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EARLY DETECTION OF ROGUE WAVES USING COMPRESSIVE

SAMPLING

C. BAYINDIR1, §

Abstract. We discuss the possible usage of the compressive sampling for the early
detection of the rogue waves. One of the promising techniques for the early detection of
the rogue waves is to measure the triangular Fourier spectra which begin to appear at the
early stages of their development. For the early detection of the rogue waves it is possible
to treat such a spectrum as a sparse signal since we would mainly be interested in the high
amplitude triangular region located at the central wavenumber. Therefore compressive
sampling can be a very efficient tool for the rogue wave early warning systems. By
employing a numerical approach we show that triangular Fourier spectra can be sensed
by compressive measurements at the early stages of the development of rogue waves
such as those in the form of Peregrine and Akhmediev-Peregrine solitons. Our results
may lead to development of the early warning and measurement systems which use the
compressive sampling thus the memory requirements for those systems can be greatly
reduced. Keywords: Rogue waves, early detection, spectral analysis, compressive sensing.

AMS Subject Classification: 81Q05, 65T50

1. Introduction

Rogue waves are commonly defined as the waves with a height more than 2-2.2 times the
significant wave height in a wave field [1]. They present a danger to life, marine travel and
operations in marine environment but they are desired in optical fibers for communication
purposes [1, 2]. The early detection of rogue waves has been disregarded for a long time
and has only been studied for almost a decade [2]. However early detection of rogue waves
is an extremely hard and complicated problem due to many processes involved [2, 3]. One
of the promising approaches which address this problem is to continuously measure the
part of the whole wavefield spectrum in real time and use the triangular Fourier spectra
of the growing rogue waves in early stages of their development before the dangerous peak
appears [3].

In this paper, we discuss the possible usage of the compressive sampling for the early
detection of the optical rogue waves. We use a similar methodology to the one introduced in
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International Collaboration Board Member of the FCC Project, CERN, CH-1211 Geneva 23,
Switzerland.
e-mail: cihan.bayindir@isikun.edu.tr; ORCID: http://orcid.org/0000-0002-3654-0469.
§ Manuscript received: March 17, 2018; accepted: September 19, 2018.

TWMS Journal of Applied and Engineering Mathematics, Vol.9, No.2 c© Işık University, Department
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[3]. Similarly we analyze the emerging triangular rogue wave spectra, however we obtain
those spectra via compressed measurements with a significant undersampling ratio. In
order to sense the triangular spectra via compressive sampling, we offer a procedure as
follows: in the time evolving field we take randomly selected undersampled measurements
from the wavefield in spatial domain. Then we reconstruct the sparse triangular rogue wave
spectra via compressive sampling. Then we move to the next time step and repeat the same
procedure. By implementation of a numerical method we show that using compressive
sampling technique we can detect the emergence of the triangular rogue wave spectra using
significantly less samples compared to the classical sensing techniques. This method can
directly be used for the early detection of the analytical rogue waves in optical fibers and
wave flumes. However the usability of the method for the chaotic wave environments such
as the realistic open ocean presents many difficulties and precisely how the compressive
measurements could be accomplished in practice is beyond the scope of this letter. However
as shown in this paper the compressive sampling can significantly reduce the memory
requirements and the cost of rogue wave early warning and detection systems.

2. Review of the NLSE and its Rogue Wave Solutions

Dynamics of weakly nonlinear optical waves can be described by the nonlinear Schrödinger
equation (NLSE) [4]. It has been previously shown that the NLSE can also be used as
a model to describe rogue waves [2, 3, 5, 6]. One of the most widely used forms of the
nondimensional NLSE is given by

iψt +
1

2
ψxx + |ψ|2 ψ = 0 (1)

where x, t are the spatial and temporal variables, i denotes the imaginary number and
ψ is complex amplitude [2]. NLSE is also widely used in other branches of the applied
sciences and engineering to describe various phenomena including but not limited to Bose-
Einstein condensates and quantum state of a physical system. Integrability of the NLSE
is studied extensively within last forty years and many exact solutions of the NLSE are
derived. Some rational soliton solutions of the NLSE are derived as well. One of the most
early forms of the rational soliton solution of the NLSE is the Peregrine soliton which is
considered as an accurate rogue wave model [5, 7]. It is given by

ψ1 =

[
1− 4

1 + 2it

1 + 4x2 + 4t2

]
exp [it] (2)

where t is the time and x is the space parameter. It is shown that Peregrine soliton
is a first order rational soliton solution of the NLSE and higher order rational solutions
also exist [5]. Additionally many simulations of the chaotic wavefields have revealed that
rogue waves with height more that 3 can not be described by the Peregrine soliton [2, 3].
Therefore second and higher order rational soliton solutions are used to describe the rogue
waves with heights bigger than 3. It has been shown that second order rational soliton
solution of NLSE, with a peak height 5, can be a model for the optical rogue waves as
well [2, 3]. It has also been confirmed that the second order rational soliton solution of
the NLSE still presumes a triangular Fourier spectra [2, 3]. The second order rogue wave
which satisfies the NLSE exactly is known as Akhmediev-Peregrine soliton is given as [5]

ψ2 =

[
1 +

G2 + itH2

D2

]
exp [it] (3)

where

G2 =
3

8
− 3x2 − 2x4 − 9t2 − 10t4 − 12x2t2 (4)
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H2 =
15

4
+ 6x2 − 4x4 − 2t2 − 4t4 − 8x2t2 (5)

and

D2 =
1

8
[
3

4
+ 9x2 + 4x4 +

16

3
x6 + 33t2

+ 36t4 +
16

3
t6 − 24x2t2 + 16x4t2 + 16x2t4]

(6)

Even higher order rational solutions of the NLSE and a hierarchy of obtaining those
rational solutions based on Darboux transformations [8] are given in [5]. Additionally,
throughout many simulations it has been confirmed that rogue waves obtained by numer-
ical techniques which solve the NLSE are in the forms of these first (Peregrine) and higher
order rational solutions of the NLSE [3, 5, 6]. One of the promising techniques for the
early detection of the rogue waves is to use the triangular Fourier spectra that begins to
develop at the early stages of the rogue waves [9] therefore the theoretical shapes of the
Fourier spectra of the rogue waves need to be discussed. The Fourier transform of the
Peregrine soliton can analytically be calculated as

F (k, t) =
1√
2π

∫ ∞
−∞

ψ(t, x)eikxdx (7)

which gives

F (k, t) =
√

2π

[
1 + 2it√
1 + 4t2

exp

(
− |k|√

2

√
1 + 4t2

)
δ(k)

]
. exp [it] (8)

where k is the wavenumber parameter and δ is the Dirac-delta function [3]. The Fourier
spectra of the first, second and higher order rogue waves are compared and discussed
in [5] in detail where some analytical expressions and mainly numerical and illustrative
results are presented. Similar to the first order rogue wave, the second order rogue wave
has roughly a triangular Fourier spectrum [9] when the dirac delta peak due to constant
term is ignored. However compared to the Fourier spectrum of the first order rogue wave,
the Fourier spectrum of the second order rogue wave exhibits two dips due to increased
number of sidebands in the wave profile [2, 9].

In order to show the usability of the proposed method in more general settings where
an analytical solution is unknown, we solve the NLSE using a split-step Fourier method
(SSFM) which is one of the widely used Fourier spectral methods with efficient time
integration. SSFM performs the time integration by time stepping of the exponential
function for an equation which includes a first order time derivative [2]. In SSFM, like other
spectral techniques [10], the spatial derivatives are calculated by the orthogonal transforms
[11]. Some of their applications can be seen in [2, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24]
and more detailed discussions can be seen in [10]. In the SSFM, the time integration is
performed by time stepping of the exponential function for an equation which includes
a first order time derivative [2]. SSFM is based on the idea of splitting the governing
equation into two parts, the nonlinear and the linear part. For the NLSE, the advance in
time due to nonlinear part can be written as [2]

iψt = − |ψ|2 ψ (9)

which can be exactly solved as

ψ̃(x, t0 + ∆t) = ei|ψ(x,t0)|2∆t ψ(x, t0) (10)
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where ∆t is the time step. Taking linear part of the NLSE as [2]

iψt = −1

2
ψxx (11)

Using the Fourier series one can write that

ψ(x, t0 + ∆t) = F−1
[
e−ik

2∆t/2F [ψ̃(x, t0 + ∆t)]
]

(12)

where k is the Fourier transform parameter [2]. Therefore combining the expressions in
(10) and (12), the complete formulation of the SSFM can be written as

ψ(x, t0 + ∆t) = F−1
[
e−ik

2∆t/2F [ei|ψ(x,t0)|2∆t ψ(x, t0)]
]

(13)

which is used to calculate the surface fluctuation envelope, ψ, starting from the initial
conditions. We start the rogue wave simulations using the analytical rogue wave solutions
mentioned above. The number of spectral components are selected as N = 4096 in order
to make use of the FFTs efficiently. The time step is selected as dt = 0.05 which does not
cause any stability problems. The actual water surface fluctuation for this initial condition
would be given by the real part of |ψ| exp [iωt] where ω is some carrier wave frequency.
However in the present study we only consider the envelope, |ψ|.

3. Review of the Compressive Sampling

After it has been introduced to the scientific community with a seminal paper by [25],
compressive sampling (CS) has become a core research area in the last decade. In sum-
mary, CS states that a sparse signal can be reconstructed from fewer samples than the
samples that Nyquist-Shannon sampling theorem states. Currently it is a common tool
in various branches of applied mathematics and engineering and currently many software
and hardware systems make use of this efficient signal processing technique. In this section
we try to sketch a brief summary of the CS.

Let η be a K-sparse signal of length N , that is only K out of N elements of the signal
are nonzero. η can be represented using a orthonormal basis functions with transforma-
tion matrix λ. Typical transformation used in literature are Fourier, discrete cosine or
wavelet transforms just to mention few. Therefore one can write η = λη̂ where η̂ is the
transformation coefficient vector. Since η is a K-sparse signal one can discard the zero
coefficients and obtain ηs = λη̂s where ηs is the signal with non-zero elements only.

The idea underlying in the CS is that a K-sparse signal η of length N can exactly be
reconstructed from M ≥ Cµ2(Φ, λ)K log (N/K) measurements with an overwhelmingly
high probability, where C is a positive constant and µ2(Φ, λ) is coherence between the
sensing basis Φ and transform basis λ [25]. Taking M random projections by using the
sensing matrix Φ one can write g = Φη. Therefore the problem can be recognized as

min ‖η̂‖l1 under constraint g = Φλη̂ (14)

where ‖η̂‖l1 =
∑

i |η̂i|. So that among all signals which satisfies the given constraints, the
l1 solution of the CS problem can be given as ηCS = λη̂. l1 minimization is only one of
the alternatives which can be used for obtaining the solution of this optimization problem.
There are some other algorithms to recover the sparse solutions such as greedy algorithms
[26]. A more detailed discussion of the CS can be seen in [25]. It is useful to note that
we are using the sparsity property of the Fourier transform of ψ. Therefore we can write
λψ = η where η is sparse triangular spectra, λ is the Fourier transformation matrix and
ψ = η̂ is the sparse surface fluctuation envelope measurement.



202 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

4. Compressive Sampling of the Triangular Rogue Wave Spectra

As discussed in [3], the triangular shape of the Fourier spectra can be used for the
early detection of the rogue waves since it becomes evident at the early stages of their
development. This is true both for the first and the second order rational solitons and
also validated for the rogue waves in a chaotic wave field [2, 3].

The results for the Peregrine soliton are depicted in Fig. 1 where first subfigure shows
the 1D Peregrine soliton in the physical domain at t = 0 and t = 2 which can be time
reversed symmetrically considering the early detection purposes. The second and the third
subfigures show the spectra obtained at t = 0 and t = 2, respectively. In this figure the
continuous line refers to the spectra obtained classical N = 1024 components whereas the
dashed line refers to same spectra obtained using random M = 64 compressive samples.
The normalized root-mean-square (rms) difference of the two spectra presented in the
second subfigure obtained by the classical and compressive sampling techniques at time
t = 0 is 1.55 × 10−10 whereas the rms difference between two results presented in third
subfigure becomes 7.91 × 10−4 at time t = 2. In our simulations we observe that CS
can be used to obtain the sparse spectra more efficiently by employing fewer number of
compressive samples when the rogue wave is at its peak.
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Figure 1. a) Peregrine soliton at t = 0 and t = 2 b) the Fourier spectrum
of the Peregrine soliton at t = 0 obtained by N = 1024 classical and M = 64
compressive samples c) the Fourier spectrum of the Peregrine soliton at t = 2
obtained by N = 1024 classical and M = 64 compressive samples

The results for Akhmediev-Peregrine soliton are depicted in Fig. 2 where first subfigure
shows the 1D Akhmediev-Peregrine soliton in the physical domain at t = 0 and t = 2
which can be time reversed symmetrically considering the early detection purposes. The
second and the third subfigures show the spectra obtained at t = 0 and t = 2, respectively.
In this figure again the continuous line refers to the spectra obtained classical N = 1024
components whereas the dashed line refers to same spectra obtained using random M = 64
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compressive samples. The normalized root-mean-square (rms) difference of the two spectra
presented in the second subfigure obtained by the classical and compressive sampling
techniques at time t = 0 is 1.60 × 10−3 whereas the rms difference between two results
presented in third subfigure is 2.70×10−3 at time t = 2. In our simulations we observe that
CS can be used to obtain the sparse spectra more efficiently by employing fewer number
of compressive samples when the Akhmediev-Peregrine soliton is at its peak.
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Figure 2. a) Akhmediev-Peregrine soliton at t = 0 and t = 2 b) the Fourier
spectrum of the Peregrine soliton at t = 0 obtained using N = 1024 classical and
M = 64 compressive samples c) the Fourier spectrum of the Peregrine soliton at
t = 2 obtained using N = 1024 classical and M = 64 compressive samples.

The great advantage of the CS based methodology proposed in this paper is obvious.
We can detect the developing Fourier spectra of the emerging rogue waves using CS with
significantly less samples compared to the classical sensing theory. This result may be
immediately applied in fiber optics and hydrodynamic wave flume studied. It may also
lead to development of low cost remote [27] and insitu sensing devices with significantly
less memory requirements compared to the classical sensing devices. It also can transform
the rogue wave early warning technology, that is, rather than directly measuring the
spectra it may become easier and more efficient to measure the time series with compressed
measurements which can be adapted to measurement systems currently in use. Currently
we can not answer how the hardware implementation would be done since it requires
many optimizations such as selecting the area for measurement, adjusting the noise and
sensitivity of the electronic equipment, estimating the effects of complications due to 2D
structure, nonlinearity and dispersion of waves. However the results presented in this paper
are promising to enhance the rogue wave early detection and measurement technology.
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5. Conclusion

In this paper we have discussed the possible usage of the compressive sampling for the
early detection of the rogue waves. One of the promising techniques for the early detec-
tion of rogue waves is to measure the triangular Fourier spectra which begin to appear
at the early stages of the development of the rogue waves. Recognizing that such spec-
tra can be treated as a sparse signal, since we would mainly be interested in the central
high amplitude triangular region for the early detection purposes of the rogue waves, the
compressive sampling technique can become an efficient tool for the rogue wave early warn-
ing and measurement systems. Employing a numerical simulation we have showed that
emerging triangular rogue wave spectra can be detected using the compressive sampling
technique from significantly less samples compared to the classical sensing methods. Our
results show that the compressive sampling based methodology proposed in this paper can
reduce the memory requirements of the early warning and measurement hardware systems
significantly therefore their efficiency can be enhanced while their cost is reduced.
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