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NEW REFINEMENTS AND INTEGRAL INEQUALITIES FOR

CONCAVE FUNCTIONS
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Abstract. In this paper, we establish new refinements and integral inequalities includ-
ing concave functions. The reason why we choose the concave functions in this study is
that the methods we use are applicable to these functions. Also some applications are
provided.
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1. Introduction

We will start with the following definition that is well-known in the literature:

Definition 1.1. The function f : [a, b]→ R, is said to be concave, if we have

tf (x) + (1− t) f (y) ≤ f (tx+ (1− t) y)

for all x, y ∈ [a, b] and t ∈ [0, 1] .

Geometrically, this means that if P,Q and R are three distinct points under the graph
of f with Q between P and R, then Q is on or above chord PR. A huge amount of the
researchers interested in this definition and there are several papers based on concavity (or
convexity). Many important inequalities are established for the class of concave functions,
but one of the most important is so called Hermite-Hadamard’s inequality (or Hadamard’s
inequality).

This double inequality is stated as follows;
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Let f : I ⊆ R → R be a concave function and let a, b ∈ I, with a < b. The following
double inequality;

f(a) + f(b)

2
≤ 1

b− a

b∫
a

f(x)dx ≤ f

(
a+ b

2

)
(1)

The above inequality is in the reversed direction if f is convex.
Due to the rich geometric interpretation of (1) there is growing literature providing

its new proofs, extensions, refinements and generalizations, see for example ([5]-[33]).
Namely, there are numerous inequalities in literature with connected (1) for different
kinds of concave (convex) functions.

In [2] and [34], Kırmacı presented the following results for differentiable mappings, which
are connected with right hand side of Hadamard’s inequality, respectively.

Lemma 1.1. [2] Let f : I ⊆ R → R I ⊂ R,be a differrentiable mapping on I∗, a, b ∈
I∗ (I∗ is interior of I) ,with a < b. If f ′ ∈ L1 [a, b] , then we have

1

b− a

∫ b

a
f (x) dx−f

(
a+ b

2

)
= (b− a)

[∫ 1
2

0
tf ′ (ta+ (1− t) b) +

∫ 1

1
2

(t− 1) f ′ (ta+ (1− t) b)

]
Lemma 1.2. [34] Let f : I ⊂ R → R be twice differentiable function on I0 with f ′′ is
integrable on [a, b] ⊂ I0. Then we have

(b− a)2

2
(I1 + I2) =

1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]

where I1 =
∫ 1

2
0 t
(
t− 1

2

)
f ′′ (ta+ (1− t) b) dt, I2 =

∫ 1
1
2

(
t− 1

2

)
(t− 1) f ′′ (ta+ (1− t) b) dt

and I0denotes the interior of I.
In [5], authors established some new integral inequalities connected the left hand side

of (1) for concave functions.
The main aim of this paper is to establish some new integral inequalities connected the

right hand side of (1) for concave functions. In other sense , This study is the continuation
of part of [5].

We consider the following useful inequality:
For all continuous concave functions f : [a, b]→ R+ and all parameters p > 1.(

1

b− a

∫ b

a
f p (x) dx

) 1
p

≤ 2

(p+ 1)
1
p

(
1

b− a

∫ b

a
f (x) dx

)
(2)

This inequality is well known in the literature as Favard inequality (see [3] )

2. MAIN RESULTS

Theorem 2.1. Let f : I ⊂ R→ R , I ⊂ [0,∞) ,be a differentiable function on
◦
I such that

f ′ ∈ L1 [a, b] . where a, b ∈ I , a < b. If |f ′|q is concave on [a, b] , q > 1. Then we have the
following inequality:∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ (3)

≤ (b− a)

(
q − 1

2q − 1

) q−1
q 1

2
2− 2

q
+ 1
q2

(∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣+

∣∣∣∣f ′(3a+ b

4

)∣∣∣∣)
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Proof. From Lemma 1, we have∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣
= (b− a)

[∫ 1
2

0
t
∣∣f ′ (ta+ (1− t) b)

∣∣ dt+

∫ 1

1
2

(1− t)
∣∣f ′ (ta+ (1− t) b)

∣∣ dt] .
By using Hölder inequality for q > 1 and p = q

q−1 , we obtain∫ 1
2

0
t
∣∣f ′ (ta+ (1− t) b)

∣∣ dt ≤ (∫ 1
2

0
t

q
q−1dt

) q−1
q
(∫ 1

2

0

∣∣f ′ (ta+ (1− t) b)
∣∣q dt) 1

q

(4)

and∫ 1

1
2

(1− t)
∣∣f ′ (ta+ (1− t) b)

∣∣ dt ≤ (∫ 1

1
2

(1− t)
q
q−1 dt

) q−1
q
(∫ 1

1
2

∣∣f ′ (ta+ (1− t) b)
∣∣q dt) 1

q

.

(5)
It can be easily checked that∫ 1

2

0
t

q
q−1dt =

∫ 1

1
2

(1− t)
q
q−1 dt =

2
1−2q
q (q − 1)

2q − 1
.

Since |f ′|q is concave on [a, b] , we can use the Jensen’s integral inequality (see [1] ) to
obtain∫ 1

2

0

∣∣f ′ (ta+ (1− t) b)
∣∣q dt =

∫ 1
2

0
t0
∣∣f ′ (ta+ (1− t) b)

∣∣q dt
≤

(∫ 1
2

0
t0dt

)∣∣∣∣∣∣f ′
 1∫ 1

2
0 t0dt

∫ 1
2

0
(ta+ (1− t) b) dt

∣∣∣∣∣∣
q

=
1

2

∣∣∣∣∣f ′
(

2

∫ 1
2

0
(ta+ (1− t) b) dt

)∣∣∣∣∣
q

=
1

2

∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣q
and analogously ∫ 1

1
2

∣∣f ′ (ta+ (1− t) b)
∣∣q dt ≤ 1

2

∣∣∣∣f ′(3a+ b

4

)∣∣∣∣q .
Combining all obtained inequalities we get∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣
≤ (b− a)

[
q − 1

2q − 1

1

2
2q−1
q

] q−1
q 1

2
1
q

(∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣+

∣∣∣∣f ′(3a+ b

4

)∣∣∣∣)

= (b− a)

(
q − 1

2q − 1

) q−1
q 1

2
2− 2

q
+ 1
q2

(∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣+

∣∣∣∣f ′(3a+ b

4

)∣∣∣∣)
By (4) and (5) We obtain the required inequality (3). �

Remark 2.1. Since |f ′|q is − concave on [a, b] ,we can write following simple inequalities∣∣f ′ (ta+ (1− t) b)
∣∣q ≥ t ∣∣f ′ (a)

∣∣q + (1− t)
∣∣f ′ (b)∣∣q
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or ∣∣f ′ (ta+ (1− t) b)
∣∣ ≥ (t ∣∣f ′ (a)

∣∣q + (1− t)
∣∣f ′ (b)∣∣q) 1

q .

On the other hand, since q > 1 we can use the power mean inequality (see [1]):
|f ′ (ta+ (1− t) b)| ≥ t |f ′ (a)|+ (1− t) |f ′ (b)| . Namely the function |f ′| is also concave

on [a, b] .
Now using the fact that we can conclude

∣∣f ′ (3a+b
4

)∣∣+
∣∣f ′ (3b+a

4

)∣∣
2

≥
3
4 |f
′ (a)|+ 1

4 |f
′ (b)|+ 3

4 |f
′ (b)|+ 1

4 |f
′ (a)|

2
=
|f ′ (a)|+ |f ′ (b)|

2

thus

|f ′ (a)|+ |f ′ (b)|
2

≤
∣∣f ′ (3a+b

4

)∣∣+
∣∣f ′ (3b+a

4

)∣∣
2

.

Furthermore,(
q−1
2q−1

) q−1
q

(
1

2
2− 2

q+
1
q2

)
→ 1

8 for q →∞ , and
(
q−1
2q−1

) q−1
q

(
1

2
2− 2

q+
1
q2

)
→ 1

2 for q → 1+, so

for q ∈ (1,∞) and we obtain

1

8
<

(
q − 1

2q − 1

) q−1
q

(
1

2
2− 2

q
+ 1
q2

)
<

1

2
.

We can not generally make the decision which estimation is better. We can not write the

term |f ′(a)|+|f ′(b)|
2 instead of

|f ′( 3a+b
4 )|+|f ′( 3b+a

4 )|
2 . But the one given in Theorem 1 becomes

better as q increases for q ∈ (1,∞) . Hence we can write the following Corollary.

Corollary 2.1. Let f : I ⊂ R → R , I ⊂ [0,∞) ,be a differentiable function on
◦
I such

that f ′ ∈ L1 [a, b] . where a, b ∈ I , , a < b. If |f ′|q is − concave on [a, b]. Then we can
rewrite inequality (3):∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)

2

(∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣+

∣∣∣∣f ′(3a+ b

4

)∣∣∣∣)
This is a simple consequence of Theorem 2.1

The inequality in Corollary 1 is a variant of (Theorem 2 [5]).

Corollary 2.2. If f ′ is linear, we can give the following inequality as variant of (Theorem
2.2, [4]) :∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)

(
q − 1

2q − 1

) q−1
q 1

2
2− 2

q
+ 1
q2

(∣∣f ′ (a+ b)
∣∣)

Remark 2.2. In according to Remark 1, since |f ′|q is concave on [a, b] , we know that the
function |f ′| is also concave on [a, b] . Thus, we can use Favard’s inequality (2) in the proof
of following Theorem for concave functions.
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Theorem 2.2. Let f : I ⊂ R→ R , I ⊂ [0,∞) ,be a differentiable function on
◦
I such that

f ′ ∈ L1 [a, b] . where a, b ∈ I , a < b. If |f ′|q is concave on [a, b] , q > 1, Then we have the
following inequality:∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ 1

(q + 1)
1
q

1

2
1−2q
q

∫ b

a

∣∣f ′ (x)
∣∣ dx (6)

Proof. We proceed similarly as in the proof of Theorem 1, but firstly , using inequality
of Favard instead of Integral Jensen for integrals including functions in the right hand of
side of inequalities (4) and (5), respectively :(∫ 1

2

0

∣∣f ′ (ta+ (1− t) b)
∣∣q dt) 1

q

=

(
1

2
(
b− a+b

2

) ∫ b

a+b
2

∣∣f ′ (x)
∣∣q dx) 1

q

=
1

2
1
q

(
1(

b− a+b
2

) ∫ b

a+b
2

∣∣f ′ (x)
∣∣q dx) 1

q

≤ 1

2
1
q

2

(q + 1)
1
q

1(
b− a+b

2

) ∫ b

a+b
2

∣∣f ′ (x)
∣∣ dx

=
1

2
1−2q
q

1

(q + 1)
1
q

1

(b− a)

∫ b

a+b
2

∣∣f ′ (x)
∣∣ dx

and (∫ 1

1
2

∣∣f ′ (ta+ (1− t) b)
∣∣q dt) 1

q

=

(
1

2
(
a+b

2 − a
) ∫ a+b

2

a

∣∣f ′ (x)
∣∣q dx) 1

q

=
1

2
1
q

(
1(

a+b
2 − a

) ∫ a+b
2

a

∣∣f ′ (x)
∣∣q dx) 1

q

≤ 1

2
1
q

2

(q + 1)
1
q

1(
a+b

2 − a
) ∫ a+b

2

a

∣∣f ′ (x)
∣∣ dx

=
1

2
1−2q
q

1

(q + 1)
1
q

1

b− a

∫ a+b
2

a

∣∣f ′ (x)
∣∣ dx.

If necessary mathematical operations are performed, we obtain inequality (6). Namely,
Combining all obtained inequalities we get∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣
≤ (b− a)

1

(q + 1)
1
q

1

2
1−2q
q

1

b− a

(∫ a+b
2

a

∣∣f ′ (x)
∣∣ dx+

∫ b

a+b
2

∣∣f ′ (x)
∣∣ dx)

=
1

(q + 1)
1
q

1

2
1−2q
q

∫ b

a

∣∣f ′ (x)
∣∣ dx

which completes the proof. �
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Corollary 2.3. Since
lim

q → 1+
1

2
1−2q
q

1

(q+1)
1
q

= 1 and
lim

q →∞
1

2
1−2q
q

1

(q+1)
1
q

= 4 , we

can rewrite the inequality (6) with |f ′ (x)| ≤ K
4 :

∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ 4

∫ b

a

∣∣f ′ (x)
∣∣ dx ≤ K (b− a)

Theorem 2.3. Let f : I → R, I ⊂ [0,∞) be twice differentiable function on I0 such that
f ′′ ∈ L [a, b] , 0 ≤ a <∞. If |f ′′|q is concave function on [a, b] ⊂ I, q ≥ 1 with t ∈ (0, 1) .
Then, we have ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣ (7)

≤ (b− a)2

96

∣∣∣∣f ′′(1

4
a+

3

4
b

)
+ f ′′

(
3

4
a+

b

4

)∣∣∣∣
Proof. From lemma 2 with properties of modulus we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣ ≤ (b− a)2

2
(|I1|+ |I2|)

Since |f ′′|q is concave, then |f ′′| is also concave function, in this case we can use the Jensen
integral inequality for |I1| and |I2|

|I1| =

∫ 1
2

0
t

(
1

2
− t
) ∣∣f ′′ (ta+ (1− t) b)

∣∣ dt (8)

≤
∫ 1

2

0

(
t

2
− t2

)
dt

∣∣∣∣∣∣f ′′
∫ 1

2
0

(
t
2 − t

2
)

(ta+ (1− t) b) dt∫ 1
2

0

(
t
2 − t2

)
dt

∣∣∣∣∣∣
=

1

48

∣∣∣∣f ′′(1

4
a+

3

4
b

)∣∣∣∣
and

|I2| =

∫ 1

1
2

(
t− 1

2

)
(1− t)

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt (9)

≤
∫ 1

1
2

(
3t

2
− t2 − 1

2

)
dt

∣∣∣∣∣∣f ′′
∫ 1

1
2

(
3t
2 − t

2 − 1
2

)
(ta+ (1− t) b) dt∫ 1

1
2

(
3t
2 − t2 −

1
2

)
dt

∣∣∣∣∣∣
=

1

48

∣∣∣∣f ′′(3

4
a+

1

4
b

)∣∣∣∣ .
It can be easily checked that∫ 1

2

0
t

(
1

2
− t
)
dt =

∫ 1

1
2

(
t− 1

2

)
(1− t) dt =

1

48
,

∣∣∣∣∣∣f ′′
∫ 1

2
0

(
t
2 − t

2
)

(ta+ (1− t) b) dt∫ 1
2

0

(
t
2 − t2

)
dt

∣∣∣∣∣∣ =

∣∣∣∣f ′′(1

4
a+

3

4
b

)∣∣∣∣
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and ∣∣∣∣∣∣f ′′
∫ 1

1
2

(
3t
2 − t

2 − 1
2

)
(ta+ (1− t) b) dt∫ 1

1
2

(
3t
2 − t2 −

1
2

)
dt

∣∣∣∣∣∣ =

∣∣∣∣f ′′(3

4
a+

1

4
b

)∣∣∣∣ .
By (8) and (9) we obtain the required inequality (7). �

Theorem 2.4. Let f : I → R, I ⊂ [0,∞) be twice differentiable function on I0 such that
f ′′ ∈ L [a, b] , 0 ≤ a < ∞. If |f ′′|qis concave function on [a, b] ⊂ I, q > 1, with t ∈ (0, 1) .
Then, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣ (10)

≤ (b− a)

2−
1
s

(
2s−1
s−1

) s−1
s

(√
π4−2s−1Γ (s+ 1)

Γ
(
s+ 3

2

) ) 1
s
[∫ a+b

2

a

∣∣f ′′ (x)
∣∣ dx+

∫ b

a+b
2

∣∣f ′′ (x)
∣∣ dx]

=
(b− a)

2−
1
s

(
2s−1
s−1

) s−1
s

s

√√
π4−2s−1sΓ (s)

Γ
(
s+ 3

2

) ∫ b

a

∣∣f ′′ (x)
∣∣ dx

where s = q
q−1 and Γ is Euler Gamma function.

Proof. From Lemma 2, we have∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣
≤ (b− a)2

2

×

{∫ 1
2

0
t

(
t− 1

2

) ∣∣f ′′ (ta+ (1− t) b)
∣∣ dt+

∫ 1

1
2

(
t− 1

2

)
(t− 1)

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt} .

Using Hölder’s inequality for q > 1, we obtain∫ 1
2

0
t

(
t− 1

2

) ∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

≤

(∫ 1
2

0

(
t

(
t− 1

2

)) q
q−1

dt

) q−1
q
(∫ 1

2

0

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt) 1

q

and ∫ 1

1
2

(
t− 1

2

)
(1− t)

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

≤

(∫ 1

1
2

((
t− 1

2

)
(1− t)

) q
q−1

dt

) q−1
q
(∫ 1

1
2

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt) 1

q
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where we will use the facts that∫ 1
2

0

(
t

(
t− 1

2

))s
dt =

∫ 1

1
2

((
t− 1

2

)
(1− t)

)s
dt

=

√
π4−2s−1Γ (s+ 1)

Γ
(
s+ 3

2

) for Res > −1

For q > 1, s = q
q−1 , since Res is greater than −1, we can use the equality s = q

q−1 in final

equality.
On the other hand , using inequality of Favard as in the proof of Theorem 2 for the

following inequalities;∫ 1
2

0

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt ≤ 1

2
1−2q
q

1

(q + 1)
1
q

1

(b− a)

∫ b

a+b
2

∣∣f ′′ (x)
∣∣ dx

and ∫ 1

1
2

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt ≤ 1

2
1−2q
q

1

(q + 1)
1
q

1

(b− a)

∫ a+b
2

a

∣∣f ′′ (x)
∣∣ dx

Combining all obtained inequalities with required procedures we get∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣
≤ (b− a)

2−
1
s (q + 1)

1
q

(√
π4−2s−1sΓ (s)

Γ
(
s+ 3

2

) ) 1
s
[∫ a+b

2

a

∣∣f ′′ (x)
∣∣ dx+

∫ b

a+b
2

∣∣f ′′ (x)
∣∣ dx]

=
(b− a)

2−
1
s (q + 1)

1
q

s

√√
π4−2s−1sΓ (s)

Γ
(
s+ 3

2

) ∫ b

a

∣∣f ′′ (x)
∣∣ dx.

which gives the inequality (10) �

Corollary 2.4. Since 1

2−
1
s (q+1)

1
q

s

√
4−2s−1sΓ(s)

Γ(s+ 3
2)
→ 1

32 Γ( 5
2)

for q → ∞ and
√
π = Γ

(
1
2

)
with

|f ′′ (x)| ≤M, we can rewrite inequality (10) as following.∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣
≤ M

(b− a)2

32

√
π

Γ
(

5
2

) = M
(b− a)2

32

Γ
(

1
2

)
Γ
(

5
2

)
3. Applications to Special Means

We shall consider the means for arbitrary real numbers α, β (α 6= β)
H (α, β) = 2

1
α

+ 1
β

, α, β ∈ R/ {0} (harmonic mean)

A (α, β) = α+β
2 , α, β ∈ R (arithmetic mean)

G (α, β) =
√
αβ, α, β 6= 0, α, β ∈ R+ (geometric mean)

L (α, β) = β−α
ln|β|−ln|α| , |α| 6= |β| , αβ 6= 0 (logarithmic mean)

Ln (α, β) = βn+1−αn+1

(n+1)(β−α) , n ∈ Z/ {0, 1} , α, β ∈ R,α 6= β (generalized log-mean)
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Proposition 3.1. Let 0 < a < b, then for all q > 1, we can write;

G (a, b)
[
L−1 (a, b)−A−1 (a, b)

]
≤ 2

2q−1
2

(q + 1)
1
q

(
b2 − a2

)
Proof. The result follows from Theorem 2 with f (x) = 1

x , x ∈ [a, b] . �

Proposition 3.2. Let a, b ∈ [0,∞) , a < b and n ∈ Z+, n ≥ 2. Then, we have the
following inequality;

log 3
2 = 0.405 47∣∣∣∣12A (an, bn)−An (a, b)− Lnn (a, b)

∣∣∣∣ ≤ M (b− a)2

32

Γ
(

1
2

)
Γ
(

5
2

)
for all q > 1.

Proof. The assertion follows from Corollary 4 applied to the 1−concave function f (x) =
−xn, f : [0,∞)→ R. �

Proposition 3.3. Let a, b ∈ [0,∞) , a < b. Then, we have the following inequality;∣∣∣∣(bb − aab− a

)
L−1(aa, bb)− 1

2
[A(ln a, ln b) + ln(A(a, b))]− 1

∣∣∣∣
≤ (b− a)2

96

[(
A−1

(
a

2
,
3b

2

))2

+

(
A−1

(
3a

2
,
b

2

))2
]
.

Proof. The assertion follows from Theorem 3 applied to the concave function f (x) = lnx,
f : [0,∞)→ R. �
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[6] Yıldız, Ç. and Özdemir, M.E., (2017), On generalized Inequalities of Hermite- Hadamard Type for
Convex Functions, International Journal of Analysis and Applications, ISSN 2291-8639 Volume 14,
Number1, 52-63.
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[11] Bakula, M.K., Özdemir, M.E. and Pečarić, J., (2008), Hadamard type Inequalities for m−convex and
(α,m)-Convex Functions, Journal of inequalities in pure and applied mathematics, volume 9, Issue 4,
Article 96, 12pp.
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[17] Özdemir, M.E., Akdemir, A.O. and Ekinci, A., (2014), New Hadamard-type inequalities for functions
whose derivatives are (α,m)-convex functions, Tbilisi Mathematical Journal, DOI:10.2478/tmj-2014-
0017, 7 (2), pp. 61-72.

[18] Akdemir, A.O., Ekinci A. and Set, E., (2017), Conformable Fractional Integrals and Related New
Integral Inequalities, Journal of Nonlinear and Convex Analysis, Volume 18, Number 4, 661-674.
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[29] Özdemir, M.E., Avci, M., Kavurmacı, H., (2011), Hermite- Hadamard type inequalities via
(α,m)−convexity, Computers and Mathematics with Applications 61, 2614-2620.
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in Ağrı İbrahim Çeçen University, Ağrı, Turkey. He received his Ph.D. degree in
Analysis in 2012 from Atatürk University, Erzurum, Turkey. He is editor on the
Turkish Journal of Science. He has a lot of awards. He has many research papers
about convex functions, the theory of inequalities and fractional calculus.


