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ON TOTAL VERTEX-EDGE DOMINATION

B. ŞAHIN1, A. ŞAHIN2, §

Abstract. In this paper we obtain an improved upper bound of total vertex edge-

domination number of a tree. If T is a connected tree with order n, then γt
ve(T ) ≤ m

3
with m = 6dn

6
e and we characterize the trees attaining this upper bound. Furthermore

we provide a characterization of trees T with γt
ve(T ) = γt(T ).

Keywords: Domination, vertex-edge domination, total vertex-edge domination, total
domination.
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1. Introduction

Let G = (V,E) be a simple connected graph whose vertex set V and the edge set E. For
the open neighborhood of a vertex v in a graph G, the notation NG(v) is used as NG(v) =
{u|(u, v) ∈ E(G)} and the closed neighborhood of v is used as NG[v] = NG(v)∪{v}. For a
set S ⊆ V , the open neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood

of S is N [S] = N(S) ∪ S.
In this paper, if a vertex adjacent to a support vertex different from a leaf, we name

it with parent support vertex. We denote path and star of order n, with Pn and Sn
respectively. The diameter of a tree is denoted with diam(T ).

A subset S ⊆ V is a dominating set, if every vertex in G either is element of S or is
adjacent to at least one vertex in S. The domination number of a graph G is denoted with
γ(G) and it is equal to the minimum cardinality of a dominating set in G. By a similar
definition, a subset S ⊆ V is a total domination set if every vertex of S has a neighbor in
S. The total domination number of a graph G is denoted with γt(G) and it is equal to the
minimum cardinality of a total dominating set in G. Fundamental notions of domination
theory are outlined in the book [3] and studied in thesis [6].

A vertex v ve-dominates an edge e which is incident to v, as well as every edge adjacent
to e. A set S ⊆ V is a ve-dominating set if every edges of a graph G are ve-dominated
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by at least one vertex of S [2, 4, 5]. The minimum cardinality of a ve-dominating set is
named with ve-domination number and denoted with γve(G).

A subset S ⊆ V is a total vertex-edge dominating set (in simply, total ve-dominating
set) of G, if S is a ve-dominating set and every vertex of S has a neighbor in S [1]. The
total ve-domination number of a graph G is denoted with γtve(G) and it is equal to the
minimum cardinality of a total ve-dominating set.

Let T be a tree and u be a vertex of T . If there exists a neighbor vertex x of u as one
of the subtree of T − ux is a path Pn with x a leaf, it is said that u is adjacent to the Pn

[7].
In this paper, we attain a new upper bound for a connected tree with order n such taht

γtve(T ) ≤ m

3
for m = 6dn

6
e and we construct the family tree F attaining the upper bound.

2. The Upper Bound

Observation 2.1. For every connected graph G, γve(G) ≤ γtve(G) ≤ γt(G) [1].

Observation 2.2. For every connected graph G with diameter at least three, there is a
γtve(G)-set that contains no leaf of G [1].

Theorem 2.1. If T is a tree with order n ≥ 4 and diam(T ) ≥ 3 with l leaves and s
support vertices, then

γtve(G) ≤ n− l + s

2
with equalty if and only if T ∗ = H ◦ P3 for some tree H [1].

Observation 2.3. For every connected graph G, every support vertex is contained by
every total domination set [7].

Observation 2.4. For every connected graph with diameter at least three, there is a total
domination set contains no leaf [7].

Observation 2.5. For every connected graph with diameter at least four, every parent
support vertex is contained by every total vertex-edge domination set.

Lemma 2.1. For Pn the path graph with n vertex, the total domination number is obtained
by [8],

γt(Pn) =

{
n
2 , n ≡ 0 (mod4)
bn2 c+ 1, otherwise

There is no total domination set in one vertex graph, so we interest the trees which has
at least two vertices.

Definition 2.1. We introduce an integer value help us to obtain the upper bound of total
vertex-edge domination number. Let m is an integer which is calculated by least integer

value function such thatm = 6dn
6
e with n is order of a tree. It is clear that if n ≡ 0 (mod6),

then m = n.

Now we show that if T is a tree of order n, then γtve(T ) ≤ m

3
where m is introduced in

Definition 2.1. In order to characterize the trees attaining the upper bound, we construct
a family tree F of trees T = Tk. Let T1 = P6 and for a k positive integer, Tk+1 is a tree
recursively obtained from Tk by attaching a path P6 by joining one of its leaves to a vertex
of Tk.

Theorem 2.2. If T ∈ F , then γtve(T ) =
n

3
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Proof. We use induction by using k operations to obtain the tree T . If T = T1 = P6, then

γtve(P6) =
6

3
= 2. Now let k is a positive integer. It is assumed that the result is true for

every T
′

= Tk which is an element of F obtained by k − 1 operations. So n
′

= n− 6. Let
x a leaf of T

′
= Tk which is a path P6 v1v2v3v4v5v6 is attached by joining one of its leaves

to it. Let D
′

is γtve(T
′
)-set. It is easy to see that D

′ ∪ {v3, v4} is a TVEDS of T . Thus,

γtve(T ) ≤ γtve(T
′
) + 2. Furtherly, if D is a γtve(T )-set, D \ {v3, v4} is a TVEDS of T

′
. So

that, γtve(T
′
) ≤ γtve(T )− 2. Consequently,

γtve(T ) = γtve(T
′
) + 2 =

n
′

3
+ 2 =

n− 6

3
+ 2 =

n

3
.

Now assume that a path P6 v1v2v3v4v5v6 is attached to a support vertex. Let D
′

is
γtve(T

′
)-set. It is clear that D

′ ∪ {v3, v4} is a TVEDS of T . Thus, γtve(T ) ≤ γtve(T
′
) + 2.

Inversely, D \ {v3, v4} is a TVEDS of T
′
. Therefore,

γtve(T ) = γtve(T
′
) + 2 =

n
′

3
+ 2 =

n− 6

3
+ 2 =

n

3
.

Now assume that a path P6 v1v2v3v4v5v6 is attached to a parent support vertex and
this vertex is named with x. x ve-dominates the edgesxv1,v1v2. If D

′
is a γtve(T

′
)-set,

D \ {v4} is a vertex-edge domination set of T but it is not total. Thus we add one of

the vertex of {v3v5} for obtaining the TVEDS of T. Therefore, γtve(T ) ≤ γtve(T
′
) + 2 and

inversely, γtve(T
′
) ≤ γtve(T )− 2. Consequently,

γtve(T ) = γtve(T
′
) + 2 =

n
′

3
+ 2 =

n− 6

3
+ 2 =

n

3
.

�

Theorem 2.3. If T is a tree of order n, then γtve(T ) ≤ m

3
such that m = 6dn

6
e with

equality if and only if T ∈ F .

Proof. Let diameter of T 2. So T is a star graph and γtve(Sn) = 2. It is clear that if
diameter of T is smaller than 5, then γtve(T ) = 2. We assume that diam(T ) ≥ 5. In this
situation number of the vertices is at least 6. We use induction and it is assumed that the
result is true for every tree T

′
= Tk with order n

′
< n and m

′
< m.

First assume some support vertex of T , for example x, is strong. Let y be a leaf adjacent
to x and T

′
= T − y. Let D

′
is a γtve(T

′
)-set and by Observation 2.2. Let D

′
is also a

TVEDS of T . Thus, γtve(T ) ≤ γtve(T
′
) ≤ m

′

3
≤ m

3
. So we can assume that every support

vertex is weak.
We root T at a vertex of maximum eccentricity diam(T ). Let t be a leaf at maximum

distance from p, v be parent of t, u be parent of v, w be parent of u, s be parent of w and
r be parent of s in the rooted tree. The subtree induced by a vertex x and its descendants
in the rooted tree T is denoted by Tx.

Assume that some child of u is a leaf and it is denoted with x. Let T
′

= T − x. If D
′

is a γtve(T
′
)-set, D

′
is also a TVEDS of T by Observation 2.2. Thus, γtve(T ) ≤ γtve(T

′
) ≤

m
′

3
≤ m

3
.

Now assume in the children of u there is a support vertex other than v, for example x.
We take T

′
= T − Tv. Let D

′
is a γtve(T

′
)-set. D

′
must contain the vertex u and D

′
is

also a TVEDS of T by Observation 2.2. Thus γtve(T ) ≤ γtve(T
′
) ≤ m

′

3
≤ m

3
.
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Now assume that dT (u) = 2. First assume that w is adjacent to a leaf, say x. Let

T
′

= T − x and D
′

is a γtve(T
′
)-set. D

′
is also a TVEDS of T by Observation 2.2. Thus

γtve(T ) ≤ γtve(T
′
) ≤ m

′

3
≤ m

3
.

Now assume that a P2 or P3 is attached by joined one of its leaves to w. Let T
′

= T−Tu
and n

′
= n− 3. If D

′
is a γtve(T

′
)-set, w must be contained by D

′
. So that D

′ ∪ {u} is a
TVEDS of T . Thus

γtve(T ) ≤ γtve(T
′
)+1 ≤ m

′

3
+1 =

6dn
′

6
e

3
+1 =

6dn− 3

6
e

3
+1 ≤

6dn
6
e

3
−2d3

6
e+1 < 6dn

6
e =

m

3
.

Now assume that dT (w) = 2. In this case first, let s is adjacent to a leaf, say x. If D
′

is

a γtve(T
′
)-set contains no leaf, it is a TVEDS of T . Therefore γtve(T ) ≤ γtve(T

′
) ≤ m

′

3
≤ m

3
.

Now assume that a path P2, P3 or P4 is attached to w by an edge. Let T
′

= T − Tw
and D

′
is a γtve(T

′
)-set. Thus n

′
= n− 4 and

γtve(T ) ≤ γtve(T
′
)+γtve(P4) =

m
′

3
+γtve(P4) =

6dn
′

6
e

3
+

6d4
6
e

3
=

6dn− 4

6
e

3
+

6d4
6
e

3
< 6dn

6
e =

m

3
.

Now assume that dT (s) = 2. Let T
′

= T − Ts. So we have n
′

= n − 5. If D
′

is a

γtve(T
′
)-set, the total vertex-edge domination number of T is

γtve(T ) ≤ γtve(T
′
) + γtve(P5) =

6dn
′

6
e

3
+

6d5
6
e

3
=

6dn− 5

6
e

3
+

6d5
6
e

3
< 6dn

6
e =

m

3
.

Now assume that dT (r) = 2 and we take T
′

= T − Tr. We have n
′

= n− 6. If n
′

= 1,

then T = P7 and we obtain γtve(P7) = 3 ≤ 4. We assume that n
′ ≥ 2 . If D

′
is a

γtve(T
′
)-set, D

′ ∪ {w, u} is be a γtve(T )-set. Thus,

γtve(T ) ≤ γtve(T
′
) + 2 =

m
′

3
+ 2 =

6dn
′

6
e

3
+ 2 =

6dn− 6

6
e

3
+ 2 =

m

3
.

Our upper bound is sharp and best possible not only trees but also other graphs. We
use H graphs which are consisted from two n vertex paths connected with an edge, to see
this fact with two cases.

In the first case, we use corona product of H graphs with P2. For second case we use
2-corona of the H graphs for every x ∈ H we add two vertices u and v with the edges xu
and uv.

For the first case we obtain a polycyclic graph G has n triangular and 6n vertices. Thus

γtve(G) =
6n

3
= 2n. In the second case γtve(G) = 2n. Furthermore the number of the

leaves is equal to the number of support vertices. Thus γtve(G) =
6n

2
= 3n by upper

bound defined in [1]. γtve(G) =
6n

3
= 2n by our upper bound.

This fact is current for paths too. For the paths the number of the leaves is equal to

the number of support vertices. Thus γtve(Pn) =
n

2
by upper bound defined in [1] and by
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our upper bound γtve(Pn) =
6dn

6
e

3
= 2dn

6
e. If these bounds are checked, it was seen that

our bound is efficient and best possible.
�

3. The trees with γtve(T ) = γt(T )

Now we find a partial answer for trees which is mentioned in [1] with Problem 4.2 for
the graphs which are characterized by the equation γtve(G) = γt(G).

First we found the paths Pn of order n attaining the equality γtve(Pn) = γt(Pn) and
construct a family T of these paths. Because these paths are the first members of the
family T . We use Theorem 2.3 and Lemma 2.1. We have to look into four situations;

i) n ≡ 0 (mod4, mod6),

ii) n ≡ 0 (only mod4)

iii) n ≡ 0 (only mod6)

iv) n is not a multiple 4 and 6.

For the first situation,

n

3
=
n

2
⇒ n = 0.

For (ii) n ≡ 0 (mod4),

2dn
6
e =

n

2
⇒ n

4
= dn

6
e ⇒ n

4
− 1 <

n

6
≤ n

4
⇒ 0 ≤ n < 12.

n can be 4 and 8 for this situation and P4 and P8 attain the equality such that γtve(P4) =
γt(P4) = 2, γtve(P8) = γt(P8) = 4.

For (iii) n ≡ 0 (mod6),
n

3
= bn

2
c+ 1⇒ n

3
− 1 = bn

2
c ⇒ n

3
− 1 ≤ n

2
<
n

3
⇒ −6 ≤ n < 0.

and there is no positive solve.
For the last situation,

2dn
6
e = bn

2
c+ 1.

If it is checked, this equation is attained for n = 2, 3, 7 by using the upper bound for
total vertex-edge domination. But for n = 7 γtve(P7) = 3 6= γt(P7) = 4.

Consequently the equation γtve(Pn) = γt(Pn) is attained for only the paths P2, P3, P4,
P8.

Now we construct a family tree T of trees T = Tk. Let T1 ∈ {P2, P3, P4, P8} and for a
k positive integer, Tk+1 is a tree recursively obtained from Tk by one of the following two
operations,

Operation O1: Add a vertex with an edge to any support vertex of T = Tk.
Operation O2: Add a vertex with an edge to a vertex of T = Tk adjacent to a path P2.

Theorem 3.1. Let T be a tree. If T ∈ T , then γtve(T ) = γt(T ).

Proof. We use induction on the number of k operations which are used to construct the
tree T . If T1 ∈ {P2, P3, P4, P8}, then γtve(P2) = γt(P2) = 2, γtve(P3) = γt(P3) = 2,
γtve(P4) = γt(P4) = 2 and γtve(P8) = γt(P8) = 4.

Assume that the argument is true for every T
′

= Tk of the family T obtained by k − 1
operations and we want to show T = Tk+1 ∈ T .

First assume that T is obtained from T
′

by operation O1. Let D
′

is a TDS of T
′
.

It is easy to see that D
′

is also a TDS of T by observation 2.4. Thus, γt(T ) ≤ γt(T
′
).

Obviously, γtve(T
′
) ≤ γtve(T ). By induction hypothesis, γt(T ) ≤ γt(T ′

) = γtve(T
′
) ≤ γtve(T )

and by Observation 2.1 γt(T ) ≥ γtve(T ) it is obtained that γt(T ) = γtve(T ).

Now First assume that T is obtained from T
′

by operation O2. Let x be a vertex of
T

′
= Tk which is adjacent to a P2 and the P2 be yz as y a neighbor of x with degree two.
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Let D
′

is a TDS of T
′
. If we attach a vertex to x, y ∈ D′

. y has to be dominated, thus
x ∈ D′

. Therefore D
′

is a TDS of T and γt(T ) ≤ γt(T
′
). Obviously, γtve(T

′
) ≤ γtve(T ).

Thus γt(T ) ≤ γt(T
′
) = γtve(T

′
) ≤ γtve(T ) and using the fact γt(T ) ≥ γtve(T ) we obtain

γt(T ) = γtve(T ).
�

Remark 3.1. If T ∈ T , then T becomes a star graph, a bistar graph or a combination
of two bistar graph by an edge between any two leaves of these bistars which we name it
double bistar graph.
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