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ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
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Abstract. In the present paper, we deal with the existence of solutions to a class of
an elliptic equation with Robin boundary condition. The problem is settled in Orlicz-
Sobolev spaces and the main tool used is Ekeland’s variational principle.
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1. Introduction

In this article, we are concerned with a Robin problem settled in Orlicz-Sobolev spaces
of the form{

−div(a(|∇u(x)|)∇u(x)) + a(|u(x)|)u(x) = λf(u(x)), x ∈ Ω

a(|∇u(x)|)∂u(x)
∂η + b(x)|u(x)|p−2u(x) = 0, x ∈ ∂Ω

(1)

where Ω is a bounded domain in RN (N ≥ 3) and has a Lipschitz boundary ∂Ω, λ > 0 is
a real parameter, η is the unit exterior vector on ∂Ω, b ∈ L∞(∂Ω) with infx∈∂Ω b(x) > 0,
and f is a real valued continuous function. The function ϕ(t) := a(|t|)t is an increasing
homeomorphism from R onto R. We want to remark that if we let a(t) = |t|p−2 , problem
(1) turns into the well-known p-Laplace equation. p-Laplace equations have been studied
by many authors because of their various applications to different disciplines see, e.g.,
[2, 20, 33] and references therein.

The study of variational problems in the classical Sobolev and Orlicz-Sobolev spaces is
an interesting topic of research due to its significant role in many fields of mathematics,
such as approximation theory, partial differential equations, calculus of variations, non-
linear potential theory, the theory of quasiconformal mappings, non-Newtonian fluids, im-
age processing, differential geometry, geometric function theory, probability theory, mag-
netostatics, and capillarity phenomena (see, e.g.,[3, 7, 8, 9, 10, 13, 14, 16, 23, 27, 30, 31]).
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Moreover, problem (1) posses more complicated nonlinearities, for example, it is inho-
mogeneous, so in the discussions, some special techniques will be needed. However, the
inhomogeneous nonlinearities have important physical background. Therefore, equation
(1) may represent a variety of mathematical models corresponding to certain phenomenons
(see, e.g., [23]), e.g.,

(1) Nonlinear elasticity: ϕ(t) =
(
1 + t2

)α − 1, α > 1
2 ,

(2) Plasticity: ϕ(t) = tα (log (1 + t))β , α ≥ 1, β > 0,

(3) Generalized Newtonian fluids: ϕ(t) =
∫ t

0 s
1−α (sinh−1 s

)β
ds,

0 ≤ α ≤ 1, β > 0.

Problem (1) is settled in Orlicz-Sobolev spaces and treated by variational approach
and the main medium is Ekeland’s variational principle. In Section 2, we give the basic
knowledge and preliminary results. In Section 3, we show that problem (1) has a nontrivial
weak solution. At the end of Section 3 we provide an example to illustrate the main result,
i.e. Theorem 3.1. To the authors’ best knowledge, the results obtained in the present
papers are not covered in the literature, and therefore, it has a potential to contribute it.

2. Preliminaries

To deal with problem (1), we use the theory of Orlicz-Sobolev spaces since problem (1)
contains a nonhomogeneous function ϕ in the differential operator. Therefore, we start
with some basic concepts of Orlicz-Sobolev spaces. For more details we refer the readers
to the monographs [1], [29], [32], [35], and the papers [13], [23],[26], [31].

The function a : (0,∞)→ R is a function such that the mapping, defined by

ϕ(t) :=

{
a(|t|)t for t 6= 0,

0, for t = 0,
(2)

is an odd, increasing homeomorphism from R onto R. For the function ϕ above, let us
define

Φ(t) =

∫ t

0
ϕ(s)ds, Φ̄(t) =

∫ t

0
ϕ−1(s)ds t ∈ R, (3)

then the functions Φ and Φ̄ are complementaryN -functions, i.e. Young functions satisfying
the following conditions: Φ is a convex, nondecreasing and continuous function; Φ(0) = 0;

Φ(t) > 0 for all t > 0; limt→0
Φ(t)
t = 0; limt→∞

Φ(t)
t = +∞ (see e.g., [1],[32],[35]). On the

other hand, Φ̄ satisfies the following

Φ̄(t) = sup{st− Φ(s) : s ≥ 0}, t ≥ 0.

Moreover the following Young inequality holds

st ≤ Φ(s) + Φ̄(t) for t, s ∈ R.

These functions allow us to define the Orlicz spaces LΦ(Ω) and LΦ̄(Ω), respectively.
In the sequel, we use the following assumption:

1 < ϕ0 := inf
t>0

tϕ(t)

Φ(t)
≤ tϕ(t)

Φ(t)
≤ ϕ0 := sup

t>0

tϕ(t)

Φ(t)
<∞. (4)

By help of assumption (4), the Orlicz space LΦ(Ω) coincides with the equivalence classes
of measurable functions u : Ω→ R such that∫

Ω
Φ(|u(x)|)dx <∞, (5)
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and is equipped with the Luxembourg norm

|u|Φ := inf

{
k > 0 :

∫
Ω

Φ(
|u(x)|
k

) dx ≤ 1

}
. (6)

For Orlicz spaces, Hölder inequality reads as follows (see [1],[35])∫
Ω
uv dx ≤ 2‖u‖LΦ(Ω)‖u‖LΦ̄(Ω) for all u ∈ LΦ(Ω) and v ∈ LΦ̄(Ω).

The Orlicz-Sobolev space W 1LΦ(Ω) building upon LΦ(Ω) is the space defined by

W 1LΦ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, ..., N

}
.

which becomes a Banach space under the norm

‖u‖1,Φ := |u|Φ +

N∑
i=1

|| ∂u
∂xi
||Φ. (7)

The spaces LΦ(Ω) and W 1LΦ(Ω) generalize the usual spaces Lp(Ω) and W 1,p(Ω), re-

spectively, where the role played by the convex mapping t 7−→ |t|p
p is assumed by a more

general convex function Φ(t). More clearly, for the case Φ(t) := |t|p, we replace LΦ(Ω)
by Lp(Ω) and W 1LΦ(Ω) by W 1,p(Ω) and call them Lebesgue spaces and Sobolev spaces,
respectively.

Through this paper, we use the notations W 1LΦ = W 1,Φ and LΦ = LΦ, and assume
that

the function t→ Φ(
√
t) is convex for all t ∈ [0,∞). (8)

Proposition 2.1 (see [24]). Assume that Ω is a bounded domain with smooth boundary
∂Ω. Then the embedding W 1,p(Ω) ↪→ Lr(Ω) is compact provided 1 ≤ r < p∗, where

p∗ := Np
N−p if p < N and p∗ := +∞ otherwise.

Proposition 2.2 (see [18, 24]). Assume that Ω is a bounded domain and has a Lipchitz
boundary ∂Ω. Then the embedding W 1,p(Ω) ↪→ Lr(∂Ω) is compact provided 1 ≤ r < p∗.

Remark 2.1. By help of the assumption (4), the Orlicz-Sobolev space W 1,Φ(Ω) is contin-
uously embedded in the classical Sobolev space W 1,ϕ0(Ω). On the other hand, W 1,ϕ0(Ω) is
compactly embedded in Lr(Ω), and hence, W 1,Φ(Ω) is continuously and compactly embed-
ded in the classical Lebesgue space Lr(Ω) for all 1 ≤ r < ϕ∗0.

Proposition 2.3 ([1, 23]). If (4) and (8) hold then the spaces LΦ(Ω) and W 1,Φ(Ω) are
separable and reflexive Banach spaces.

Proposition 2.4 (see [25, 31]). Let define the modular ρ(u) :=
∫

Ω(Φ(|∇u|) + Φ(|u|))dx :

W 1,Φ(Ω)→ R. Then for every un, u ∈W 1,Φ(Ω), we have

(i) ‖u‖ϕ
0

1,Φ ≤ ρ(u) ≤ ‖u‖ϕ0

1,Φ if ‖u‖1,Φ < 1

(ii) ‖u‖ϕ0

1,Φ ≤ ρ(u) ≤ ‖u‖ϕ
0

1,Φ if ‖u‖1,Φ > 1

(iii) ‖un − u‖1,Φ → 0⇔ ρ(un − u)→ 0
(iv) ‖un − u‖1,Φ →∞⇔ ρ(un − u)→∞
Proposition 2.4 (iii)− (iv) means that norm and modular topology coincide on LΦ(Ω)

provided Φ satisfies (4), which enables that Φ satisfies the well-known ∆2-condition, i.e.,

Φ(2t) ≤ KΦ(t) for all t ∈ [0,∞).

where K is a positive constant (see e.g, [31]).
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3. Main results

Definition 3.1. We say that u ∈W 1,Φ(Ω) is a weak solution of problem (1) iff∫
Ω

(a(|∇u|)∇u · ∇v + a(|u|)uv)dx+

∫
∂Ω
b(x)|u|p−2uvdγ = λ

∫
Ω
f(u)vdx, ∀v ∈W 1,Φ(Ω)

where dγ is the measure on the boundary ∂Ω.

The energy functional corresponding to problem (1) is defined as I : W 1,Φ(Ω)→ R,

I(u) :=

∫
Ω

(Φ(|∇u|) + Φ(|u|))dx+

∫
∂Ω

b(x)

p
|u|pdγ − λ

∫
Ω
F (u)dx,

where F (u) =
∫ u

0 f(s)ds.

Remark 3.1. The operator

〈Λ′(u), v〉 =

∫
Ω

(a(|∇u|)∇u · ∇v + a(|u|)uv)dx,

defined from W 1,Φ(Ω) to its dual space (W 1,Φ(Ω))∗, is of type (S+), that is, un ⇀ u in
W 1,Φ(Ω) and lim sup〈Λ′(un), un − u〉 ≤ 0 imply un → u in W 1,Φ(Ω), see [23].

We will assume the following assumption.

(F) f : Ω→ R is a continuous function and there exist constants c1, c2 > 0 such that
c1|t|s−1 ≤ f(t) ≤ c2|t|q−1, with 1 ≤ s < q < ϕ∗0.

The main result of the present paper is the following.

Theorem 3.1. Suppose that the functions ϕ and Φ are as defined in Section 2, and
condition (F) holds. If in addition, the inequalities

q < ϕ0, s < p < ϕ0,

hold, then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem (1) has a nontrivial
weak solution in W 1,Φ(Ω).

To obtain the main result, first we need to prove the following lemmas.

Lemma 3.1. The functional I is well-defined on W 1,Φ(Ω) and Fréchet differentiable, i.e.,
I ∈ C1(W 1,Φ(Ω),R) and its derivative is

〈I ′(u), v〉 =

∫
Ω

(a(|∇u|)∇u · ∇v + a(|u|)uv)dx+

∫
∂Ω
b(x)|u|p−2uvdγ − λ

∫
Ω
f(u)vdx.

Proof. In [30], the authors showed that the operator

Λ(u) =

∫
Ω

(Φ(|∇u|) + Φ(|u|))dx

is well-defined and of class C1(W 1,Φ(Ω),R). Moreover, from condition (F), we have 0 ≤
F (u) ≤ c2

q |u|
q. Therefore, considering the continuous embeddings W 1,Φ(Ω) ↪→ Lp(∂Ω)

and W 1,Φ(Ω) ↪→ Lq(Ω), it follows

|I(u)| ≤ Λ(u) +

∫
∂Ω

b(x)

p
|u|pdγ + λ

c2

q

∫
Ω
|u|qdx <∞

which means that I is well-defined on W 1,Φ(Ω).
Since Λ ∈ C1(W 1,Φ(Ω),R), it is enough to show that the operator J given by

J(u) =

∫
∂Ω

b(x)

p
|u|pdγ − λ

∫
Ω
F (u)dx
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is of class C1(W 1,Φ(Ω),R). To this end, first, it must be shown that for all v ∈W 1,Φ(Ω)

〈J ′(u), v〉 = lim
t→0

J(u+ tv)− J(u)

t
=

∫
∂Ω
b(x)|u|p−2uvdγ − λ

∫
Ω
f(u)vdx,

and then it must be obtained that J ′ : W 1,Φ(Ω)→ (W 1,Φ(Ω))∗ is continuous.
The continuity properties of | · | and f along with the definition of F , allow us to apply
the mean value theorem, that is,

〈J ′(u), v〉 = lim
t→0

∫
∂Ω

b(x)

p

|u+ tv|p − |u|p

t
dγ − λ lim

t→0

∫
Ω

F (u+ tv)− F (u)

t
dx

= lim
t→0

∫
∂Ω
b(x)|u+ tθv|p−2(u+ tθv)vdγ − λ lim

t→0

∫
Ω
f(u+ tθv)vdx,

where u, v ∈W 1,Φ(Ω) and 0 ≤ θ ≤ 1. Now, if we apply the Young’s inequality along with
the inequality |a + b|m ≤ 2m−1(|a|m + |b|m), for all a, b ∈ RN and m ≥ 1, consecutively
to the both integrands on the right-hand side of the above expression, and use condition
(F), it reads

|b(x)|u+ tθv|p−2(u+ tθv)v| ≤ b(x)

(
2p−1(p− 1)

p
|u|p + (

2p−1(p− 1)

p
+ 1)|v|p

)
(9)

and

|f(u+ tθv)v| ≤ c
(

2q−1(q − 1)

q
|u|q + (

2q−1(q − 1)

q
+ 1)|v|q

)
(10)

The right hand sides of the inequalities (9) and (10) belong to L1(Ω). Therefore, by the
Lebesgue dominated convergence theorem along with the continuity properties of f and
| · |, we have

〈J ′(u), v〉 =

∫
∂Ω
b(x) lim

t→0
|u+ tθv|p−2(u+ tθv)vdγ − λ

∫
Ω

lim
t→0

f(u+ tθv)vdx

=

∫
∂Ω
b(x)|u|p−2uvdγ − λ

∫
Ω
f(u)vdx.

Since the right-hand side of the above expression, as a function of v, is a continuous linear
functional on W 1,Φ(Ω), it is the Gateaux differential of J .
Next, we proceed to the continuity of J ′. To this end, we assume, for a sequence un ⊂
W 1,Φ(Ω), that un → u ∈W 1,Φ(Ω). Then, using condition (F), it reads

|〈J ′(un)− J ′(u), v〉| ≤
∣∣∣∣∫
∂Ω
b(x)(|un|p−2un − |u|p−2u)vdγ

∣∣∣∣+ λ

∣∣∣∣∫
Ω

(f(u)− f(un))vdx

∣∣∣∣
≤
∫
∂Ω
b(x)(|un|p−1 + |u|p−1)|v|dγ + c2λ

∫
Ω

(|un|q−1 + |u|q−1)|v|dx

Since un → u ∈W 1,Φ(Ω), by the compact embeddingsW 1,Φ(Ω) ↪→ Lp(∂Ω) andW 1,Φ(Ω) ↪→
Lq(Ω), up to a subsequence still denoted by (un), we have
un → u in Lp(∂Ω),
un → u in Lq(Ω),
un(x)→ u(x) a.e.x ∈ Ω,

and there exist w ∈ Lp(∂Ω) and φ ∈ Lq(Ω) such that |un(x)| ≤ w(x) and |un(x)| ≤ φ(x),
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a.e. x ∈ ∂Ω and a.e. x ∈ Ω, respectively, for all n ∈ N. Therefore, using Hölder inequality
and considering b ∈ L∞(∂Ω), it reads

|〈J ′(un)− J ′(u), v〉| ≤ c3

∫
∂Ω

(|w|p−1 + |u|p−1)|v|dγ + c2λ

∫
Ω

(|φ|q−1 + |u|q−1)|v|dx

≤ c4(||w|p−1|Lp/p−1(∂Ω) + ||u|p−1|Lp/p−1(∂Ω))|v|Lp(∂Ω)

+ c5(||φ|q−1|Lq/q−1(Ω) + ||u|q−1|Lq/q−1(Ω))|v|Lq(Ω) ∈ L1(Ω)

Now, we mention the following inequality given in [15]: for 1 < k < ∞ there exists a
constant Ck > 0 such that

||ξ|k−2ξ − |ζ|k−2ζ|| ≤ Ck|ξ − ζ|(|ξ|+ |ζ|)k−2, ∀ξ, ζ ∈ RN .

Moreover, considering that un(x)→ u(x) a.e.x ∈ Ω and f is continuous, we obtain that

lim
n→∞

|f(un(x))− f(u(x))| = 0, lim
n→∞

|b(x)(|un(x)|p−2un(x)− |u(x)|p−2u(x))| = 0.

If we take into account the above inequalities and apply the Lebesgue dominated conver-
gence theorem once more, it reads

lim
n→∞

∫
Ω
|f(un)− f(u)| = 0, lim

n→∞

∫
∂Ω
|b(x)(|un|p−2un − |u|p−2u)| = 0,

which means, as a conclusion, that

lim
n→∞

sup ‖J ′(un)− J ′(u)‖(W 1,Φ(Ω))∗ = 0.

Therefore, J ′ : W 1,Φ(Ω)→ (W 1,Φ(Ω))∗ is continuous. �

Lemma 3.2. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist τ, δ > 0 such
that for all u ∈W 1,Φ(Ω) with ‖u‖1,Φ = δ < 1 we have I(u) ≥ τ > 0.

Proof. By (F), we have F (u) ≤ c2
q |u|

q. From Proposition 2.4 and the continuous embed-

ding W 1,Φ(Ω) ↪→ Lq(Ω), it follows

I(u) =

∫
Ω

(Φ(|∇u|) + Φ(|u|))dx+

∫
∂Ω

b(x)

p
|u|pdγ − λ

∫
Ω
F (u)dx

≥
∫

Ω
(Φ(|∇u|) + Φ(|u|))dx− c2λ

∫
Ω

|u|q

q
dx

≥ ‖u‖ϕ
0

1,Φ −
c2λ

q
‖u‖q1,Φ

≥ (‖u‖ϕ
0−q

1,Φ − c2λ

q
)‖u‖q1,Φ

If we define the function

Ψ(δ) := δϕ
0−q − c2λ

q

then, Ψ is continuous at δ = 0 and Ψ(0) 6= 0. If we put

λ∗ =
q

2c2
δϕ

0−q (11)

then for any λ ∈ (0, λ∗), there is a real number δ0 :=
(

1
2δ
ϕ0

+ c2λ
q

)1/(ϕ0−q)
> 0 such that

in a neighborhood of the origin, where Ψ has the same sign with Ψ(δ0), it holds

τ :=
1

2
δϕ

0
= Ψ(δ0) > 0.



252 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

Therefore, for all λ ∈ (0, λ∗) and any u ∈ W 1,Φ(Ω) with ‖u‖1,Φ = δ, we have I(u) ≥ τ >
0. �

Lemma 3.3. There exists θ ∈W 1,Φ(Ω) such that θ ≥ 0, θ 6= 0 it holds I(tθ) < 0 provided
t > 0 is small enough.

Proof. First, we note that for 0 < t < 1 and s > 0 it holds Φ(ts) ≤ tϕ0Φ(s). Indeed, from
the assumption (4), we have

ϕ0 ≤
zϕ(z)

Φ(z)
, ∀z ≥ 0,

from which we can proceed as follows∫ s

ts

ϕ0

z
dz ≤

∫ s

ts

ϕ(z)

Φ(z)
dz

log sϕ0 − log(ts)ϕ0 ≤ log Φ(s)− log Φ(ts)

log Φ(ts)− log tϕ0 ≤ log Φ(s)

and hence we obtain that

Φ(ts) ≤ tϕ0Φ(s).

Moreover, from (F), we have F (u) ≥ c1
s |u|

s. Thus,

I(tθ) ≤
∫

Ω
Φ(|∇(tθ)|) + Φ(|(tθ)|)dx+

∫
∂Ω

b(x)

p
|tθ|pdγ − c1λ

∫
Ω

|tθ|s

s
dx

≤ tϕ0ρ(θ) +
tp

p

∫
∂Ω
b(x)|θ|pdγ − c1λt

s

s

∫
Ω
|θ|sdx

≤ tp
(
ρ(θ) +

∫
∂Ω
b(x)|θ|pdγ

)
− c1λt

s

s

∫
Ω
|θ|sdx,

for 0 < t < 1 and 1 ≤ s < p < ϕ0. Thus,

I(tθ) < 0

for t < η1/(p−s) with

0 < η < min

{
1,

c1λ
s

∫
Ω |θ|

sdx

ρ(θ) +
∫
∂Ω b(x)|θ|pdγ

}
.

�

Proof. (Proof of Theorem 3.1) By Lemma 3.2, I is bounded from below on the ball

B(0; δ) = {u ∈ W 1,Φ(Ω) : ‖u‖1,Φ ≤ δ}, and therefore, there is a constant c such that
c := inf

B(0;δ)
I. Then, by Lemma 3.3, it follows that

−∞ < c := inf
B(0;δ)

I < 0. (12)

Moreover from Lemma 3.2, we have

inf
∂B(0;δ)

I > 0. (13)

If we combine (12) and (13), it reads

0 < ε < inf
∂B(0;δ)

I − inf
B(0;δ)

I. (14)
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Since I is bounded from below and weakly lower semicontinuous, we can apply Ekeland’s
variational principle, given in [21], to the functional I : B(0; δ) → R. Therefore, we can

find uε ∈ B(0; δ) such that

I(uε) < inf
B(0;δ)

I + ε (15)

I(uε) < I(u) + ε‖u− uε‖1,Φ, u 6= uε (16)

From (14) and (15), we obtain that

I(uε) ≤ inf
B(0;δ)

I + ε ≤ inf
B(0;δ)

I + ε < inf
∂B(0;δ)

I

which means that uε ∈ B(0; δ). Let’s define the functional I : B(0; δ)→ R such that

I(u) := I(u) + ε‖u− uε‖1,Φ
which is a perturbation of I. Then, from the above expressions, uε is a minimum point of
I. Hence, if we put u = uε + tv and take v ∈ B(0; 1), it reads

I(uε + tv)− I(uε)

t
≥ 0,

provided t > 0 is small enough. The last inequality above leads us to

I(uε + tv)− I(uε)

t
+ ε‖v‖1,Φ > 0.

If we let t→ 0, we obtain that

〈I ′(uε), v〉+ ε‖v‖1,Φ ≥ 0. (17)

If we replace v by −v in the lines above, we obtain

−〈I ′(uε), v〉+ ε‖v‖1,Φ ≥ 0, (18)

which means, along with (17),

|〈I ′(uε), v〉| ≤ ε‖v‖1,Φ. (19)

By the definition of norm on (W 1,Φ(Ω))∗ for I ′, it follows that

‖I ′(uε)‖(W 1,Φ(Ω))∗ ≤ ε. (20)

Therefore, as a corollary of Ekeland’s variational principle, (15),(16) and (20) guarantee
that there is a minimizing sequence (ωn) ∈ B(0; δ) of I such that

I(ωn)→ c = inf
B(0;δ)

I and I ′(ωn)→ 0 in (W 1,Φ(Ω))∗ (or equivalently ‖I ′(ωn)‖(W 1,Φ(Ω))∗ → 0).

(21)
To see how (21) holds, continue picking out the functions uε consecutively which provides
a sequence consisting of functions uε. Then, choose a sequence of ωn := uε=1/n, i.e., put
ε = 1/n in (15) and (20), and repeat the steps infinitely times (i.e., n→∞), which leads
to ε→ 0, and consequently to (21).
On the other hand, from (21), (ωn) is bounded in W 1,Φ(Ω). By reflexivity of W 1,Φ(Ω), for
a convenient subsequence (still denoted by ωn), we have ωn ⇀ ω in W 1,Φ(Ω). Moreover,
since

‖I ′(ωn)‖(W 1,Φ(Ω))∗ = sup
‖ωn−ω‖1,Φ≤1

|〈I ′(ωn), ωn − ω〉|,

(21) yields to

〈I ′(ωn), ωn − ω〉 → 0,
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which means that

〈I ′(ωn), ωn − ω〉 =

∫
Ω

(a(|∇ωn|)∇ωn∇(ωn − ω) + a(|ωn|)ωn(ωn − ω))dx+∫
∂Ω
b(x)|ωn|p−2ωn(ωn − ω)dγ − λ

∫
Ω
f(ωn)(ωn − ω)dx→ 0.

If we use the compact embeddings W 1,Φ(Ω) ↪→ Lp(∂Ω) and W 1,Φ(Ω) ↪→ Lq(Ω) along with
the Hölder inequality, (F) and consider the fact that b ∈ L∞(∂Ω), it reads∣∣∣∣∫

∂Ω
b(x)|ωn|p−2ωn(ωn − ω)dγ

∣∣∣∣ ≤ |b(x)|ωn|p−1|Lp/(p−1)(∂Ω)|ωn − ω|Lp(∂Ω) → 0,

and∣∣∣∣∫
Ω
f(ωn)(ωn − ω)dx

∣∣∣∣ ≤ c2

∫
Ω
||ωn|q−1(ωn − ω)dx| ≤ ||ωn|q−1|Lq/(q−1)(Ω)|ωn − ω|Lq(Ω) → 0.

Therefore, we must have

〈Λ′(ωn), ωn − ω〉 =

∫
Ω

(a(|∇ωn|)∇ωn∇(ωn − ω) + a(|ωn|)ωn(ωn − ω))dx→ 0.

Since the operator Λ′ is of type (S+), we obtain that ωn → ω in W 1,Φ(Ω). Therefore, by
(21), we have

I(ω) = c < 0 and I ′(ω) = 0.

As a result, we infer that ω is a nontrivial weak solution to problem (1) for any λ ∈ (0, λ∗).
The proof is completed. �

Example 3.1. As an example, we can choose a(t) = |t|p−2 and f(t) = |t|β−1. Then
problem (1) turns into{

−div(|∇u|p−2∇u) + |u|p−2u = λ|u|β−1 in Ω

|∇u|p−2 ∂u
∂η + b(x)|u|p−2u = 0 on ∂Ω

(22)

which is the well-known p-Laplacian equation with Robin boundary condition. The energy
functional corresponding to problem (22) will be Υ : W 1,p(Ω)→ R,

Υ(u) :=
1

p

∫
Ω

(|∇u|p + |u|p)dx+
1

p

∫
∂Ω
b(x)|u|pdγ − λ

β

∫
Ω
|u|βdx.

It is obvious that the all conditions of Theorem 3.1 hold, and hence, problem (22) has a
nontrivial weak solution.

Remark 3.2. We want to note that the results of the present paper obtained for the
constant exponents p, q, s can be extended to variable exponent case p = p(x), q = q(x), s =
s(x) under some appropriate assumptions. To be more clear, for variable exponent case,
problem (1) will turn to{

−div(a(|∇u|)∇u) + a(|u|)u = λf(x, u) in Ω

a(|∇u|)∂u∂η + b(x)|u|p(x)−2u = 0 on ∂Ω
(23)

If we replace the assumption (F) with the following

(F1) f : Ω× R→ R is a Carathéodory function and there exist c1, c2 > 0 such that

c1|t|s(x)−1 ≤ f(x, t) ≤ c2|t|q(x)−1

where s, q ∈ C(Ω) such that 1 < infx∈Ω s(x) := s− ≤ s(x) ≤ q(x) < ϕ∗0,

then Theorem 3.1. will be as follows:
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Theorem 3.2. Suppose that condition (F1) holds. If in addition, the inequalities

sup
x∈Ω

q(x) := q+ < ϕ0, p+ < ϕ0, s+ < p−

hold, then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem (23) has a nontrivial
solution in W 1,Φ(Ω).

Remark 3.3. If we let a(t) = |t|p(x)−2 and f(x, t) = |t|β(x)−1 in Example 3.1, problem
(22) turns into the well-known p(x)-Laplace equation which is formulated in the variable

exponent Sobolev spaces W k,p(x)(Ω), see, e.g., the papers [4, 5, 6, 11, 12, 18, 22, 28, 36, 37]
and the monographs [17, 19, 34] for the detailed background.
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