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DIRECT AND INVERSE PROBLEMS FOR DIFFUSION OPERATOR
WITH DISCONTINUITY POINTS

A. ERGUN!, R. KH. AMIROV?, §

ABSTRACT. In this study, the diffusion operator with discontinuity points has been con-
sidered. Under certain initial and jump conditions, integral equations have been derived
for solutions and integral representation have been presented. Some important spectral
properties of eigenvalue and eigenfunctions have been obtained. Reconstruction of the
diffusion operator with discontinuity points problem have been proved by Weyl function,
spectral datas and two sectra.
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1. INTRODUCTION

Let’s define the following boundary value problem;
1(y) == =y +[2\p (z) + q ()] y = Ny, = € (0,a1) U (a1, a2) U (az, ) (1)
Uly) =y (0)=0,V(y)=y(r)=0 (2)
y(a1+0) = o1y (a1 — 0) (3)
y' (a1 +0) = 1y’ (a1 — 0) +idny (a1 — 0) (4)
y (a2 +0) = azy (a2 — 0) (5)
y' (az +0) = B2y (a2 — 0) + iAyoy (ag — 0) (6)
where ) is a spectral parameter, q(z) € L2 [0, 7], p(z) € W2 [0,7] , a1,a2 € (0,7),a1 < az,

a1 = 1P 9% £ 0Jaz = 1493 £0,(8 = L (1=1,2)).

T oo
The fundamental studies on the spectral theory of the Sturm-Liouville equations were
performed by Bernoulli, Euler, Sturm and Liouville. The first study, which is considered
to be the beginning of the inverse problem theory for the differential equations, was put

forth by Ambartsumyan. A lot of study were done about the inverse problem in [1 — 15].
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The inverse problem is called reconstruction of the operator, whose spectral characteristics
are given in sequences. Spectral theory has a wide usage and plays an important role in
engineering and geophysics and natural sciences.

Jaulent and Jean have investigated spectral and inverse problems of diffusion operators
in[3] . In [6] , Gasymov and Guseinov have focused on spectral theory of diffusion opera-
tors.

The inverse quasiperiodic problem for the diffusion operator was studied by Nabiev [8].
Inverse spectral problem for pencils of differential operators on a finite interval from the
Weyl function was studied Buterin and Yurko in [19] . In [20] , another considerable
paper have performed by Panakhov and Koyunbakan, the half inverse problem for diffusion
operators have been considered. Yang investigated the inverse nodal problem for diffusion
operators in [21] .

2. PRELIMINARIES.

In this section, we will recall some basic definitions and concepts in order to fresh memories.
Let ¢ (z,\) , ¥ (x,\) be solution of (1) respectively under the initial conditions

¢(0,A) =1,¢'(0,A) =0 (7)

B A) = 0,4 (m,A) = 1 ®)
and discontinuity conditions (3), (6) .
The function ¢ (z, A) provides (9), (10), (11).
In this case, if 0 < x < a1, then we have

. 1 [®
6N = w1 [Csima @ - ) x (O (e dr (9)
0
if a1 < x < az, we have
(;5($ )\) (Oél + 51) R +1 ( _ /81) iA(2a1—1) + %eikx _ 77161'/\(2111—35)

+<m+m>MM¥”&u (t,\) dt

—1 5 (a1 — fp1) - WX( Yy (t,\)dt —i% - wx(t)y(t, A)dt (10)

0 0 A
+ﬂ21 o cosMEH201) \ (4) g (1, \) dt 4+ [ wx(t)y(t,)\)dt.

if ao < x < m, we can write

. . . . + .
& (1‘, )\) — ai"—aéi-ez)\m + al—a2—ez>\(2a1—2a2+x) + ai"—a;ez)\(&zg—z) + al—a;-ez)\(2a1—a:) + %ezkm

_ 10y i)\(2a172a2+m) + may ei/\(2a27m) _ 'Yla; ei)\(2a17:):) _omie i/\x M2 ei)\(2a172a2+x)

2, T2 2 1 1

’Y2O‘1 eiM2a2—x) _ 72% ,iX(2a1—7) + 2% gidx + 7200 eiM2a1—2a2+x) _ 92 ,iA(2a2—1)
2 2 ( ) 2 4
ix(2 a1 sin A(z—t
2 AR =) (of a2 + 1) f% X )y (t,\)dt
Ax+t—2

+ (—oz1 a2 + 12y [ sin x+ 2 y(t,\)dt

+(_a1 a2 ’Yl’Y) a1 sin A\( £E+t 2(11) () (t /\)dt—a2 fa2 sin A( r—l—t 2a2)X<) (t )\)dt
+(ay0; - ”f”)]“l““*”“lQ“T“”t>x<> (t A)dt+—a§1ﬂ2ﬂﬂif—i— (t)y (¢ A) dt

—5 (o —naaf) [ =R (1) y (1, 0) dt

+5 (= waz—vxu)g“gﬂﬂéiﬁﬁ (B)y (1, \) dt

+5 (o3 +70y) f" CosMERERA) 3 (1) gy (¢, N) dt + T2 [02 COMTHE22) 3 (1) (¢, X) dt
_|_ (’}/10(2 _'_720[2) a1 cos A(2a;1 /\2a2+x t)X() (t )\) dt — z'yg fczllz %WX (t)y(t,)\) dt
+fx sm)\(x t) ( ) (t,)\) dt.

The function ¢ (z, A) provides (12),(13), (14).
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if ao < x < m, we have
R e (AR (12)

if a1 < x < az, we have

P (z, ) = +sm)\( W)—TSIHA(QGQ—w—ﬂ)+a;fW 7sm>‘f\x Dy ()1 (¢, \) dt
—ay ffr wx (t) ¢ (¢, ) dt + 2>22262 cos\ (z —m) — 2/\22262 cos A (2a —x — )

_’_2’6"12 ]‘ﬂ' COb)\(CE t)X(t)w(t, )\) dt— 2(2):;262 fT( COSA(I-}i\-t—2a2)X(t)¢(t7)\) dt

a2 %\2( t)>\ az
a2 sin \(z—
+ T x W)t A) dt
(13)
if 0 < z < aq, then it has the form
" (iL‘ )\) = o] a;,- sm)\()\ T Oél_Oé;_ s1n)\(2a>1\ x—1) +ajag sin A\(2a2 )\2a1+z )
+ —cosA(2a2—z—) i} v2 cos A(z—) ‘0 Y2 cos A(2a1 —z—)
—Qg Qg h T2 A 208 A
io 2 cos A(2a2—z—) ia] v2 cos A(2a2—2a1+z—) iad 2 cos A(2a1 —z—)
" %090, A 1 %05 X ~ Za1f A
+zo¢2+’yl cos )\(m ) + iy ¥2 cos A(2a2—x—m) iy 71 cos A(2a2—2a1+z—7)
20181 20181 A 20181 ]
4w sm)\(z T v1v2  sinA(2a1—z—m) + v1v2  sinA(2a2—z—)
daiBrazfe )\(>\2 ) 4Oé1ﬂ1)oc2,32 A doy Braz P2 A §\
i —2a1+x— + + T si —t
_4041’),;3’1170?2,82 — )\al — Tl + 4a1,,y6’11’22/32> fag = )\x X (t) 1/) (ta )‘) dt
- 4 ™ sin A(z+t—2a1)
+ O[1a2 —f-% fagfl ()’lp(t,)\)dt
+ - ~17 7w sin A(z+t—2a2)
—(aTe T e ) Jo = 3 o x O Y (8N di
- — T sin A(2a2—2a1+z—7)
— (o1 + s ) Ja 2= X () (t, ) dt
+
a2 ag 7 m cos A(xz—t)
<26i2ﬁ2 263151) faz A ( ) <t’ A)dt
+
al Y2 as v T cos)\(x—i-t 2a1)
Z <2Cigﬁ2 20?1ﬂ1> faz 1 (t) (t? )\>
al v as 71 T cosA(r—i—t 2a2)
—i (2(112[32 203151) fag 2) ( ) (t7 )‘) (14)
. a2 as 11 T cos>\(2a 2a1+x—)
G R I e NORIONE
+a1|_ faz sin A( :D t)X( )w(t7)\) dt—i—al_ f(;lf sin A\( m—;t 2a1) ( )w(
Az . A t—2a
+Z2a151 f;llz Cos /(\ t) ( )¢(ta /\) dt — 22071151 faalz cos (x; 1) ( )w(t /\) dt

o= 4y 1) di.
Where x (t) = 2)\]? (t) +q ().
(2

Theorem 2.1. If p(z) € W, (0,7) and q(x) € Ly (0,7); vy (z,)\) solution of the equa-
tions (1) , providing initial conditions (2) and discontinuity conditions (3) — (6) , then it

has the form

Yo (1, \) = yoo (2, \) + Ky (2, ) e?dt (v =1,3)
where
Ry (x) e 0<z<a
Yoo (,)) = Ry (z) e + Ry () eiM(2a1~) ra1 < < asg
R3 (z) eA201=2) L R, (1) ePrRm—202t2) ) < g < g
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—i [ 71 —i * p(t)dt
Ro(x) = ¢ WP Ry (@) = Ry (ar) (of + 2 ) e O,

2
Ry (xz) = Ro(a1) <af — %) ot Jay p(t)dt’

Rs (z) = (—E <Oéii_ + %) Ry (a1) — ay Ry (a2)) eifaz p(t)dt,

2 2
Ry (z) = <7§ ( ap + ) Ro (a1) + a5 Ro (a2)> i [, p(t)dt
and o ( fo (2|p @)+ (x —t)|q(t)]) dt , where the function K, (x,t) satisfies the con-

dztwn

/ Ky (2, )] dt < e20@) _ 1

—T

withc; =1 ,c= (of + |ay |+ 2 +2) es = [(Jag| +72) (1 + 1) +af +1] .

Theorem 2.2. Let p(z) € W} (0,7) ,q(z) € Lz (0,7). M (x,t) ,N (,t)

are summable functions on [0, 7] such that the representation for each x € [0,7] /{a1,az}

o (x, ) = ¢o (z,\) + /Om M (x,t) cos Atdt + /Om N (z,t) sin \tdt

1$ satisfied,
a; < x < ag

o (z, )\) Ayqcos[Az — B (z )] —|— As cos [ (2a1 — x) — B (x)]
+ Jo M (z,t) cos Xtdt + [ N (x,t) sin Xtdt

where Ay = (of +3) , A5 = (o] — 3).

ax<zr<Tm
¢ (z,\) =A; cos [)\ (2a1 — x) (f p(t)dt— [ p(t) dt)}
+Ascos |\ (2a; — 1) + (f p(t)dt — ()dt)}
—Ajcos [A(2a; —2as+x) — ( aZp dt+ f dt)}

+A;3 cos A(2a; — 2a9 + x) — fo p(t )dt]
+ Jo M (z,t) cos Xtdt + [ N (z,t) sin Xtdt

where Ay = =% (o +%5) , Ay =—ay (o] +%) , Az =0y (a7 — %)
Thus , following the relations hold;

cos B (z) - M (z,x) +sinf (x) - N (z,x) = /093 (q(t)+p2(t)) dt

Ay

(M (2 0)cos 5 () = N (. )sin (T30 7370 = 2 [ (a0 + 52 )
0

[(A1 cos B3 (x) — Az cos By (x)) M (z,t) —E (Ag sin 53 (x) — Assin B4 (z)) N (z, )]

= % (A% + Ag - 2A1A3 COS (,33 - ,64 ) q ( )) dt

OM (x,t)

N (z,0) = 9%
=0

=0.

(16)

(17)

(18)

(19)

t=2a1—2a2+x+0
t=2a1—2a2+x—0

(20)
(21)
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Ifp(z) € W2(0,m), q(z) € W4 (0,7), so system (22) is provided for M (z,t), N (z,t).
02M (z, ON (z, 02 M (x,

{ T — M (2,1) q (2) = 2p () 2570 = T

oz ot? (22)

2 N (x i 7
PN N (2,8) g () + 2p () 2228) — PNz

On the contrary , if M (z,t), N (x,t)are summable on [0, 71| for each x € [0, 7] / {a1,as}and
satisfy equalities (22) and (17) — (21) , then the function ¢ (x,\) which is defined by
(15) — (16)is a solution of (1) — (6).

Definition 2.3. If yo (z) a nontrivial solution of equation (1) with conditions (2) — (6),
then )\ is called eigenvalue. Additionally, yo () is called the eigenfunction of the problem
corresponding to the eigenvalue Ag.

We suppose that the function ¢ (z) provides the condition

[ @ +a@l @] de >0 (23)
for all y () € W2 1[0,a1) U (a1, az2) U (ag, 7] such that y (z) # 0 and

y'(0) -y (0) =4/ () -y (m) = 0.
Lemma 2.4. Eigenvalues {)\,,} for the problem (1) — (6) are real.
Proof. We set [ (y) := [—y" + ¢ (x) y]. Then,

I(w),y) = ol y@@)de
= i {lv @ + 1y @)P g @)} da
due to condition (23), follow this (I (y),y) > 0.

Lemma 2.5. Eigenfunctions corresponding to different eigenvalues of problem (1) — (6)
are orthogonal in the sense of the equality

(An + k) /07r Y (z, A\n)y (z, Ag) do — 2/07rp () y (z, An) y (z, \g) dx = 0. (24)

3. PROPERTIES OF THE SPECTRUM

¥ (z,\) ,6(x,\) are any two solution functions of equation (1).

w [1/} (:1:7 )‘) 7¢ (.’E, A)] = w (.’E, >‘) (bl (xa >‘) - 1/}1 (.’E, >‘) ¢ ($7 )‘)
One can see that Wronskian is independent by z,

WGl — ) and

W[w(x7)‘)7¢(x7/\)]a1+0 = W[w(x7)‘)7¢(xv/\)]a1—07
W (@A), 6@ N]ao = W

Then it can be shown as W [¢, ¢] = A (N).

The A () function, which is defined as the characteristic function of (1) — (6), is entire
for A. In that case, {\,} is countable set of zeros of characteristic function.

Lemma 3.1. Eigenvalues of the problem (1) — (6) and zeros of the characteristic function
are overlapped. ¥ (z, \g) ,é (x, \o) functions corresponding to eigenvalue \,; then there is
such a (7,) sequence that provides

VY (T, An) = M@ (2, An) 5 M0 # 0. (25)

The proof of the lemma is done as in [7].
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Let use denote

™ 1 ™
oy = / <p2 (z,A\p) dx — /\/ p(z) <p2 (x,Ap)dx, n=1,2,3,... (26)
0 n JOo

{ay} are the normalized numbers of problem (1) — (6).

Lemma 3.2. The equality A (An) = 2\nfnay, is held. Here A =22
Proof. Since ¢ (z,\g), ¥ (z,\g) are the solutions of (1), the following equations are
satisfied;

—¢" (2, 0) + [22p (2) + ¢ ()] ¢ (2, ) = N2¢ (z,)) (27)
—¢" (2, A) + [22p (@) + ¢ ()] ¥ (2, X) = N9 (2, )

If equations (27) are differentiated with respect to A, we get

— 6 (@0 + A (@) + (@)
— 9" (2, 0) + [22p (2) + ¢ (2)]

are held. Namely,

@N=Xo@N+o@NA-2@} g
(@.0) = N4 (@.0) 4+ (2, ) {20 — 20 ()}

5
(0
L L6 (@, 0) 0 (2, 0) — @ (2, 0) - (5, 0) b = — [2A = 2p (2)] & (2, A) ¢ (2, A)

d
"l : (29)
% ¢ (:L', )‘) ' W (1‘, /\) - ¢/ (3?, )‘) ' 1/1 (.%', )‘) = [2)‘ - 2]7 (m)] (b (33, A) 1/} (.%', )‘)

are held. If equations (29) are integrated from 0 to 7 , respectively, we obtain

- {¢(§,/\) o (6&A) —¢' (&N 'J)(&A)}ﬂ = /W 2A=2p (O] ¢ (&N ¥ (& A) dE (30)

and

d M / )y
dm{¢(g,x)-w (&, N) — ¢ (&M-M&M}

[ {ben wen-den - ven}a
_ /Om[zA_zp@)w(f,A)waA)df

a1=0 4 {g’b(& A (6, 0) — ¢ <«5,A>-w(£,A>}ds
“”;g{ ) (6,0) — é’(m)-wm)}ds

1+0
WEN) — ¢ (E) - (€, A)} dg
= [©~ 0[2/\—2]9

A) -
. O] G (EN Y (E N dE+ [P0 22— 2p (&) b (£, M) 1 (€, X) dE
L2 G 2A =20 ()] 6 (6, M) ¥ (€, \) de

o {0
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° ° a1—0
{ (€N (€N - ¢'<5,A>-¢(5,A>}0

ag—

a1 +0

+12(EA) Y (EA) - <Z>’(€ A) - (€, A)

= Jo 2A=2p(¢ <i>(€, A) Y (&, A)dg

{q'ﬁ €)W (6.0) %’<§,A>-w<§,x>}
{

xT

{c?s (EN) -0 (EN) — ¢ (€N 0 (€. A)} (31)

:
= [ 2 -2m@lee e
By addition side by side, we obtain the equality
W 96N, % (EN] +W 362w (EN)]
=AW= [ -2 @leEN B EN i
for A — A,.. This yield
AQn) == [ 22— 2 (6)] 1’ (é An) d€

:2>\n77nf ¢2 (g )‘ ~ fg ¢2 g A )dg: 2)\n77nan-
Letdenotefn:{/\ :|/\0‘+55>0n—012 }
Tn:{A:|A—A2\25 >0,n=0,1,2,..},

where § > 0.
Lemma 3.3. For enough large values of n |

IA(N) —Ag (V)] < %e“l(?ar?aﬁﬂ, Aerl, (32)

is provided. B
Proof. As it is shown in [26] , |Ag (A)| > Csel™ 7™ for all X € Ts , where Cs5 > 0 is
constant. On the other hand, since

Ml‘iinooe_”m”” (AN —Ag (V) (33)
—  lim e MmAlm </ M (m,t) cos Atdt —I—/ N (7,t) sin Atdt) =0
[Al=00 0 0

for enough large values of n (see[1]) we get (3) . The lemma is proved.

Lemma 3.4. The boundary value problem (1) — (6) has a countable number of eigenval-
ues, that grow unlimitedly, when that are ordered according to their absolute value. In
addition, eigenvalues can also be shown asymptotically as the following.

ln

S
An =+ 35+ 15
n

A

n — o0

nm
A = 5 —2a,rn T ¥ (n) 5 sup [ (n)] = ¢ < +o0

where t, € ls and s, is a bounded sequence.

Proof. By the lemma 3.3.,if A € Ty , [Ag (A)| > Csel! ™A™ > SaellmAlm S | A (X) — Ag (V)]

is true. Applying Rouche’s theorem inside the I'y,, the functions A(X) = Ag(N) +

{A (X)) — Ag (M)} and Ag (M) have the same number of zeros. Namely , Ao, A1, Aa, ..., A, are
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zeros. Similarly, according to the Rouche’s theorem the function A () has a unique zero
inside each circle |/\ — /\2‘ < ¢ for sufficiently large values of k. Since 6 > 0, A\, = \) + ¢,
. where lim &, =0 . If A()\,) =0, we have

n—oo

Ao (M) +en) + / M (m,t) cos (A + e, tdt + / N (m,t)sin (A +e,)tdt =0  (34)
0 0

Ag ()\g + €n) = Aj cos {()\% + 5n) (2a; — x) (f p(t)dt — p(t) dt)}

+As cos (A?L + 6n) (2a; — x) + ( axz p(t)dt — p(t )dt)} (35)
—Ajcos | (AD +e,) (2a1 — 2a9 + ) (f p tydt+ [ p dt)}

+Agz cos ()\2 + 5n) (2a1 — 2a9 + ) fo ] =0

Ay ()\2 +éep) = [% ()\2) —I-o(l)] En , M — OO
(35) takes the form of

[Ao (A) +0(1) } en + f2a1 0N (7,t) cos (A9 + &) tdt
20280 M (7, 1) cos (X + e, ) tt
+ Jous—2agmio M (m,1) cos (A 4 en) tdt + f2a1 "ON () sin (A0 + &) tdt

)
+f22;1 :i%ﬂ 0 5 (m,t)sin (A9 + e,,) tdt + anl sagprio N (7, 1) sin (A +e,) tdt =0
(A

It is easy to see that the function Ag(\) = 0 is type of [17] , so there is a 75 > 0, such

that ’AO A%) > 15 > 0 is satisfied for all n. We also have

0 _ nm
" 241 —2a0+ 7
where sup |1 (n)| < M for some constant M > 0 [18]. In addition to, when we replace

+¢1(n) (36)

n
(36) into (35) and calculate certain transformations, we reach e, € lo . We can obtain
exactly

En =
_ 1 _ _ _ g i 0 _
(B0 (3 +o(1)) (A% +2n) [= (M (20 =7 +0) = M (m, 201 = 7 = 0))sin (A +&n) (201 =)

— (M (7,2a1 — 2a2 + 7+ 0) — M (m,2a1 — 2az + 7 — 0)) sin (A} + &) (2a1 — 2a2 + 7)

+M (m,m)sin (A +en) — o My (m,t) sin (X, + 5, tdt

+ (N (7,2a1 — 7+ 0) = N (m,2a; — 7 — 0)) cos (A) + &5) (2a1 — 7)

+ (N (m,2a1 — 2a + 7+ 0) — N (m,2a1 — 2a + 7 — 0)) cos (A + &) (2a1 — 2as + 7) + N (7,0)
—N (m,7) cos (A + en) 7+ [ Ny (m,t) cos (X) + &y,) tdt]

Since (fy My (m,t) sin (A) + €p) tdt) € Iz and (fy Ny (m,t) cos (XS, + &y,) tdt) € Iy, we have

En m{[ Assin [B4 (1) + A (2a1 — )] +A1sin [63( ) =AY (2@1—2a2—|—7r)]

+Agsin [By () + XY (2a1 — 2a + )] — Agsin [B4 (7 Or]] Jo (g (@) +p? () dt
+ [A5 cos [54 (m) + )\0 (2a1 — 7r)] Aj cos [53 (m) — )\ (2(11 — 2a9 + 77)]
+A3€OS [ﬁ4(7‘1’)—)\%(2a1—2a2+7‘r)]—A4COS [54( )+)\0 H[ (ﬂ') (O)]-}-%ﬁl

where t,, € [5. So we obtain

— 0 Sn
An = An AOJ“YO
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where
Sn 1()\%){[ A5Sin[ﬁ4( )_|_)\0 (2(11_71')] +A1Sin[ﬂ3( ) )\0 (2(11—2@2+7T)]
+A3 sin [By (m) + AV (2a1 — 2az + )] — Agsin [By (7 or)] Jo (q(t) +p? () dt

+ [As cos [B4 (m) + /\0 (2a1 — m)] — Aj cos [B3 (7) — /\0 (2a1 —2a9 + ﬂ)]
+ A3 cos [B4 (m) — )\2 (2a1 — 2az + )] — A4 cos [B4 (W) + 207 [p (7)) = p(0)]

Spn is a bounded sequence. This completes the proof. O

4. INVERSE PROBLEM

Let’s show problem (1) — (6) as L («, a1, a2).

(=" +[20p (2) + ()] y = Ny, = € (0,m)
Uly) =y (0) = 1V(y) y(m) =0
L (0, an,az) = y(a1+0)—a1y(a1 0)
A2l Y (a1 +0) =1y (@1 — 0) + Ay (ar — 0)
(az+0) —agy (a2 —0)
( V' (a2 +0) = Boy’ (G2 — 0) + iAoy (a2 — 0)

we consider the boundary value problem L (a,ay,as). L (o, a1,as) has the same form
L (a, a1, a2), but only its coefficients (q, p, &1, &, a1, az, y1,y2) different. We suppose to the
coefficient (g, p, &1, @z, a1, az, y1,%2) provide conditions of problem (1) — (6). Let & (z, )
is a solution of equation (1) with the conditions U (®) = 1,V (®) = 0 and jump contitions
(3) — (6). We define M (A) := @ (0, \).

The functions ® (x, \)and M () are called the Weyl solution and Weyl function for the
boundary value problem (1) — (6).

Using the solution ¢ (z, A) defined in the previous sections one has

Y (z,\)
AN

D (2, ) :=— =S (@A) +MN)-d(x,\), M(\) =— (37)

where 1 (z,\) is a solution of (1) with the conditon ¢ (7,A) = 0,94’ (m,A) = —1 and
(3) — (6). S(x,A) is defined from the equality

V(@A) =1 (0,0)-¢(x,A) —AN)-S(z, ) (38)
then,
(@(z,A),0(z,A) =1

<(I) (CC, >‘) 7(;5 (I‘, )‘)> =-A ()‘) for = ?é ai, az.
The following theorem states the significance of the Weyl function.

Theorem 4.1. If M (\) = M()\), then L (o, a1,a2) = L(a,ay,az). Thus, the boundary
value problem L («, a1, a2)is uniquely defined by the Weyl function.

Proof. Let us define the matrix P (x,\) = [P (z,\)], (j,k = 1,2)

Gz, N) Bz, A) ) [ o(xN) B(z,N)
P(x’A)'(N’ ) @ )‘(cb’(m) @’(x,A)>
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So, we can write

Pra () = =6 (2, 0) 522 1 (2,3) 42

Pis (2,)) = —¢ (2, 2) & %M +¢(;p NE: S0 )
Pyt (2 0) = =/ (2,) 552 — ' (2, ) S5

Py (2,)) = —¢ (x,)) WA(Q(B):;\) +' (2, ) wz((f))

then we have
Py (@,)) = ¢ (2,0) [s (2, \) + M () - & (x,A)}
—czb'(w,A)[f(fmA)ﬂLM( )o@, N
= 9@ N T (0,0 = ¢ @0 S @)+ [MO) =MW ¢ (@A) @3

=0 @) |S @) +M 06N

Piy (2,0) = 6 (2, ) [S (2, 0) + M (X) - ¢ (2, A
M) =M )] 6@, (. 3)

= (2, \) S (z,\) — ¢ (2,A) S (z,\) +

Po (. = ¢/ (2.3) [§ (2, 0) + M () - ' ()
0 (@18 (@ 0) + M ()¢ (2, )] )
= ¢ @ N (@) = (@0 @)+ [MO) =MW ¢ @28 @)

Paz (2,) = 6 (2, A) S (2, 0) + M (V) - ' (2, 0)] + ¢/ (2.3) [ S (2,0) + M(N) - & ()]
= ¢/ (@, X) S (2, 0) = ¢' (2, 0) (0, X) + [M (3) = M (V)] ¢/ (2, 1) 6 (@, 2).
If M (X\) = M (\) ,then
Pii(2,0) = ¢ (2, 8 (2,0) = & (2.3 S (2,)

Py (z,0) = ¢ (2,0) S (2, A) — ¢ (2, A) S (2, \)
Py (xv /\) = ¢/ (‘Tv /\) §/ (wv /\) - 5/ (x7)‘> S’ (l‘,)\)

Py (2, ) = ¢ (2, A) S (@, ) — &' (2, ) S (z,\) .

If M\ = ]\7()\) , the functions Pjj (x, ), (j, k = 1,2)are entire for A . On the other
hand, the function ¢ (2, ) has asymtotic expression due to (9),(10), (11) and the function
¥ (z, \) has asymtotic expression due to (12),(13), (14)

O (|A] elol2) ; 0<z<ay
¢ (x,\) = { O(|)\|e|“|(2a1 x)) s ar<zx<ay
O (|A| elol@ar=2a242)) o gy < < 1
(1Al W”””) ;s 0<z<ay
Y (z,N) = { (|A[ePMleatm=2)) gy <z < ay .
O (|| elMaz(r= “”)) pae<xz<m

We replace (9), (10), (11) into (39) for Vz € [0, 7]/ {a1, a2, a1, a2}
| P11 (z,A\)| < ¢s and |Pia (z,A)| < Cs
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is held. ¢5 , C5 can be shown presence of constants. We calculate certain transformation
of Liouville theorem, then
Py (z,)\) = A(x) and Pia (2, A) = 0 are held. Now by using (39), we obtain

¢ (2, A) - ¥ (2,)) = & (,A) - @ (2, \) = A(x)
O (x, )@ (x,\) — @ (z,\) - P (x,\) =

and

¢ (2, ) = ¢ (x,)) - A ()

therefore with (37) and (38)

Wip e =W |6, — L)
S W 6 (2, 0), = (0,0) 6 (2, 0) + A (\) S (, V)]
w

AQ ))W[¢>( )b (N + W o (2, N), S (2,0)] =

and similarly W [ 1. According to (40)1 = W [¢ (z, ), ® (z, \)] = W [A (2) & (2, )), A (2) D (z, )\)]

=A@ W [d(2.1), (@,1)] = 4% (x)
Function¢ (z, A) has the following the representation in D = {\ : arg A € [e, 7 — ¢}
for |A| — oo,
if a1 <z < aog;

o (2,)\) = gexp (—i(\z — B (2))) (1 +0 (i)) (41)

k=1forx <ay, k= Ay for x > aj.
Ifas < x <,

PN =g (i (Ao - 204 7) - (@) + ) (140(3)) ()

k = A;. Because of (40),(41),(42) ;a1 = a1 ,a2 = az are true. In addition to A(z) =1
LAl = Ay ve Ay = Ay are true. Because of (42), ¢ (z,\) = ¢ (x,\) , ®(x,\) = P (x, ) is
held.
Furthermore , when we replace ¢ (x,\) = ¢ (z,A) and operation are calculated, we
reachp (z) = p(z), ¢ (x) = ¢ (x). Thus , for each A,

(a1 —a1)p (a1 —0,A) =0

<51 —51) ¢ (a1 —=0,A) +(n1 =) plar —0,A) =0

(042 —d2)g0((12 —0,/\) =0

<ﬁ2 _,82) ¢ (a2 = 0,A) + (72 = F2) p (a2 = 0,A) =0
a1 = aq, ag = @z, 71 = 1 ve 72 = 72 are held. Consequently L (a,aj,a2) = L (a,a1,a2).
The theorem is proved. ]

Theorem 4.2. If p, = fin , Ay = Xn ,;n=0,1,2,..., then L (a,a1,a3) = L (o, a1, a2).

Proof. Obviously, the characteristic function A (A) and v (0, A) are uniquely identified by
the sequences {)\2} and {,un} If Ay = An and iy, = fin,(n = 0,1,2,...), then A (A) = A (\)
and ¥ (0,)) = ¥ (0,)). It follows from (38) that M () = M ()\). Therefore, applying
Theorem 10, we conclude that L (a,a1,a2) = L («a, a1, a2). The theorem is proved. O
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Theorem 4.3. If o, = ay , Ay = An,in=0,1,2, .., then L(a,a1,a2) = L (a,ay,a3). So,
spectral data { A, an} uniquely determines the problem L («, ay,as).

Proof. The Weyl function M ()\) is meromorphic with simple poles at points A2. The
expression

AN =Ap(\) + /0 A (m, \) cos Atdt + /0 B (7, \) sin Mtdt

and equalities 2\, 8o, = — A (An) 5 ¥ (2, ) = Bnp (z, \n), we have

n n 1
ResM()\):—¢.(0’)\):—.B = o
= A)  AQw) e
because the M (\)is regular for A € I', by Rouche’s theorem. So,
1 M ()
M) =— dp , el
( ) 27TZ Fnl /,[/ _ )\ /’L Y E

It follows from (38) that |M (A\)| < Cs|A|™* , A € Cs. Where I,y = XA =X n =12,
Because of residue theorem, .
M) =>">, m is held. At last, from equalityM (A\) = M (\) by Theorem 10,

we conclude that L (e, a1,a2) = L (o, a1,az). The theorem is proved. O

5. CONCLUSIONS

In this study diffusion operator with discontinuity points is considered. Firstly , impor-
tant definitions and theorems which are used frequently in spectral theory of differential
operators are given. Integral equations for solition which satisfy certain initial and jump
condition of given equation has been obtained and useful integral represantation some im-
portant properties of eigenvalues and eigenfunction have been investigated. Finally, consist
of the inverse problem. It has been proven that the coefficients of the given problem are
uniquely determined by the Weyl function and spectral data.
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