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CHROMATIC WEAK DOMATIC PARTITION IN GRAPHS

P. ARISTOTLE1, S. BALAMURUGAN2, P. SELVA LAKSHMI3, V. SWAMINATHAN4, §

Abstract. In a simple graph G, a subset D of V (G) is called a chromatic weak dom-
inating set if D is a weak dominating set and χ(< D >) = χ(G). Similar to domatic
partition, chromatic weak domatic partition can be defined. The maximum cardinality
of a chromatic weak domatic partition is called the chromatic weak domatic number of
G. Bounds for this number are obtained and new results are derived involving chromatic
weak domatic number and chromatic weak domination number.
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1. Introduction

Let G = (V,E) be a simple graph. A subset D of V is said to be a dominating set
if every vertex u ∈ V − D is adjacent to some vertex v ∈ D [5]. Further, D is a strong
dominating set (sd-set) if every vertex u ∈ V −D is strongly dominated by some v in D
[12]. Similarly, we define a weak dominating set (wd-set) [12]. The domination number
γ(G) of G is the minimum cardinality of a dominating set of G [5]. Analogously, we define
the strong domination number γs(G) and the weak domination number γw(G) of G [12].

A subset D of V is said to be a dom-chromatic set if D is a dominating set and χ(<
D >) = χ(G) [10]. Further, D is said to be a chromatic strong dominating set (csd-set)
if D is a strong dominating set and χ(< D >) = χ(G) [1]. Analogously, we define a
chromatic weak dominating set (cwd-set) [13]. The dom-chromatic number γch(G) of G is
the minimum cardinality of a dom-chromatic set [10]. Similarly, we define the chromatic
strong domination number γcs(G) of G and the chromatic weak domination number γcw(G)
of G [[1], [13]].
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A domatic partition (d-partition) of G is a partition of V into dominating sets [2]. A
chromatic strong domatic partition (csd-partition) of a graph G is a partition of V into
csd-sets [1]. The domatic number d(G) of G is the maximum cardinality of a d-partition
of G [2]. Similarly, we define the chromatic strong domatic number dcs(G) of G [1]. For
notations and terminologies we refer to Harary [3].

Partition of the vertex set into different types of sets has been studied by many authors.
For example, proper coloring of vertices leads to partition of the vertex set into independent
sets. Partition of the vertex set into irredundant sets has also been studied. Motivated
by several types of partition, the strong domatic and weak domatic partitions are studied.
In the case of partition into independent sets, the number of maximum independent sets
occuring in the partition is also considered. Since domination (strong / weak domination)
are super hereditary properties, maximum number of elements in a domatic (strong / weak
domatic) partition is aimed. Further properties on dominating (strong / weak dominating)
sets can be imposed. This leads to the study of chromatic weak domatic partition of the
vertex set.

In this paper, chromatic weak domatic partition for standard graphs are studied, bounds
for chromatic weak domatic partition number are obtained and the sum of chromatic weak
domatic number of G and G is considered.

2. Partition into Chromatic Weak Domatic Sets

In this section, partition of the vertex set into maximum number of weak dominating
sets, the chromatic number of whose induced subgraphs coincides with the chromatic
number of the graph is studied.

Definition 2.1. [10] The dom-chromatic number of a graph G, denoted by dch(G), is
defined as the maximum cardinality of the partition of V (G) into dominating sets the
chromatic number of whose induced subgraphs coincides with the chromatic number of the
graph.

Definition 2.2. A chromatic weak domatic partition (cwd-partition) of graph G is
a partition of V into chromatic weak dominating sets. The existence of a chromatic weak
domatic partition is guaranteed since V is a chromatic weak dominating set. The maximum
cardinality of a partition of V into chromatic weak dominating sets is the chromatic weak
domatic partition number (cwd-partition number) of G and is denoted by dcw(G).

Proposition 2.1. For any graph G,

dcw(G) ≤ dch(G).

Proof. Since every cwd-partition of a graph G is a dom-chromatic partition of G, we have
dcw(G) ≤ dch(G). Hence the inequality follows. �

Illustration 2.1. Let G be the graph given below:

v1 v2 v3 v4 v5 v6

G

Then dcw-set of G is {v1, v4, v5, v6} and hence dcw(G) = 1. Also dch-sets of G are {v1, v4, v5},
{v2, v3, v6} and hence dch(G) = 2. Therefore dcw(G) < dch(G). �

Remark 2.1. For any graph G,

dcw(G) ≤ dcs(G) ≤ dch(G) ≤ d(G) ≤ δ(G) + 1.
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Proposition 2.2. For any graph G, dcw(G).γcw(G) ≤ n.

Proof. Let {V1, V2, . . . , Vk} be a maximum chromatic weak domatic partition of G. Then
dcw(G) = k. Since each Vi is a chromatic weak dominating set, |Vi| ≥ γcw(G) for each

i. Since V = ∪ki=1Vi, n =
∑k

i=1 |Vi| ≥
∑k

i=1 γ
c
w(G). Therefore, n ≥ kγcw(G). Hence

γcw(G).dcw(G) ≤ n. �

Illustration 2.2. Let G be the graph given below:

v1 v2 v3 v4

v5 v6 v7 v8
G

Then dcw-partition is {{v1, v5}, {v2, v6}, {v3, v7}, {v4, v8}} and hence dcw(G) = 4. Also D =
{v1, v5} is a γcw-set of G. Therefore γcw(G).dcw(G) = 8 = |V (G)|. �

Illustration 2.3. Let G be the graph given below:

v1 v2 v3 v4 v5

G

Then dcw-partition is {{v1, v4, v5}} and hence dcw(G) = 1. Also D = {v1, v4, v5} is a γcw-set
of G. Therefore γcw(G).dcw(G) = 3 < 5. �

Remark 2.2. If a graph G has γcw(G) > n
2 , then dcw(G) = 1. �

Observation 2.1. There exists a graph G for which dcw(G) = δ(G) + 1. For instance,
dcw(K2) = 1 and δ(K2) = 0. �

Definition 2.3. A graph G is said to be chromatic weak domatically full if dcw(G) =
δ(G) + 1.

Definition 2.4. [5] A graph G is said to be χ-critical if χ(G− v) < χ(G) for any vertex
v ∈ V (G).

Proposition 2.3. Let G be χ-critical. Then γcw(G) = |V (G)|.

Proof. Obvious. �

Remark 2.3. The converse of the above Proposition 2.3 need not be true. For instance,
let G = K1,n−1 where n ≥ 3. Then γcw(G) = |V (G)| but G is not χ-critical. �

Proposition 2.4. If G is χ-critical, then dcw(G) = 1.

Proof. Since G is χ-critical, V is the only chromatic weak dominating set of G. Therefore
dcw(G) = 1. �

Observation 2.2. Let G be a graph with ∆ < n − 1. Then there exist a graph G such
that γcw(G) < n

2 and dcw(G) = 1.

Example 2.1. Consider the Path P14.
Then γcw(P14) = 6 < 14

2 but dcw(P14) = 1. �
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3. Cwd-partition number of Some Well Known Graphs

Some of the well-known graphs are the complete graph, star, complete bipartite graph,
path, cycle, wheel and fan. The cwd-partition number for these graphs are derived in this
section.

Theorem 3.1. If a graph G has pendent vertices, then dcw(G) = 1.

Proof. Let V (G) = {u1, u2, . . . , uk, . . . , un} be the vertex set ofG. Let T = {u1, u2, . . . , uk}
be the set of all pendent vertices of G, where k ≤ n. Let D be the cwd-set of G so that D
contains all the pendent vertices and some vertices in V (G) − T . Then |D| ≥ |T |. Thus
V −D has no pendent vertices and hence it is not a wd-set itself. Therefore dcw(G) = 1. �

Corollary 3.1. For a Path Pn, dcw(Pn) = 1. �

Corollary 3.2. For a double star Dr,s, d
c
w(Dr,s) = 1. �

Corollary 3.3. Let T be a tree. Then dcw(T ) = 1. �

Proposition 3.1. For a cycle Cn,

dcw(Cn) =

{
1 if n is odd

2 if n is even.

Proof. Let G be a cycle Cn where V (G) = {v1, v2, . . . , vn}.
Case 1: n is odd.
In this case, γcw(G) = n > n

2 . By Remark 2.2, dcw(G) = 1.
Case 2: n is even.
Subcase 2(a): n ≡ 1( mod 3)
Then n = 3k + 1. In this case, γcw(G) =

⌈
n
3

⌉
= k + 1. By Proposition 2.2, dcw(G) ≤ 2.

Obviously the sets D = {v1, v4, . . . , vn} and V −D are the cwd-sets of Cn. Hence dcw(G) =
2.
Subcase 2(b): n ≡ 2( mod 3)
Then n = 3k + 2. In this case, γcw(G) =

⌈
n
3

⌉
+ 1 = k + 2. By Proposition 2.2, dcw(G) ≤ 2.

Obviously the sets D = {v1, v4, . . . , vn−2, vn−1} and V −D are the cwd-sets of Cn. Hence
dcw(G) = 2.
Subcase 2(c): n ≡ 0( mod 3)
Then n = 3k. In this case, γcw(G) =

⌈
n
3

⌉
+ 1 = k + 1. By Proposition 2.2, dcw(G) ≤ 2.

Obviously the sets D = {v1, v4, . . . , vn−2, vn−1} and V −D are the cwd-sets of Cn. Hence
dcw(G) = 2. �

Proposition 3.2. For a complete graph Kn, dcw(Kn) = 1.

Proof. Since γcw(Kn) = n, the result follows. �

Proposition 3.3. For a complete bipartite graph Km,n,

dcw(Km,n) =

{
m if m = n

1 otherwise.

Proof. Let (U, V ) be the bipartition of the complete bipartite graph Km,n. Assume that
1 ≤ m ≤ n where U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}. If m = n, then
{{u1, v1}, {u2, v2}, . . . , {um, vn}} is a cwd-partition of Km,n of maximum order. Hence
dcw(Km,n) = 1 for m = n. Otherwise, if m < n, then {{u1, v1, v2, . . . , vn}} is the only
cwd-partition of Km,n of maximum order. Hence dcw(Km,n) = 1 for m < n. �
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Proposition 3.4. For a wheel Wn (n ≥ 5), dcw(Wn) = 1.

Proof. Let V (Wn) = {u, v1, v2, . . . , vn−1} where u is the central vertex of Wn.
Case 1: n is even.
Then Wn is χ-critical for n even. Thus dcw(Wn) = 1 by Proposition 2.4.
Case 2: n is odd.
In this case, every cwd-set contains the central vertex of Wn. Since n is odd, it follows
that dcw(Wn) = 1. �

Proposition 3.5. Let Fn denote a fan graph. Then dcw(Fn) = 1.

Proof. Let V (Fn) = {u, v1, v2, . . . , vn−1} where u is the central vertex of Fn. Then in Fn,
every cwd-set contains the central vertex. It follows that dcw(Fn) = 1. �

4. Results on cwd-partition number

Proposition 4.1. G is non-trivial iff γcw(G) ≥ 2. �

Proposition 4.2. For any non-trivial graph G, dcw(G) ≤ n
2 .

Proof. Proof follows from Proposition 2.2 and 4.1. �

Proposition 4.3. For any graph G, γcw(G)+dcw(G) ≤ n+1. Further equality holds if and
only if dcw(G) = 1 and γcw(G) = n. Further χ-critical graphs, Kn and K1,n−1 are some of
the graphs for which dcw(G) = 1 and γcw(G) = n.

Proof. Suppose n = 1. Then G = K1, γ
c
w(G) = 1, dcw(G) = 1. Therefore γcw(G) +

dcw(G) = 2 = n + 1. Let n > 1. Suppose γcw(G) = n. Then dcw(G) = 1. Therefore
γcw(G) + dcw(G) = n+ 1. Suppose γcw(G) < n, that is γcw(G) ≤ n− 1.
Case 1: γcw(G) ≤ n

2 .
Since n > 1, dcw(G) ≤ n

2 . Therefore γcw(G) + dcw(G) ≤ n < n+ 1.
Case 2: γcw(G) > n

2 .
Since γcw(G).dcw(G) ≤ n, dcw(G) ≤ n

n/2 = 2.

Therefore γcw(G) + dcw(G) ≤ n− 1 + 2 = n+ 1.
Suppose γcw(G) + dcw(G) = n+ 1. Suppose γcw(G) ≤ n

2 . Then

γcw(G) + dcw(G) ≤ n

2
+
n

2
(since if n > 1, dcw(G) ≤ n

2
)

= n < n+ 1, a contradiction.

Therefore γcw(G) > n
2 . Then dcw(G) = 1. Therefore γcw(G) = n.

The converse is obvious. �

Proposition 4.4. Let G be any graph with even order n. Then dcw(G) = n
2 if and only if

G = Kn
2
,n
2

or K2.

Proof. If G = K1, then dcw(G) = 1 = n 6= n
2 . Therefore G 6= K1. Let G 6= K2 and

dcw(G) = n
2 . Let V1, V2, . . . , Vn

2
be a cwd-partition of G. Then |Vi| ≤ 2 for all i.

Since n ≥ 2, |Vi| ≥ 2 for all i. (Therefore |Vi| = 1 ⇒ G = K1). Therefore |Vi| = 2 for
all i. If Vi is independent for some i, then χ(G) = χ(< Vi >) = 1. Hence, G = Kn and
dcw(Kn) = 1 = n

2 . Thus, G = K2, which is a contradiction to G 6= K2. Therefore Vi is not
independent for every i.

Therefore, χ(G) = χ(< Vi >) = 2. Therefore G is nontrivial bipartite.
Let X, Y be the bipartition of G. Let X ∩ Vi = {xi} and Y ∩ Vi = {yi}. Since

V1, V2, . . . , Vn
2

is a partition of V , |X| = |Y | = n
2 . Since Vi = {xi, yi} is a dominating set
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and X,Y are independent sets, each yj is adjacent to xi and each xj is adjacent to yi.
Since i is arbitrary, G is a complete bipartite graph. Thus, G = Kn

2
,n
2
. �

Proposition 4.5. Let G be a graph such that G and G are not chromatic weak domatically
full. Then dcw(G) + dcw(G) ≤ n− 1.

Proof. Since G and G are not chromatic weak domatically full, dcw(G) ≤ δ(G) and dcw(G) ≤
δ(G). Therefore dcw(G) + dcw(G) ≤ δ(G) + δ(G) = n− 1. �

Proposition 4.6. If a graph G has dcw(G) ≥ 2, then γcw(G) + dcw(G) ≤
⌊
n
2

⌋
+ 2.

Proof. Let G be a graph with dcw(G) ≥ 2. Then γcw(G) ≤
⌊
n
2

⌋
. Since G 6= K1, γ

c
w(G) ≥ 2

and so dcw(G) ≤
⌊
n
2

⌋
. If either γcw(G) = 2 or dcw(G) = 2, then the bound is sharp.

If γcw(G) ≥ 4 and dcw(G) ≥ 4, then since γcw(G).dcw(G) ≤ n, γcw(G) ≤
⌊

n
dcw(G)

⌋
and

dcw(G) ≤
⌊

n
γcw(G)

⌋
. Thus γcw(G) ≤

⌊
n
4

⌋
.

Hence γcw(G) + dcw(G) ≤ 2
⌊
n
4

⌋
<
⌊
n
2

⌋
+ 2. Let dcw(G) = 3 or γcw(G) = 3. Then

γcw(G) + dcw(G) ≤ 3 +
⌊
n
3

⌋
. Since 3 = dcw(G) or γcw(G) ≤

⌊
n
2

⌋
, n ≥ 6. For n ≥ 6,

3 +
⌊
n
3

⌋
≤
⌊
n
2

⌋
+ 2. Therefore γcw(G) + dcw(G) ≤

⌊
n
2

⌋
+ 2. �

Proposition 4.7. For any graph G, dcw(G) + dcw(G) ≤ n, with equality holds if and only
if G = K2 or K2.

Proof. Let n ≥ 2. Then dcw(G) + dcw(G) ≤ n
2 + n

2 = n. dcw(G) + dcw(G) = n iff dcw(G) =

dcw(G) = n
2 . That is, iff G = Kn

2
,n
2

or K2 and G = Kn
2
,n
2

or K2. Let G = Kn
2
,n
2
. Then

G = Kn
2
∪ Kn

2
. In this case, dcw(G) = n

2 and dcw(G) = 1. Therefore dcw(G) + dcw(G) =
n
2 + 1 = n iff n = 2. Therefore G = K2 and G = K2. If G = K2, then G = K2 = Kn

2
,n
2

and dcw(G) + dcw(G) = 2 = n. �

Proposition 4.8. For any graph G, dcw(G).dcw(G) ≤ n2

4 with equality holding if and only

if G = K2 or K2.

Proof. Since n > 1, both G and G having chromatic weak domatic number at least 1.
Thus, 1 ≤ dcw(G).dcw(G). Then the lower bound is sharp may be seen by taking G = K2

or K2. Since dcw(G) ≤ n
2 and dcw(G) ≤ n

2 , then the upper bound is attained if n > 1.

dcw(G).dcw(G) = n2

4 if and only if dcw(G) = n
2 and dcw(G) = n

2 . That is if and only if

G = Kn
2
,n
2

or K2 and dcw(G) = 1. Therefore dcw(G).dcw(G) = n
2 = n2

4 if and only if n = 2.

That is G = K2. Let G = K2. Then G = K2 = Kn
2
,n
2
. Therefore dcw(G).dcw(G) ≤ n2

4 if

and only if G = K2 or K2. �

5. Conclusion

In this paper, a study of a new parameter dcw(G) is initiated. Characterization of graphs
for which dcw(G) = 1 is a result to be derived. If G1 ⊕G2 ⊕G3 = Kn, then is it true that
dcw(G1) + dcw(G2) + dcw(G3) ≤ 2n+ 1? Finding an upper bound for the product dcw(G) and
χ(G) is yet another problem. The relationship between dcw(G) and other graph theoretic
parameters can also be investigated.

I thank the referees for their valuable comments which resulted in a substantial im-
provement of our paper.
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