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1. Introduction

Let A = (anv) be a normal matrix and (sn) be the sequence of the nth partial sums of
the series

∑
an, then we define

An(s) =

n∑
v=0

anvsv. (1)

Let (θn) be any sequence of positive constants. The series
∑
an is said to be summable

|A, θn|k, k ≥ 1, if (see [2])
∞∑
n=1

θk−1
n |∆̄An(s)|k <∞. (2)

where

∆̄An(s) = An(s)−An−1(s). (3)

One can also see [1] for this method. If we take θn = n, then the |A, θn|k summability
reduces to |A|k summability (see [3]).
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1, v a−1,0 = 0 (4)
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and

â00 = ā00 = a00, ânv = ∆̄ānv = ānv − ān−1,v, n = 1, 2, ... (5)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

An(s) =
n∑

v=0

anvsv =
n∑

v=0

ānvav (6)

and

∆̄An(s) =
n∑

v=0

ânvav. (7)

We say that A is a normal matrix if A is lower triangular and ann 6= 0 for all n.

2. The Known Result

Sulaiman [4] has proved the following theorem for matrix summability methods.
Theorem 2.1 Let (λn), (Xn) be two sequences such that

∑∞
n=1 n

−1λnXn is convergent,
and the conditions

n∆λn = O(λn), n→∞, (8)
n∑

v=1

λv = O(nλn), n→∞, (9)

are satisfied. Let A be a lower triangular with non-negative entries satisfying

an0 = 1, n = 0, 1, ..., (10)

an−1,v ≥ anv, for n ≥ v + 1, (11)

nann = O(1), 1 = O(nann) (12)

n−1∑
v=1

avvân,v = O(ann). (13)

If tkv = O(1)(C, 1), where tv = 1
v+1

v∑
r=1

rar, then the series
∑
anλnXn is summable |A|k,

k ≥ 1.

3. The Main Result

The aim of this paper is to generalize Theorem 2.1 for |A, θn|k summability method in
the following form.
Theorem 3.1 Let A be a positive normal matrix satisfying the conditions (10)-(13) of
Theorem 2.1. Let (θnann) be a non-increasing sequence. If (θn) is any sequence of positive
constants such that

∞∑
n=v+1

(θnann)k−1ân,v = O
{

(θvavv)k−1
}
, (14)

∞∑
n=v+1

(θnann)k−1|∆̄anv| = O
{

(θvavv)k−1avv

}
, (15)

and all the conditions of Theorem 2.1 are satisfied, then the series
∑
anλnXn is summable

|A, θn|k, k ≥ 1, where (λn) and (Xn) are as in Theorem 2.1.
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We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.1[4] If

∑
n−1λn is convergent, then (λn) is non-negative, non-decreasing,

λnlogn = O(1), and n∆λn = O(1/(logn)2).
Lemma 3.2[4] If

∑
n−1λnXn is convergent, and the conditions (8) and (9) of Theorem

2.1 are satisfied, then

nλn∆Xn = O(1), (16)
∞∑
n=1

λn∆Xn = O(1), n→∞, (17)

m∑
n=1

nλn∆2Xn = O(1), m→∞. (18)

Lemma 3.3[4] Under the conditions (10) and (11) of Theorem 2.1, we have

n−1∑
v=0

|∆̄anv| ≤ an,n, (19)

ân,v+1 ≥ 0, (20)

m+1∑
n=v+1

ân,v+1 = O(1). (21)

Proof of Theorem 3.1

Let (Vn) denotes the A-transform of the series
∞∑
n=1

anλnXn. We write ϕn = λnXn, so

we have

∆̄Vn =

n∑
v=1

ân,vavϕv =

n∑
v=1

v−1ân,vvavϕv

Applying Abel’s transformation to this sum, we have that

∆̄Vn =
n−1∑
v=1

∆v(ân,vϕvv
−1)

v∑
r=1

rar + annϕnn
−1

n∑
v=1

vav

=

n−1∑
v=1

(v + 1)tv(v−1(v + 1)−1ân,vϕv + (v + 1)−1∆̄anvϕv + (v + 1)−1ân,v+1∆ϕv) +
n+ 1

n
annϕntn

=

n−1∑
v=1

v−1tvân,vϕv +

n−1∑
v=1

tv∆̄anvϕv +

n−1∑
v=1

tvân,v+1∆ϕv +
n+ 1

n
annϕntn

= Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show
that

∞∑
n=1

θk−1
n | Vn,r |k<∞, for r = 1, 2, 3, 4. (22)
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First, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1,
we have that

m+1∑
n=2

θk−1
n | Vn,1 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

v−1ân,vtvϕv

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

n−1∑
v=1

v−ktkva
1−k
vv ân,vϕ

k
v

(
n−1∑
v=1

avvân,v

)k−1

= O(1)

m+1∑
n=2

(θnann)k−1
n−1∑
v=1

tkvavvϕ
k
v ân,v = O(1)

m∑
v=1

avvt
k
vϕ

k
v

m+1∑
n=v+1

(θnann)k−1ân,v

= O(1)
m∑
v=1

(θvavv)k−1 avvt
k
vϕ

k
v = O(1)

m∑
v=1

(θvavv)k−1ϕk−1
v ϕvt

k
vv
−1,

using nXn∆λn = O(λnXn) = O(1) from Lemma 3.2 and writing ϕn = λnXn we have that

m+1∑
n=2

θk−1
n | Vn,1 |k= O(1)

m∑
v=1

(θvavv)k−1ϕvt
k
vv
−1 = O(1)(θ1a11)k−1

m∑
v=1

ϕvt
k
vv
−1

= O(1)
m−1∑
v=1

(
v∑

r=1

tkr

)
∆(v−1ϕv) +

(
m∑
v=1

tkv

)
m−1ϕm

= O(1)
m−1∑
v=1

v(v−2ϕv + (v + 1)−1∆ϕv) +O(1)ϕm

= O(1)

m−1∑
v=1

v−1ϕv +O(1)

m−1∑
v=1

∆ϕv +O(1)ϕm

= O(1)

m−1∑
v=1

λvXv

v
+O(1)λmXm = O(1), as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Now, using Hölder’s inequality,
and by the hypotheses of Theorem 3.1 and Lemma 3.3. we have that

m+1∑
n=2

θk−1
n | Vn,2 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

∆̄anvtvϕv

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

n−1∑
v=1

tkv |∆̄anv|ϕk
v

(
n−1∑
v=1

|∆̄anv|

)k−1

= O(1)
m+1∑
n=2

(θnann)k−1
n−1∑
v=1

tkvϕ
k
v |∆̄anv| = O(1)

m∑
v=1

tkvϕ
k
v

m+1∑
n=v+1

(θnann)k−1|∆̄anv|

= O(1)
m∑
v=1

(θvavv)k−1avvt
k
vϕ

k
v =

m∑
v=1

(θvavv)k−1v−1tkvϕv = O(1), as m→∞,
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as in the case of Vn,1. Furthermore, we have that

m+1∑
n=2

θk−1
n | Vn,3 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

ân,v+1tv∆ϕv

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

n−1∑
v=1

tkva
1−k
vv ân,v+1(∆ϕv)k

(
n−1∑
v=1

avvân,v+1

)k−1

= O(1)

m+1∑
n=2

(θnann)k−1
n−1∑
v=1

tkva
1−k
vv ân,v+1(∆ϕv)k

= O(1)

m∑
v=1

tkva
1−k
vv (∆ϕv)k

m+1∑
n=v+1

(θnann)k−1ân,v+1

= O(1)
m∑
v=1

(θvavv)k−1a1−k
vv tkv(∆ϕv)k = O(1)

m∑
v=1

(θvavv)k−1vk−1tkv(∆ϕv)k−1∆ϕv

= O(1)

m∑
v=1

(θvavv)k−1tkv∆ϕv (v∆ϕv)k−1 ,

by using n∆(λnXn) = O(1) from Lemma 3.1 we have that

m+1∑
n=2

θk−1
n | Vn,3 |k= O(1)(θ1a11)k−1

m∑
v=1

tkv∆ϕv

= O(1)
m∑
v=1

tkv(∆λvXv + λv+1∆Xv) = O(1) as m→∞, (see [4] for detail).

Finally, as in the case of Vn,1, we have that

m∑
n=1

θk−1
n | Vn,4 |k=

m∑
n=1

θk−1
n

∣∣∣∣n+ 1

n
anntnϕn

∣∣∣∣k
= O(1)

m∑
n=1

(θnann)k−1annt
k
nϕ

k
n = O(1)

m∑
n=1

(θnann)k−1n−1tknϕn = O(1) as m→∞,

by the hypotheses of Theorem 3.1 and Lemma 3.3. This completes the proof of Theorem
3.1.
In the special case, if we take θn = n and A as a lower triangular matrix in Theorem 3.1,
then we obtain Theorem 2.1.
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