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INEQUALITIES FOR CONVEX FUNCTIONS ON TIME SCALES

ALPER EKINCT!, §

ABSTRACT. In this paper, we presented ostrowski type A—integral inequalities for convex
functions. Also we give some results for continuous and discrete choises of time scales.
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1. INTRODUCTION

In [1], Dinu gave definition of convex functions on time scales where T denotes a time
scale and, for any I interval of R (open or closed), IT = I NT a time scale interval.

Definition 1.1. A function f: T — R is called convex on I, if
FE+ (@ =X)s) <Af()+ A =A)f(s), (1)
forallt,s € It and all X € [0, 1] such that Xt + (1 — ) s € Ir.

The function f is strictly convex on It if the inequality (1) is strict for distinct ¢,s € It
and A € (0,1).
In [5], Alomari and Darus proved the following Ostrovski type Inequality:

Theorem 1.1. Let f : I C [0,00) — R be a differentiable mapping on I° such that
' € Lla,b], where a,b € I with a < b. If |f'| is convex on [a,b], then the following
equality holds:
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1.1. Preliminaries. A time scale (or measure chain) T is a nonempty closed subset of R
(together with the topology of subspace of R). The most popular examples of time scales
are the real numbers R, the integers Z or hZ.

Throughout this paper T will denote a time scale and, for any I interval of R (open
or closed), IT =I N'T a time scale interval. Next we define the concepts of forward and
backward jump operators:

For all t € T, we define the forward jump operator o and the backward jump operator
p by the formulas:

o(t)=inf{r eT: 7 >t} €T, p(t)=sup{reT: 7 <t} eT.

In this definition, the convention is inf © = sup T and sup @ = inf T.

If o (t) > t, then we say that t is right — scattered, and if p (t) < ¢, then we say that
t is left — scattered. Points that are right-scattered and left-scattered at the same time
are called isolated. Also, if o (t) = t, then ¢ is said to be right — dense, and if p (t) = t,
then ¢ is said to be left — dense. Points that are simultaneously right-dense and left-dense
are called dense. If T has a left-scattered maximum M, then we define T% = T\ {M};
otherwise T" = T. If T has a right-scattered minimum m, then we define T,, = T\ {m};
otherwise T, = T.

The mappings u,v : T — [0, 00) defined by

p(t)=o(t)—t
and
v(t)=t—p(t)
is called, respectively, forward and backward grininess functions.

Definition 1.2. Assume f: T — R is a function and let t € T%. Then we define f* (t),
to be the number (provided it exist) with the property that given any € > 0, there is a
neighborhood U of t such that

(f (0 () = f () = F2(t) (0 (£) = )| S elo (t) — s
for all s € U.
We call f2 (t) the delta derivative of f at t. We say that f is delta differentiable on
T* provided f2 (t) exists for all ¢ € T*.
If T =R, then

If T=N, then
A =ft+1)-f@).

is the forward difference operator.

For a function f: T — R we define f: T — R by f7(t) = f (o (t)) for all t € T, (that
is f7 = foo). We also define f? : T— R by fP(t) = f(p(t)) for all t € T, (that is
[P = fop).

For all t € T, we have the following properties.

(i) If f is delta differentiable at ¢, then f is continuous at ¢.

(ii) If f is left continuous at ¢ and ¢ is right-scattered, then f is A differentiable at ¢
: Ay — fTO-f@)
with f2(t) = OB
(iii) If ¢ is right-dense, then f is delta differentiable at ¢ if and only if lin% w exists
s—
i f (tz)t_f(S)'

as a finite number. In this case, f2 (t) =1 m
S5—
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(iv) If f is delta differentiable at ¢ then f (o (t)) = f (t) + p (t) f2 (2).

In the same manner, for all T, we have the following properties:

Definition 1.3. A function f : T — R is called rd — continuous if it is continuous at
all right-dense points in T and its left-sided limits are finite at all left-dense points in T.
We denote by Cq the set of all rd-continuous functions. We say that f is rd-continuously
delta differentiable (and write f € C}, if f2(t) exists for allt € T* and f2 € Crq.

Definition 1.4. A function F : T — R is called a delta antiderivative of f : T — R if
A(t) = f(t), for all t € T*, then the delta integral can be defined as ftf(s) As =

F(t)—F(a). ’

Theorem 1.2. (Theorem 1.77 in [2]). If a,b,c € T, B € R, and f,g € Cyq, then

LTG0 +o@)s0=[ £ a0+ oo a

W forat=sf 1o

@ frwai=—froa

@ frose=frosee s

@) [100)9% 026 = () )~ (F9) (@)~ [ 1> (0190 5
®) [100% 050 =79 0) - (F9) @)~ [ £ @90 (1) At
©) ] F0)at=0

(7) if f(t) > 0 for all ¢, then ff (t) At > 0;
(8) if |f ()] < g (t) on [a,b), then

/bf<t)At s/bg@)At-

In [2] Bohner and Peterson gave the following integration rule for time scales:

Theorem 1.3. (Substitution [2]) Assume thatv : T — R is strictly increasing and T =v (T)
1s a time scale. If f : T =R is an rd-continuous function and v is differentiable with rd-
continuous derivative, then for a,b € T,

/bf(t)vA /( (fov™)(s)As.
a v(a)

The following analogue of Holder’s inequality for time scales had proved by Wong et al.
in [6]:
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Theorem 1.4. (Holder’s Inequality [6]) Let h, f,g € Crq([a,b],[0,00)) with

b
/h(x)gq (x) Az > 0.
If%—l—é:l with p > 1, then
b b % b %
[r@s@s@ars | [r@r@ac) | [h@e@as

In [2] Bohner and Peterson gave the following Ostrowski type results:

Lemma 1.1. Let a,b,s,t € T, a <b and f : [a,b] — R be differentiable. Then

b

b
O =5 [ st o) 12 () as

a

where

(t )_ s—a a<s<t
PHS)=9 s—p t<s<b -’

Theorem 1.5. Let a,b,s,t € T, a <b and f : [a,b] — R be differentiable. Then
1 / M
_ g < _
O -5 [ 1O < (et - ha(tD),

a

where

M = sup ‘fA (t)‘
a<t<b

and time scales polynomial hy, : T> = R, k € Ny be defined by

t
ho(t,s):1 ,hk+1(t,8):fhk(T,S)AT

s

for all s,t € T.

2. MAIN RESULTS

Lemma 2.1. Let T, T be time scales and f : It — R is a A—differentiable mapping on
I, Assume that T =v (T) with v = (=%, If ‘fA‘ is conver on It, f> € Crq(I,R) and
a,b,t € It with a < b then the following identity holds:

b 1
1
£ -5 /f( 1AL = ( /k:tsz (sb+ (1— s)a)As
—a
a 0
where
B S 0§8<Zi—2
k(t’s)_{s—1 o <5<



68 TWMS J. APP. ENG. MATH. V.9, N.1, SPECIAL ISSUE, 2019

Proof. First we recall the Montgomery identity in Lemma 1.1

b b
0 =5 [ oate 1 [ £ (s As g

a

where

(t )_ s—a a<s<t
PHSI=9 s—p t<s<b -’

If we use Theroem 1.3 in (3) we have

b

b
p(t,s) f2(s)As = /p(t,s)fA(s)vA(s)As

1
= ba/k:trfA (rb+ (1 —7r)a)Ar
0

and that completes the proof. O
Theorem 2.1. Let T, T be time scales and f : It — R is a A—differentiable mapping on

IE. Assume that T =v (T) with v = = —c If ‘fA‘ is convex on I, f2& € Cpq (I, R) and
a,b,t € It with a < b then the following inequality holds:

bia/bf”(u)Au

< (b—a) {Oa 4 — ) [F2 )] + (2 + A1 = Xo) [ /2 (a)[}

where
c 1 ~
M=[sAs = [(1-3)As
0 f ] (4)
Xo= [s2As pg= [(1—5)As
0 c
forceT.

Proof. By using the Lemma 2.1 and the property of modulus, for s € T we have

< (b—a)/|sz[sb+(1—s)a]\As+/\(s—1)fA[sb+(1—s)a]\As.
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Since } fA‘ is convex then

c 1
/\sz[sb+(1—s)a]\As+/|(s—1)fA[sb+(1—s)a]\As
0 c

[

1
/s[s‘fA(b)‘—|—(1—s)}fA(a)HAs+/\s—1][s‘fA(b)‘+(1—s)‘fA(a)HAs

<
0
c 1 c 1
= s?As+ [ (1—s)sAs ‘fA (b)] + s(1—s)As+ [ (1-35)*As ‘fA (a)]
[ [roooe]
c 1 c 1
= /82AS+/[(18)(1S)2} As ‘fA (b)‘+ /[352] As+ [ (1—5)?As
0 c 0 c
This implies the desired result. ([l

Remark 2.1. Under the Assumptions of Theorem 2.1, assuming M = sup |fA (t)
a<t<b

, we

have Theorem 1.5.
Remark 2.2. (Continuous Case) Let T = R. Then we obtain the inequality (2).

Corollary 2.1. (Discrete Case). Let T=7. Leta = 0, b =n, s = j, t =i and
f (k) = . Then the following inequality holds:

n
1
x._,E :x
7 n 4 7
J=1

< 6%{[g<i)+h(n—i+1)] [@ns1 = 2| +[g (n =i+ 1) + ()] 21 — o]}
where

g = ulw—1)u—1)
h(u) = u(u—1)Bn—2u—1)

Proof. Since the fact that

’fA (b)‘ = |@pt1 — znl,
2 @] = |21~ o,
If we calculate the four integrals in (4), we deduce the desired result. U

Example 2.1. Using Corollary 2.1, let f (z) = 2%, T =7 and a = 0, b = 12. If we apply
the formula we have

1 o 5 1(12).(13)(25) 9 9
xn;x] i = |i* —162,5| = 162,5 — i
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and

{9 )+ hn— i) [znss — zal +[9 (n— §) + B ()] o1 — o)

= % lg (&) +h(n—3)](25) +[g(n —1) + h (D]}
= % (39336 — 528i — 8444° + 96i°) .

One can easily see that LHS < RHS.

Theorem 2.2. Let T, T be time scales and f : It — R is a A—differentiable mapping on
I, Assume that T =v (T) with v = =% = c. If ‘fA‘q is convex on I, f& € Crq (I, R)
and a,b,t € It with a < b, ¢ > 1 then the following inequality holds:

b
Ry RO

< (b—a)(\ + )7 {(Az + 1 — p2) [£2 )]+ (2 + A1 — Mo) [ 2 (“)|q}6

where
c 1 ~
M= [sAs = [(1-3)As
0 c
c ~ 1 ~
Xo= [?As pg= [(1—5)?As
0 c

1 1 _

Proof. By using the Lemma 2.1 and the property of modulus, for s € T we have

£ -5 [ 170 (0

1
< (ba)/|kz(t,s)|‘fA[sb+(1s)aHAs
0

By using Holder Inequality in Theorem 1.4 we can state that
1

/|k:(t,s)HfA [sb+ (1 — ) a)| As

0
1 1
1 /1 2
< | [ ewords | { il e a-sal s
0 0
Thus we have
1 c 1
/|k(t,s)&s = /5A3+/(15)As
0 0 c

= A +m
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and since ’ fA}q is convex than we can write

1

/|k(t,s)|\fA [sb+ (1 — s)a]|* As

0
1
< [l sl @)+ a0 o] As
0
By using the same method as in the proof of previous Theorem we have
1
[k [s174 o) + 1 =015 )] As

0

= Qo+ —m) [F2 O + (2 + 21 = X) |12 (@)
Writing these results in (6) we deduce the desired result. O
Remark 2.3. (Continuous Case) In Theorem 2.2, Let T = R. Then we obtain

b
f@)- o [ Fwda

3 Gl e G )

Corollary 2.2. (Discrete Case). In Theorem 2.2, Let T=7Z. Leta =0, b=n, t =1
and f (k) = z. Then the following inequality holds

n

JZZ‘—%Z(EJ‘

j=1

< 7 @ {lo () +h(n—i+ D] [gngr —2al? + [g (0 — i+ 1)+ b (i)] |1 — o]}

x [r (i) +r(n—i+1)]r.
where
glu) = u(u—1)2u—1)
h(u) = uw(u—1)Bn—2u+1)
r(u) = u(u—1).

Corollary 2.3. Under the Assumptions of Theorem 2.2, assuming M = sup ‘fA (t)
a<t<b

q

)

we have the following inequality

b
a+b 1 -
("5 -5t [ wa

< (b—a){M +m} M.
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