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INTUITIONISTIC FUZZY BI-IMPLICATOR AND PROPERTIES OF

LUKASIEWICZ INTUITIONISTIC FUZZY BI-IMPLICATOR

S. ASHRAF1, M. QAYYUM2, E. E KERRE3, §

Abstract. This paper presents axiomatic as well as constructive definitions of intu-
itionistic fuzzy bi-implicators based on intuitionistic fuzzy t-norms and their intuition-
istic fuzzy residual implicators. The inter-relationship among different proposed classes
is presented along with a detailed study of the properties of one of these intuitionistic
fuzzy bi-implicators called the intuitionistic fuzzy β−bi-implicator operator constructed
using Lukasiewicz intuitionistic fuzzy t-norm and its R-implicator.
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1. Introduction

The intuitionistic fuzzy sets (IFS’s) and interval valued fuzzy sets (IVFS’s) appeared
independently as appropriate generalizations of fuzzy sets (FS’s). The interval valued
fuzzy sets reflected the ambiguous situations unanswered by fuzzy sets in the form of
closed interval membership function [µ1, µ2] such that µ1, µ2 ∈ [0, 1] and µ1 ≤ µ2. The
intuitionistic fuzzy sets however, are equipped with a nonmembership degree ν along with
the membership degree µ such that µ, ν ∈ [0, 1] and µ + ν ≤ 1. Though the equivalence
of these two approaches has been addressed in [11], but each of these generalizations have
given rise to an extensive literature covering multiple aspects of their applications and the
possible extensions of fuzzy logical operators and set theoretical concepts [2, 3, 5, 9, 10,
11, 12, 13]. Moreover, the vague set (VS) which was proposed by Gau [15], as another
extension of fuzzy set, was later proved in [7] to be an intuitionistic fuzzy set.

In fuzzy literature, a bi-implicator operator has been closely linked to the concepts such
as fuzzy similarity [16], fuzzy equality [19], T-equivalence [17] and restricted equivalence
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functions [8]. Unlike their fuzzy counterpart the intuitionistic fuzzy bi-implicator operators
have not been much worked upon [18].

In this paper we aim to convey to our reader, a comprehensive picture of some new
generalized classes of intuitionistic fuzzy bi-implicators having axiomatic or constructive
definitions along with their mutual relationship. Such a study is expected to lay a ground-
work for the development of new intuitionistic fuzzy logic or algebra having different intu-
itionistic fuzzy bi-implicators as basic connective operators. Furthermore, we have studied
the properties and characteristics of one of the newly defined constructive bi-implicator
called intuitionistic fuzzy β−bi-implicator by utilizing the intuitionistic fuzzy Lukasiewicz
implicator along with intuitionistic fuzzy Min t-norm [9] in its definition.

Also, taking into consideration the close relation between IFS’s and the other generalized
fuzzy sets such as IVFS’s and the VS’s, we are in a position to claim that, all the results
on intuitionistic fuzzy set theory and logic produced in this work can be easily modified
and adapted to the extended frame works of any of the mentioned higher order fuzzy sets.

The work presented here is organized as follows:
Section 1 will present basic definitions and concepts of intuitionistic fuzzy set theory

and logic. In Section 2 we have presented an axiomatic definition of intuitionistic fuzzy
bi-implicator operators which can be regarded as intuitionistic fuzzy generalization of
Fodor-Roubens fuzzy bi-implicator presented in [14]. Furthermore, we have proposed sev-
eral new constructive approaches for defining an intuitionistic fuzzy bi-implicator using
intuitionistic fuzzy t-norms and their residual implicators. We have studied their inter-
relationships along with their relation with the class of intuitionistic fuzzy bi-implicator
having axiomatic definition. Moreover, in Section 3, we have utilized the Lukasiewicz
intuitionistic implicator along with the intuitionistic fuzzy t-norm Min [9] to investigate
the different aspects of one of the newly defined intuitionistic fuzzy bi-implicator called
β− bi-implicator.
Definition 1.1 [1] An intuitionistic fuzzy set (IFS ) on a universe X is an object of the
form A = {(x, µA(x), νA(x)) | x ∈ X}, where the functions µA(x) and νA(x) ∈ [0, 1] define
respectively the degree of membership and the degree of non membership of x in the set
A, while µA and νA satisfy (∀x ∈ X)(µA(x) + νA(x) ≤ 1). The class of all intuitionistic
fuzzy sets on X is denoted by IFS(X). A fuzzy set in X is then just an intuitionistic
fuzzy set for which µA(x) + νA(x) = 1 holds for every x ∈ X. The class of all fuzzy sets
in X is denoted by F (X).

For an intuitionistic fuzzy set A = {(µA(x), νA(x)) | x ∈ X} , we define the complement
of A in X as Ac = {(νA(x), µA(x)) | x ∈ X} , the Support of A in X as a subset of X given
by Supp(A) = {x ∈ X : µA(x) 6= 0 or νA(x) 6= 1}, the Kernel of A in X as Ker(A) =

{x ∈ X : µA(x) = 1 and νA(x) = 0}, the universe of discourse 1̃X = {(x, 1, 0) | x ∈ X}
and the empty set by 0̃X = {(x, 0, 1) | x ∈ X}. As far as the extension of inclusion of IFS
is concerned it is defined as: For all A,B ∈ IFS(X),

A ⊆ B if and only if (∀x ∈ X)(µA(x) ≤ µB(x) and νA(x) ≥ νB(x)).

Definition 1.2 [9] The set L∗ =
{

(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1
}

is a complete and
bounded lattice (L∗,≤L∗) equipped with order ≤L∗ , which is defined as: (x1, x2) ≤L∗
(y1, y2) if and only if x1 ≤ y1 and x2 ≥ y2. The elements 1L∗ = (1, 0) and 0L∗ = (0, 1)
are the greatest and the smallest elements of the lattice L∗ respectively. An IFS A on
X can be equivalently defined as a mapping A : X −→ L∗ such that for any x ∈ X,
A(x) = (µA(x), νA(x)) = (a1, a2) ∈ L∗.
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Definition 1.3 [9] An intuitionistic fuzzy t-norm is an increasing, commutative, associa-
tive (L∗)2 −→ L∗ mapping Ť satisfying Ť (1L∗ , x) = x for all x ∈ L∗. For instance, for
all x = (x1, x2), y = (y1, y2) ∈ L∗ the greatest t-norm with respect to ordering ≤L∗ is
ŤM (x, y) = x ∧ y =
(min(x1, y1),max(x2, y2)) which is an extension of Min t-norm on [0, 1] to L∗. More-
over, ŤP (x, y) = (x1y1, x2 + y2 − x2y2) is an extension of product t-norm and ŤL(x, y) =
(max(0, x1 +y1−1),min(1, x2 +1−y1, y2 +1−x1)) is one of the extensions of Lukasiewicz
t-norm on [0, 1] to L∗. The t-norm ŤM has the property that if z ≤L∗ x and z ≤L∗ y then
z ≤L∗ ŤM (x, y) for all x, y, z ∈ L∗.
Definition 1.4 [9] An intuitionistic fuzzy t-conorm is an increasing, commutative, asso-
ciative (L∗)2 −→ L∗ mapping Š satisfying Š(0L∗ , x) = x for all x ∈ L∗. For instance, for
all x = (x1, x2), y = (y1, y2) ∈ L∗ the smallest t-conorm with respect to ordering ≤L∗ is
ŠM (x, y) = x ∨ y = (max(x1, y1),min(x2, y2)) which is an extension of Max t-conorm on
[0, 1] to L∗. Moreover, ŠP (x, y) = (x1 + y1 − x1y1, x2y2) is an extension of probabilistic
sum and, ŠL(x, y) = (min(1, x1 + 1− y2, y1 + 1− x2),max(0, x2 + y2 − 1)) is an extension
of Lukasiewicz conorm to L∗. It must be noted that ŠM ,ŠP and ŠL conorms are the duals
of intuitionistic fuzzy t-norms ŤM , ŤP and ŤL respectively. It is interesting to note that
for all x, y ∈ L∗, ŠL(x, 1L∗) = ŠL(1L∗ , y) = 1L∗ .
Theorem 1.5 [12] Let Ť be an intuitionistic fuzzy t-norm. If sup

z∈Z
Ť (x, z) = Ť (x, sup

z∈Z
z),

for all non-empty subsets Z of L∗, then Ť is intuitionistic fuzzy left continuous t-norm.
Definition 1.6 [9] A negator on L∗ is a decreasing L∗ −→ L∗ mapping Ň that satisfies
Ň(0L∗) = 1L∗ and Ň(1L∗) = 0L∗ . If Ň(Ň(x)) = x, ∀x ∈ L∗, Ň is called an involutive
negator. The mapping Ňs defined as: Ňs(x1, x2) = (x2, x1) ∀(x1, x2) ∈ L∗ will be called
the standard negator. An involutive negator on L∗ can always be related to an involutive
negator on [0, 1].

Definition 1.7 [9] An intuitionistic fuzzy implicator is an (L∗)2 −→ L∗mapping Ĭ satisfy-

ing Ĭ(0L∗ , 0L∗) = 1L∗ , Ĭ(0L∗ , 1L∗) = 1L∗ , Ĭ(1L∗ , 0L∗) = 0L∗ , Ĭ(1L∗ , 1L∗) = 1L∗ . Moreover,

we require Ĭ to be decreasing in its first and increasing in its second component.
Definition 1.8 [9] The intuitionistic fuzzy implicator Ĭ is said to satisfy the left ordering

property (LOP), if x ≤L∗ y, then Ĭ(x, y) = 1L∗ for all x, y ∈ L∗.
Definition 1.9 [9] Let Š be a t-conorm and Ň a negator on L∗. The S-implicator gener-

ated by Š and Ň is the mapping ĬŠ,Ň : (L∗)2 −→ L∗ defined as, for all x, y ∈ L∗

ĬŠ,Ň (x, y) = Š(Ň(x), y). (1)

Definition 1.10 [9] Let Ť be a t-norm on L∗. The R-implicator generated by Ť is the

mapping ĬŤ defined as, for all x, y ∈ L∗ :

ĬŤ (x, y) = sup{γ ∈ L∗ | Ť (x, γ) ≤L∗ y}. (2)

Remark 1.11 [9] If we take Š = ŠL and Ň = Ňs in (1), then, ĬŠL,Ňs
(x, y) = (min(1, y1 +

1− x1, x2 + 1− y2),max(0, x1 + y2− 1)) is an extension of Lukasiewicz implicator on [0, 1]
to L∗ and is an S-implicator on L∗. Also this extension can be obtained by taking Ť = ŤL
in (2) which makes it an R-implicator extension on L∗. Thus we have ĬŠL,Ňs

(x, y) =

ĬŤL(x, y) = (min(1, y1 + 1 − x1, x2 + 1 − y2),max(0, x1 + y2 − 1)). It is a contrapositive
intuitionistic fuzzy extension of Lukasiewicz implicator to L∗.
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2. Intuitionistic Fuzzy Bi-Implicators

In this section, we shall firstly present an axiomatic definition of an intuitionistic fuzzy
bi-implicator and then will relate it to different new classes of intuitionistic fuzzy bi-
implicators having constructive approaches.
Definition 2.1 An intuitionistic fuzzy bi-implicator is an (L∗)2 −→ L∗mapping IBI
satisfying for all w, x, y, z ∈ L∗ :
(b1). IBI(x, y) = IBI(y, x);
(b2). IBI(0L∗ , 1L∗) = 0L∗ ;
(b3). IBI(x, x) = 1L∗ ;
(b4). If w ≤L∗ x ≤L∗ y ≤L∗ z, then IBI(w, z) ≤L∗ IBI(x, y).
Example 2.2 Let for all w, x, y, z ∈ L∗ such that w = (w1, w2), x = (x1, x2), y = (y1, y2)
and z = (z1, z2). Then the operator defined as:

IBI(x, y) =

{
1L∗ if x = y

(min(1− x2, 1− y2),max(x2, y2)) if x 6= y

}
is an intuitionistic fuzzy bi-implicator.
Indeed we will show that IBI(x, y) satisfies the four axioms of Definition 2.1:
(b1). IBI(x, y) = IBI(y, x). Straightforward.
(b2). IBI(0L∗ , 1L∗) = IBI((0, 1), (1, 0)) = (min(1− 1, 1− 0),max(1, 0)) = (0, 1) = 0L∗ .
(b3). IBI(x, x) = 1L∗ , by its definition.
(b4). Let w ≤L∗ x ≤L∗ y ≤L∗ z. This
implies w1 ≤ x1 ≤ y1 ≤ z1 and w2 ≥ x2 ≥ y2 ≥ z2

implies 1− w2 ≤ 1− x2 ≤ 1− y2 ≤ 1− z2

implies IBI(w, z) = (min(1− w2, 1− z2),max(w2, z2)) = (1− w2, w2)
implies min(1− w2, 1− z2) ≤ min(1− y2, 1− x2) and max(w2, z2) ≥ max(y2, x2)
implies (min(1− w2, 1− z2),max(w2, z2)) ≤L∗ (min(1− y2, 1− x2),max(y2, x2))
and hence IBI(w, z) ≤L∗ IBI(x, y).
Remark 2.3 If we take w = x in axiom (b4) of definition 2.1 then axiom (b4) can be
equivalently replaced by axiom (b�4) provided IBI satisfies (b1):
(b�4). If x ≤L∗ y ≤L∗ z, then IBI(x, z) ≤L∗ IBI(x, y) and IBI(x, z) ≤L∗ IBI(y, z).
Proof
(i). (b4) =⇒ (b�4)
Indeed putting w = x in (b4) implies
IBI(x, z) ≤L∗ IBI(x, y) i.e. IBI(x, .) is decreasing for all x ∈ L∗.
From x ≤L∗ y ≤L∗ z ≤L∗ z it follows with (b4)
IBI(x, z) ≤L∗ IBI(y, z) i.e. IBI(., z) is increasing for all z ∈ L∗.
(ii). (b�4) =⇒ (b4)
Suppose w ≤L∗ x ≤L∗ y ≤L∗ z.
From IBI(w, .) being decreasing and x ≤L∗ z we get:

IBI(w, z) ≤L∗ IBI(w, x). (3)

From IBI(., x) being increasing and w ≤L∗ y we get:

IBI(w, x) ≤L∗ IBI(y, x). (4)

From (3) and (4) we get: IBI(w, z) ≤L∗ IBI(y, x) and hence if IBI satisfies (b1) :
IBI(w, z) ≤L∗ IBI(x, y).

Definition 2.4 Let Ť be a left continuous intuitionistic fuzzy t-norm and ĬŤ be the corre-
sponding intuitionistic fuzzy R-implicator. Then the intuitionistic fuzzy κ−bi-implicator
is the (L∗)2 −→ L∗ mapping IBIκ defined as:

IBIκ(x, y) = Ť (ĬŤ (x, y), ĬŤ (y, x)).
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Definition 2.5 Let Ť
′

be an intuitionistic fuzzy t-norm, Ť a left continuous intuitionistic
fuzzy t-norm and ĬŤ be the corresponding intuitionistic fuzzy R-implicator. Then the
intuitionistic fuzzy β−bi-implicator is the (L∗)2 −→ L∗ mapping IBIβ defined as:

IBIβ(x, y) = Ť
′
(ĬŤ (x, y), ĬŤ (y, x)).

Definition 2.6 Let Ť
′

be an intuitionistic fuzzy t-norm, Ť a left continuous intuition-
istic fuzzy t-norm, ĬŤ be the corresponding intuitionistic fuzzy R-implicator and Š

′
be

an intuitionistic fuzzy conorm. Then the intuitionistic fuzzy Ť
′
Š
′−bi-implicator is the

(L∗)2 −→ L∗ mapping IBIŤ ′ Š′ defined as:

IBIŤ ′ Š′ (x, y) = ĬŤ (Š
′
(x, y), Ť

′
(x, y)).

Proposition 2.7 Let Ť be a left continuous intuitionistic fuzzy t-norm and ĬŤ be the
corresponding intuitionistic fuzzy R-implicator then it holds:

x ≤L∗ y =⇒ ŤM (ĬŤ (x, y), ĬŤ (y, x)) = ĬŤ (ŠM (x, y), ŤM (x, y)).

Proof Suppose x ≤L∗ y. Then we obtain
ĬŤ (x, y) = 1L∗ , ŤM (x, y) = x and ŠM (x, y) = y.

Hence, ŤM (ĬŤ (x, y), ĬŤ (y, x)) = ŤM (1L∗ , ĬŤ (y, x))

= ĬŤ (y, x) = ĬŤ (ŠM (x, y), ŤM (x, y)).

Proposition 2.8 Let Ť
′

be an intuitionistic fuzzy t-norm, Ť a left continuous intuition-
istic fuzzy t-norm and ĬŤ be the corresponding intuitionistic fuzzy R-implicator, then the
intuitionistic fuzzy β−bi-implicator IBIβ satisfies the following properties for all x, y ∈ L∗:
(b
′
1). IBIβ(x, y) = 1L∗ if x = y (reflexivity);

(b
′
2). IBIβ(x, y) = IBIβ(y, x) (symmetry);

(b
′
3). IBIβ(x, y) = Ť

′
(ĬŤ (x, y), ĬŤ (y, x)) = ŤM (ĬŤ (x, y), ĬŤ (y, x)) provided either x ≤L∗ y

or y ≤L∗ x;
(b
′
4). IBIβ(x, y) = ĬŤ (ŠM (x, y), ŤM (x, y)) provided x ≤L∗ y.

Proof
(b
′
1). IBIβ(x, x) = Ť

′
(ĬŤ (x, x), ĬŤ (x, x)) = Ť

′
(1L∗ , 1L∗)) = 1L∗ .

(b
′
2). IBIβ(x, y) = Ť

′
(ĬŤ (x, y), ĬŤ (y, x)) = Ť

′
(ĬŤ (y, x), ĬŤ (x, y)) = IBIβ(y, x).

(b
′
3). From x ≤L∗ y we get ĬŤ (x, y) = 1L∗

and hence IBIβ(x, y) = Ť
′
(ĬŤ (x, y), ĬŤ (y, x)) = Ť

′
(1L∗ , ĬŤ (y, x))

= ĬŤ (y, x) = ŤM (ĬŤ (y, x), 1L∗) = ŤM (1L∗ , ĬŤ (y, x)) = ŤM (ĬŤ (x, y), ĬŤ (y, x)).

(b
′
4). Let x ≤L∗ y.

Then IBIβ(x, y) = ŤM (ĬŤ (x, y), ĬŤ (y, x)) = ĬŤ (ŠM (x, y), ŤM (x, y)) (By Proposition 2.7).
Proposition 2.9 An intuitionistic fuzzy bi-implicator IBI is an intuitionistic fuzzy κ−bi-
implicator if and only if it is an intuitionistic fuzzy β−bi-implicator.
Proof By taking Ť

′
= Ť in the definition of intuitionistic fuzzy β−bi-implicator we can

get an intuitionistic fuzzy κ−bi-implicator. Conversely, we need to show that a κ−bi-
implicator is an intuitionistic fuzzy β−bi-implicator. Let IBIκ be an intuitionistic fuzzy
κ−bi-implicator. Then we show that it satisfies all the axioms of Proposition 2.7 to become
a β−bi-implicator.
(b
′
1). IBIκ(x, x) = Ť (ĬŤ (x, x), ĬŤ (x, x)) = Ť (1L∗ , 1L∗)) = 1L∗by (LOP) and Definition

1.4.
(b
′
2). IBIκ(x, y) = Ť (ĬŤ (x, y), ĬŤ (y, x))

= Ť (ĬŤ (y, x), ĬŤ (x, y)) = IBIκ(y, x).

(b
′
3). Suppose x ≤L∗ y we get ĬŤ (x, y) = 1L∗
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and hence IBIκ(x, y) = Ť (ĬŤ (x, y), ĬŤ (y, x)) = Ť (1L∗ , ĬŤ (y, x))

= ĬŤ (y, x) = ŤM (ĬŤ (y, x), 1L∗) = ŤM (1L∗ , ĬŤ (y, x))

= ŤM (ĬŤ (x, y), ĬŤ (y, x)).

(b
′
4). Suppose x ≤L∗ y.

Then it follows: IBIκ(x, y) = ŤM (ĬŤ (x, y), ĬŤ (y, x))

= ĬŤ (ŠM (x, y), ŤM (x, y)) (by Proposition 2.7).
Proposition 2.10 An intuitionistic fuzzy κ−bi-implicator satisfies the axioms of Defini-
tion 2.1.
Proof Let Ť be a left continuous intuitionistic fuzzy t-norm and ĬŤ be its intuitionistic

fuzzy R-implicator and IBIκ be the intuitionistic fuzzy κ− bi-implicator based on Ť and
ĬŤ . Then we only have to prove that an intuitionistic fuzzy κ− bi-implicator satisfies

the axioms (b2) and (b4), as (b1) = (b
′
2) and (b3) = (b

′
1) have already been proved in

Proposition 2.9.
(b2). IBIκ(0L∗ , 1L∗) = Ť (ĬŤ (0L∗ , 1L∗), ĬŤ (1L∗ , 0L∗)) = Ť (1L∗ , 0L∗) = 0L∗ .
(b4). Suppose w ≤L∗ x ≤L∗ y ≤L∗ z. Then we obtain:

IBIκ(w, z) = ŤM (ĬŤ (w, z), ĬŤ (z, w)) by (b
′
3)

implies IBIκ(w, z) = ŤM (1L∗ , ĬŤ (z, w)) = ĬŤ (z, w)

implies IBIκ(w, z) = ĬŤ (z, w) ≤L∗ ĬŤ (y, w) ≤L∗ ĬŤ (y, x) as y ≤L∗ z and w ≤L∗ x
implies IBIκ(w, z) ≤L∗ ĬŤ (y, x) = ŤM (1L∗ , ĬŤ (y, x)) = ŤM (ĬŤ (x, y), ĬŤ (y, x))
implies IBIκ(w, z) ≤L∗ IBIκ(x, y).

Proposition 2.11 An intuitionistic fuzzy Ť
′
Š
′−bi-implicator satisfies the properties (b1)

and (b2) but may fail to satisfy the properties (b3) and (b4).

Proof Let Ť
′

be an intuitionistic fuzzy t-norm, Ť a left continuous intuitionistic fuzzy t-
norm, ĬŤ be its intuitionistic fuzzy R-implicator and Š

′
be an intuitionistic fuzzy conorm.

Let IBIŤ ′ Š′ be the intuitionistic fuzzy Ť
′
Š
′−bi-implicator based on Ť , ĬŤ and Š

′
. Then

we show that IBIŤ ′ Š′ satisfies the properties (b1) and (b2) but may fail to satisfy the
properties (b3) and (b4). For all x, y ∈ L∗
(b1). IBIŤ ′ Š′ (x, y) = ĬŤ (Š

′
(x, y), Ť

′
(x, y)) = ĬŤ (Š

′
(y, x), Ť

′
(y, x))

= IBIŤ ′ Š′ (y, x).

(b2). IBIŤ ′ Š′ (0L∗ , 1L∗) = ĬŤ (Š
′
(0L∗ , 1L∗), Ť

′
(0L∗ , 1L∗)) = ĬŤ (1L∗ , 0L∗) = 0L∗ .

In order to show that IBIŤ ′ Š′ fails to satisfy (b3) and (b4) we shall present the following
counter examples:
Let x = (0.7, 0.1) ∈ L∗. Then by Definitions (1.4),(1.5) and Remark 1.12 we have ŠP (x, x) =
(0.91, 0.01) and ŤL(x, x) = (0.4, 0.2), which implies that

IBIŤLŠP
(x, x) = ĬŤM (ŠP (x, x), ŤL(x, x)) = (0.4, 0.2) 6= 1L∗ .

Hence IBIŤ ′ Š′ fails to satisfy (b3).
Let w = (0.2, 0.7), x = (0.3, 0.4), y = (0.5, 0.3), z = (0.8, 0.1) ∈ L∗. Then
ŠL(w, z) = (1, 0), ŤP (w, z) = (0.16, 0.73) and ŠL(x, y) = (0.8, 0), ŤP (x, y) = (0.15, 0.58),

which implies that IBIŤP ŠL
(w, z) = ĬŤM (ŠL(w, z), ŤP (w, z)) = (0.16, 0.73) and

IBIŤP ŠL
(x, y) = ĬŤM (ŠL(x, y), ŤP (x, y)) = (0.15, 0.58).

Clearly, we see that IBIŤP ŠL
(w, z) ≤L∗ IBIŤP ŠL

(x, y) as 0.16 > 0.15 and 0.58 < 0.73.

Hence, IBIŤP ŠL
fails to satisfy the property (b4).

Remark 2.12 It must be noted that if we restrict ourself to the choice of all those
x, y ∈ L∗ such that either x ≤L∗ y or y ≤L∗ x and Ť to be a left continuous intuitionistic
fuzzy t-norm and ĬŤ be the corresponding intuitionistic fuzzy R-implicator then, the class
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of all intuitionistic fuzzy κ−bi-implicators and the class of all intuitionistic fuzzy β−bi-
implicators satisfies (b

′
4). Thus they become the subclasses of the class of all intuitionistic

fuzzy Ť
′
Š
′−bi-implicators.

3. Lukasiewicz Intuitionistic Fuzzy Bi-implicator

Next, we shall study in detail the properties of intuitionistic fuzzy β− bi-implicator by
specifying intuitionistic fuzzy t-norms Ť

′
= ŤM and Ť = ŤL with an R-implicator Ĭ = ĬŤL

respectively in its definition. For simplicity in results we drop the index β in notation IBIβ
and from here onward we will use IBI for such an intuitionistic fuzzy β− bi-implicator.
Thus, for all A,B ∈ IFS(X) and x ∈ X we have:

IBI(A,B)(x) = ŤM (ĬŤL(A(x), B(x)), ĬŤL(B(x), A(x)))

= (min(1, b1 − a1 + 1, a2 − b2 + 1, a1 − b1 + 1, b2 − a2 + 1),

max(0, a1 + b2 − 1, b1 + a2 − 1))

where A(x) = (a1, a2) = (µA(x), νA(x)), B(x) = (b1, b2) = (µB(x), νB(x)) ∈ L∗.
Proposition 3.1 For all A,B ∈ IFS(X),
(a). IBIβ(A,B)(x) = 1L∗ if and only if A(x) = B(x);

(b). IBIβ(A,B) = 1̃X if and only if A = B;
(c). IBIβ(A,B)(x) = 0L∗ if and only if x ∈ Ker(A) ∩ (Supp(B))cor x ∈ Ker(B) ∩
(Supp(A))c;

(d). IBIβ(A,B) = 0̃X implies Ker(A) ∩ (Supp(B))c 6= φ or Ker(B) ∩ (Supp(A))c 6= φ.
Proof Let A,B ∈ IFS(X),
(a). IBIβ(A,B)(x) = 1L∗ for any x ∈ X,
if and only if ŤM (ĬŤL(A(x), B(x)), ĬŤL(B(x), A(x))) = 1L∗

if and only if (min(1, b1−a1 + 1, a2− b2 + 1, a1− b1 + 1, b2−a2 + 1),max(0, a1 + b2−1, b1 +
a2 − 1)) = 1L∗
if and only if min(1, b1 − a1 + 1, a2 − b2 + 1, a1 − b1 + 1, b2 − a2 + 1) = 1 and max(0, a1 +
b2 − 1, b1 + a2 − 1) = 0
if and only if b1 − a1 + 1 ≥ 1, a2 − b2 + 1 ≥ 1, a1 − b1 + 1 ≥ 1, b2 − a2 + 1 ≥ 1 and
a1 + b2 − 1 ≤ 0, b1 + a2 − 1 ≤ 0
if and only if b1 ≥ a1, a2 ≥ b2 and a1 ≥ b1, b2 ≥ a2

if and only if a1 = b1 and a2 = b2
if and only if A(x) = B(x).

(b). IBIβ(A,B) = 1̃X
if and only if IBIβ(A,B)(x) = 1L∗ for all x ∈ X
if and only if A(x) = B(x) for all x ∈ X
if and only if A = B.
(c). IBIβ(A,B)(x) = 0L∗ for any x ∈ X,
if and only if ŤM (ĬŤL(A(x), B(x)), ĬŤL(B(x), A(x))) = 0L∗

if and only if (min(1, b1−a1 + 1, a2− b2 + 1, a1− b1 + 1, b2−a2 + 1),max(0, a1 + b2−1, b1 +
a2 − 1)) = 0L∗
if and only if min(1, b1 − a1 + 1, a2 − b2 + 1, a1 − b1 + 1, b2 − a2 + 1) = 0 and max(0, a1 +
b2 − 1, b1 + a2 − 1) = 1
if and only if either {b1 − a1 + 1 = 0 and max(0, a1 + b2 − 1, b1 + a2 − 1) = 1}
or {a2 − b2 + 1 = 0 and max(0, a1 + b2 − 1, b1 + a2 − 1) = 1}
or {a1 − b1 + 1 = 0 and max(0, a1 + b2 − 1, b1 + a2 − 1) = 1}
or {b2 − a2 + 1 = 0 and max(0, a1 + b2 − 1, b1 + a2 − 1) = 1}.
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Next, we discuss all these cases one by one such that they have a mutual relation of ”or”
between them.
Case 1: If b1 − a1 + 1 = 0 then we have b1 = 0, a1 = 1, a2 = 0 and b2 ≤ 1. However, the
condition max(0, a1 + b2 − 1, b1 + a2 − 1) = 1 will enforce b2 = 1.
Thus, we have (a1, a2) = (1, 0) and (b1, b2) = (0, 1) and hence x ∈ Ker(A) ∩ (Supp(B))c.
Case 2: If a2 − b2 + 1 = 0 then we get a2 = 0, b2 = 1, b1 = 0 and a1 ≤ 1. However, the
condition max(0, a1 + b2 − 1, b1 + a2 − 1) = 1 will enforce a1 = 1.
Thus, we have (a1, a2) = (1, 0) and (b1, b2) = (0, 1) and hence x ∈ Ker(A) ∩ (Supp(B))c.
Case 3: If a1 − b1 + 1 = 0 then we have a1 = 0, b1 = 1, b2 = 0 and a2 ≤ 1. Likewise, to
above two cases the condition max(0, a1 + b2 − 1, b1 + a2 − 1) = 1 will enforce a2 = 1.
Thus, we have (a1, a2) = (0, 1) and (b1, b2) = (1, 0) and hence x ∈ Ker(B) ∩ (Supp(A))c.
Case 4: If we choose b2 − a2 + 1 = 0 then we get b2 = 0, a2 = 1, a1 = 0 and b1 ≤ 1. The
condition max(0, a1 + b2 − 1, b1 + a2 − 1) = 1 will enforces b1 = 1.
Thus, we have (a1, a2) = (0, 1) and (b1, b2) = (1, 0) and hence x ∈ Ker(B) ∩ (Supp(A))c.
Thus, all of these situations lead to the result:
IBIβ(A,B)(x) = 0L∗ implies x ∈ Ker(A) ∩ (Supp(B))cor x ∈ Ker(B) ∩ (Supp(A))c.
Conversely,
let x ∈ Ker(A) ∩ (Supp(B))c

implies that x ∈ Ker(A) and x ∈ (Supp(B))c

implies that (a1, a2) = (1, 0) and x ∈ (Supp(B))c.
Now, x ∈ Supp(B) ⇔ (b1 6= 0 or b2 6= 1) and hence x ∈ (Supp(B))c ⇔ (b1 = 0 and
b2 = 1)⇔ (b1, b2) = (0, 1)
implies that [(a1, a2) = (1, 0) and (b1, b2) = (0, 1)]
implies that min(1, b1 − a1 + 1, a2 − b2 + 1, a1 − b1 + 1, b2 − a2 + 1) = 0 and max(0, a1 +
b2 − 1, b1 + a2 − 1) = 1
implies that(min(1, b1− a1 + 1, a2− b2 + 1, a1− b1 + 1, b2− a2 + 1), max(0, a1 + b2− 1, b1 +
a2 − 1)) = (0, 1)
implies that IBIβ(A,B)(x) = 0L∗ .
Similarly, for x ∈ Ker(B) ∩ (Supp(A))c we get IBIβ(A,B)(x) = 0L∗ .
Thus, x ∈ Ker(A)∩(Supp(B))cor x ∈ Ker(B)∩(Supp(A))c implies IBIβ(A,B)(x) = 0L∗ .

(d). IBIβ(A,B) = 0̃X
implies that IBIβ(A,B)(x) = 0L∗ for all x ∈ X
implies that either [x ∈ Ker(A)∩ (Supp(B))c] or [x ∈ Ker(B)∩ (Supp(A))c] for all x ∈ X
implies that Ker(A) ∩ (Supp(B))c 6= φ or Ker(B) ∩ (Supp(A))c 6= φ.
Proposition 3.2 For all A,B ∈ IFS(X),
IBIβ(A,B) = IBIβ(B,A).

Proof The result holds due to commutativity of ŤM .
Corollary 3.3 For A ∈ IFS(X),
(a). IBIβ(A,Ac)(x) = 1L∗ if and only if A(x) = (a1, a2) such that a1 = a2;

(b). IBIβ(A,Ac) = 1̃X if and only if A(x) = (a1, a2) such that a = a2 for all x ∈ X;
(c). IBIβ(A,Ac)(x) = 0L∗ if and only if either A(x) = 1L∗ or A(x) = 0L∗ ;

(d). IBIβ(A,Ac) = 0̃X if and only if A = 1̃X or A = 0̃X .
Proof Follows directly from Proposition 3.1 by taking B = Ac.
Proposition 3.4 For A,B ∈ IFS(X)
IBI(A,B) = IBI(Bc, Ac).
Proof The result holds due to contrapositivity of the Lukasiewicz intuitionistic fuzzy
implicator ĬŤL used in Definition 2.5.

Proposition 3.5 For any A,B,C ∈ IFS(X) such that A ⊆ B ⊆ C we have:
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(a). IBIβ(A,C) ⊆
{
IBIβ(A,B)
IBIβ(B,C)

}
i.e., the first partial mapping IBIβ(·, B) of IBIβ is

increasing and the second partial mapping IBIβ(A, ·) is decreasing;

(b). IBIβ(A,C) ⊆ ŤM (IBIβ(A,B), IBIβ(B,C)).
Proof Let A,B,C ∈ IFS(X) such that A ⊆ B ⊆ C.
(a). A(x) ≤L∗ B(x) ≤L∗ C(x) for all x ∈ X
implies that a1 ≤ b1 ≤ c1 and a2 ≥ b2 ≥ c2.
Now as, [a1 ≤ b1 and a2 ≥ b2 and a1 + a2 ≤ 1]
implies that1 ≤ b1 − a1 + 1 and a2 − b2 + 1 ≥ 1
implies that min(1, b1 − a1 + 1, a2 − b2 + 1) = 1 and max(0, a1 + b2 − 1) = 0

implies that ĬŤL(A(x), B(x)) = (min(1, b1 − a1 + 1, a2 − b2 + 1),max(0, a1 + b2 − 1))

= (1, 0) = 1L∗

implies that IBIβ(A,B)(x) = ŤM (ĬŤL(A(x), B(x)), ĬŤL(B(x), A(x)))

= ĬŤL(B(x), A(x)) = (min(1, a1 − b1 + 1, b2 − a2 + 1),max(0, b1 + a2 − 1)).

Similarly, we have IBIβ(B,C)(x) = (min(1, b1 − c1 + 1, c2 − b2 + 1),max(0, c1 + b2 − 1))
and IBIβ(A,C)(x) = (min(1, a1 − c1 + 1, c2 − a2 + 1),max(0, c1 + a2 − 1)).
Now as, [a1−b1 +1 ≥ a1−c1 +1 and b2−a2 +1 ≥ c2−a2 +1 also c1 +a2−1 ≥ b1 +a2−1]
implies that [min(1, a1 − c1 + 1, c2 − a2 + 1) ≤ min(1, a1 − b1 + 1, b2 − a2 + 1)
and max(0, c1 + a2 − 1) ≥ max(0, b1 + a2 − 1)]
implies that (min(1, a1 − c1 + 1, c2 − a2 + 1),max(0, c1 + a2 − 1))
≤L∗ (min(1, a1 − b1 + 1, b2 − a2 + 1),max(0, b1 + a2 − 1))
implies that IBIβ(A,C)(x) ≤L∗ IBIβ(A,B)(x) for all x ∈ X
implies that IBIβ(A,C) ⊆ IBIβ(A,B).
Moreover, [a1− c1 + 1 ≤ b1− c1 + 1, c2− a2 + 1 ≤ c2− b2 + 1 and c1 + a2− 1 ≥ c1 + b2− 1]
implies that min(1, a1 − c1 + 1, c2 − a2 + 1) ≤ min(1, b1 − c1 + 1, c2 − b2 + 1)
and max(0, c1 + a2 − 1) ≥ max(0, c1 + b2 − 1)
implies that (min(1, a1 − c1 + 1, c2 − a2 + 1),max(0, c1 + a2 − 1))
≤L∗ (min(1, b1 − c1 + 1, c2 − b2 + 1),max(0, c1 + b2 − 1))
implies that IBIβ(A,C)(x) ≤L∗ IBIβ(B,C)(x) for all x ∈ X
implies that IBIβ(A,C) ⊆ IBIβ(B,C).
(b). A(x) ≤L∗ B(x) ≤L∗ C(x) for all x ∈ X
implies that a1 ≤ b1 ≤ c1 and a2 ≥ b2 ≥ c2

implies that ĬŤL(A(x), B(x)) = 1L∗ , ĬŤL(A(x), C(x)) = 1L∗and ĬŤL(B(x), C(x)) = 1L∗

implies that IBIβ(A,B)(x) = (min(1, a1 − b1 + 1, b2 − a2 + 1),max(0, b1 + a2 − 1)),
IBIβ(B,C)(x) = (min(1, b1− c1 +1, c2− b2 +1),max(0, c1 + b2−1)) and IBIβ(A,C)(x) =
(min(1, a1 − c1 + 1, c2 − a2 + 1),max(0, c1 + a2 − 1)).
Now [a1 − b1 + 1 ≥ a1 − c1 + 1, b2 − a2 + 1 ≥ c2 − a2 + 1, b1 − c1 + 1 ≥ a1 − c1 + 1,
c2 − b2 + 1 ≥ c2 − a2 + 1 and c1 + b2 − 1 ≤ c1 + a2 − 1, b1 + a2 − 1 ≤ c1 + a2 − 1]
implies that min(1, a1−c1+1, c2−a2+1) ≤ min(1, b2−a2+1, a1−b1+1, b1−c1+1, c2−b2+1)
and max(0, c1 + a2 − 1) ≥ max(0, c1 + b2 − 1, b1 + a2 − 1)
implies that min(1, a1−c1 +1, c2−a2 +1) ≤ min(min(1, b2−a2 +1, a1−b1 +1),min(1, b1−
c1 + 1, c2− b2 + 1)) and max(0, c1 + a2− 1) ≥ max(max(0, c1 + b2− 1),max(0, b1 + a2− 1))
implies that (min(1, a1 − c1 + 1, c2 − a2 + 1),max(0, c1 + a2 − 1))
≤L∗ (min(min(1, b2− a2 + 1, a1− b1 + 1),min(1, b1− c1 + 1, c2− b2 + 1)),max(max(0, c1 +
b2 − 1),max(0, b1 + a2 − 1)))
implies that IBIβ(A,C)(x) ≤L∗ ŤM (IBIβ(A,B)(x), IBIβ(B,C)(x)) for all x ∈ X
implies that IBIβ(A,C) ⊆ ŤM (IBIβ(A,B), IBIβ(B,C)).
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Definition 3.6 For any A,B ∈ IFS(X), A is said to be point wise comparable with B if
for all x ∈ X either A(x) ≤L∗ B(x) or B(x) ≤L∗ A(x). Moreover, it may be noted that:
1. A is point wise comparable to A for all A ∈ IFS(X);
2. If A is pointwise comparable with B then B is pointwise comparable to A;
3. If A is pointwise comparable to B and B is point wise comparable to C then A is
comparable to C.
Proposition 3.7 For any A,B ∈ IFS(X), such that A and B are pointwise comparable:
(a). IBIβ(A, ŤM (A,B)) = IBIβ(B, ŠM (A,B));

(b). IBIβ(A, ŠM (A,B)) = IBIβ(B, ŤM (A,B)).
Proof
(a). Let A,B ∈ IFS(X), such that A and B are pointwise comparable. Then for all
x ∈ X, either A(x) ≤L∗ B(x) or B(x) ≤L∗ A(x)
implies that either ŤM (A(x), B(x)) = A(x) and ŠM (A(x), B(x)) = B(x)
or ŤM (A(x), B(x)) = B(x) and ŠM (A(x), B(x)) = A(x)
implies that IBIβ(A(x), ŤM (A(x), B(x))) = IBIβ(A(x), A(x)) = 1L∗

and IBIβ(B(x), ŠM (A(x), B(x))) = IBIβ(B(x), B(x)) = 1L∗
or IBIβ(A(x), ŤM (A(x), B(x))) = IBIβ(A(x), B(x))

and IBIβ(B(x), ŠM (A(x), B(x))) = IBIβ(B(x), A(x)) = IBIβ(A(x), B(x))

implies that IBIβ(A, ŤM (A,B))(x) = IBIβ(B, ŠM (A,B))(x)

implies that IBIβ(A, ŤM (A,B)) = IBIβ(B, ŠM (A,B)).
(b). The proof can be constructed in a similar way as part (a).
Proposition 3.8 For any A,B ∈ IFS(X), such that A and B are pointwise comparable,
the following intuitionistic fuzzy sets are equal:
(a). IBIβ(A,B);

(b). ŤM (IBIβ(ŤM (A,B), A), IBIβ(A, ŠM (A,B)));

(c). ŤM (IBIβ(ŤM (A,B), B), IBIβ(B, ŠM (A,B)));

(d). IBIβ(ŤM (A,B), ŠM (A,B));

(e). ŤM (IBIβ(A, ŠM (A,B)), IBIβ(B, ŠM (A,B)));

(f). ŤM (IBIβ(A, ŤM (A,B)), IBIβ(B, ŤM (A,B))).
Proof Let A,B ∈ IFS(X), such that A and B are pointwise comparable. Then, for all
x ∈ X, either A(x) ≤L∗ B(x) or B(x) ≤L∗ A(x)
implies that for any x ∈ X, either ŤM (A,B)(x) = A(x) and ŠM (A,B) = B(x)
or ŤM (A,B)(x) = B(x) and ŠM (A,B) = A(x).
For simplicity of proofs we consider the cases of all those x ∈ X for which A(x) ≤L∗ B(x)
i.e., ŤM (A,B)(x) = A(x) and ŠM (A,B) = B(x) then,
(b)=(a). ŤM (IBIβ(ŤM (A(x), B(x)), A(x)), IBIβ(A(x), ŠM (A(x), B(x))))

= ŤM (IBIβ(A(x), A(x)), IBIβ(A(x), B(x))))

= ŤM (1L∗ , IBIβ(A,B)(x)) = IBIβ(A,B)(x).

(c)=(a). ŤM (IBIβ(ŤM (A(x), B(x)), B(x)), IBIβ(B(x), ŠM (A(x), B(x))))

= ŤM (IBIβ(A(x), B(x)), IBIβ(B(x), B(x)))

= ŤM (IBIβ(A,B)(x), 1L∗) = IBIβ(A,B)(x).

(d)=(a). IBIβ(ŤM (A,B), ŠM (A,B))(x)
= IBIβ(A(x), B(x)) = IBIβ(A,B)(x).

(e)=(a). ŤM (IBIβ(A, ŠM (A,B)), IBIβ(B, ŠM (A,B)))(x)

= ŤM (IBIβ(A(x), B(x)), 1L∗) = IBIβ(A,B)(x).

(f)=(a). ŤM (IBIβ(A, ŤM (A,B)), IBIβ(B, ŤM (A,B)))(x)

= ŤM (IBIβ(A(x), A(x)), IBIβ(B(x), A(x)))
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= ŤM (1L∗ , IBIβ(B(x), A(x)))
= IBIβ(B(x), A(x)) = IBIβ(A(x), B(x)) = IBIβ(A,B)(x) (because of the symmetry of
IBIβ).
The above results also hold for all those x ∈ X, for which B(x) ≤L∗ A(x).
Conclusion

In this research a detailed study of intuitionistic fuzzy bi-implicators was presented.
Several new classes of intuitionistic fuzzy bi-implicators were introduced. The inter-
relationship of these classes was also studied. Moreover, the properties of one of the
introduced classes called β−bi-implicators were developed by employing the intuitionistic
fuzzy Lukasiewicz implicator along with intuitionistic fuzzy Min t-norm in its definition.
Such a knowledge not only provides a better understanding about the structural details of
the particular class but also signifies the role of a bi-implicator in defining any similarity
relation between two intuitionistic fuzzy sets.
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