vi1 domi-
nates u2. Since the distance between u1 and vi1 is 2, we must add a vertex vi1 except v11
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to S. Therefore, the vertices of S should be taken from a certain number of legs in Et
n.

So, every vertex of V (Et
n) − S is exponentially dominated by S. This value depends on

the distance between vertices of different legs.
Let vin and vj1 be the vertices of the ith and jth legs, respectively, where i, j ∈ {1, 2, ..., t}, i 6=
j. Note that d(vj1, vin) = n− 1 + d(u2, vj1) + 1. Since, d(u2, vj1) = 1, we get d(vj1, vin) =
n+ 1. Hence, we have two subcases depending on the number of legs in Et

n.
Subcase 1.1. If t < 2d(vj1,vin)−1, that is t < 2n then the vertices of S should be

taken from each leg. Hence, we have ws(z) ≥ 1 for every z in V (Et
n). So, we obtain

|S| = d(n+ 1)/4et.
Subcase 1.2. If t ≥ 2n, then the vertices of S should be taken from only 2n legs.

Hence, we get |S| = d(n+ 1)/4e2n.
Case 2: Let n ≡ 0, 1, 3 (mod 4).
If S is constructed as in Case 1, then we get three different S sets depending on n mod 4.
These set are
S = {vin−1, ..., vi7, vi3} or S = {vin−1, ..., vi8, vi4} or S = {vin−1, ..., vi6, vi2}.
Hence, we must get b(n + 1)/4c vertices to S from only one leg in Et

n. The minimum
distance between u1 ∈ V (Et

n) and vi2 ∈ S or vi3 ∈ S or vi4 ∈ S is d(u1, vi2) = 3,
d(u1, vi3) = 4 and d(u1, vi4) = 5. The rest of the proof is performed as in Case1.
Note that, d(vin, vj2) = n−1+d(u2, vj2)+1, d(vin, vj3) = n−1+d(u2, vj3)+1, d(vin, vj4) =
n− 1 + d(u2, vj4) + 1.
We denote the vertices vj2, vj3 and vj4 by v to give a generalized formula. So, we have
three subcases depending on the number of legs.

Subcase 2.1. If t < 2d(u1,v), then the vertices of S should be taken from each leg. In
this case, wS(u1) ≥ 1 for u1, u2 ∈ V (Et

n) and the condition wS(u2) ≥ 1 is not satisfied.
Hence, we must add the vertex u1 or u2 to S. Therefore, we get |S| = b(n+ 1)/4ct+ 1.

Subcase 2.2. If 2d(u1,v) ≤ t ≤ 2n+d(u2,v)−1 then the vertices of S should be taken from
each leg. Thus, wS(z) ≥ 1 satisfies for every z in V (Et

n). We obtain |S| = b(n+ 1)/4ct.
Subcase 2.3. If t ≥ 2n+d(u2,v)−1, then the proof is similar to Subcase 1.2. Hence, we

get |S| = b(n+ 1)/4c2n+d(u2,v)−1.
Summing Case 1 and Case 2, we obtain exponential domination number of Et

n.
The proof is completed. �

4. Conclusion

The vulnerability of a communication can be measured by the exponential domina-
tion number of the graph describing the network. The exponential domination number
has been studied as a vulnerability parameter introduced in [16]. Calculation of the ex-
ponential domination number for simple graph is important because if one can break a
more complex network into smaller networks, then under some conditions the solutions
for the optimization problem on the smaller networks can be combined to a solution for
the optimization problem on the larger network.
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[25] Odabaş, Z.N. and Aytaç, A.,(2012). Rupture Degree and Middle Graphs, Comptes Rendus De L

Academie Bulgare Des Sciences 65(3), 315-322.
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