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TAUBERIAN THEOREMS FOR THE PRODUCT OF BOREL AND

LOGARITHMIC METHODS OF SUMMABILITY

S. A. SEZER1, §

Abstract. In this paper, we show that if a sequence is summable by the product method
(B)(`, k), then it is also summable by the logarithmic method (`, k), provided two-sided
conditions of Hardy-type are satisfied. We also obtain some classical Tauberian theorems
and their generalizations as special cases of our main theorems.
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1. Introduction and Background

Suppose throughout that (sn) is a sequence of complex numbers and k is any nonnegative
integer, unless indicated otherwise. We say that a sequence (sn) is summable to ξ by the
Borel method (B), briefly sn → ξ(B), if

∞∑
n=0

sn
n!
xn converges for all x ∈ R,

and

lim
x→∞

e−x
∞∑
n=0

sn
n!
xn = ξ.

The sequences of logarithmic means of (sn) are defined by

t(1)n = t(1)n (sn) =
1

`n

n∑
j=0

sj
j + 1

,

and for k = 2, 3, ... ,

t(k)n = t(k)n (sn) =
1

`n

n∑
j=0

t
(k−1)
j

j + 1
,
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where

`n =
n∑
k=0

1

k + 1
∼ log n.

Here, we use the symbol fn ∼ gn to mean that fn/gn → 1 as n→∞.
We say that (sn) is summable to ξ by the k−times iterated logarithmic method (`, k),

briefly sn → ξ(`, k), if

lim
n→∞

t(k)n = ξ.

Evidently, the summability (`, 0) is the same as usual convergence. Note that, triv-
ially, (`, k) summability of a sequence implies its (`, k′) summability to the same number,
whenever k ≥ 0 and k′ > k. However, the converse is not necessarily true provided by the
example (see [20]):

sn = ((−1)n(n log n+ (n+ 1) log(n+ 1))).

Here, (sn) is summable (`, 2) to 0, but not summable (`, 1).
The product summability method (B)(`, k) is obtained by superimposing (`, k) summa-

bility on (B) summability.
We say that (sn) is summable to ξ by the product method (B)(`, k), and write sn →

ξ(B)(`, k), if (t
(k)
n ) is Borel summable to ξ. (B)(`, k) method reduces to Borel summability

if k = 0.
A method of summability is called regular if it sums each convergent sequence or series

to its usual sum. Since, Borel and logarithmic methods are regular (see [7]), (B)(`, k)
summability is also regular.

Product summability methods have a long history; see for example the papers [1, 17, 19]
and they found new attention recently in [2, 3, 4] and [5, 6, 12].

Throughout this study, we write θn = O(1) to mean that (θn) is a bounded sequence
and θn = o(1) to mean that (θn) converges to zero. Moreover, fn = O(gn) means that
fn/gn = O(1) and fn = o(gn) means that fn/gn = o(1).

The backward difference of (sn) is defined as

∆sn =

{
sn − sn−1 , n ≥ 1
s0 , n = 0

.

The difference of a sequence and its logarithmic mean is represented by

sn − t(1)n = v(0)n (1)

where

v(0)n = v(0)n (sn) =
1

`n

n∑
j=1

`j−1∆sj .

The identity (1) is called the logarithmic Kronecker identity. Besides, for all k ≥ 1, we

introduce k-th order iterated logarithmic means of (v
(0)
n ) by

v(k)n = v(k)n (sn) =
1

`n

n∑
j=0

v
(k−1)
j

j + 1
.

The sequence (sn) is called slowly oscillating with respect to summability (`, 1) if

lim
λ→1+

lim sup
n→∞

max
n<m≤[nλ]

|sm − sn| = 0 (2)

or equivalently
lim
λ→1−

lim sup
n→∞

max
[nλ]<m≤n

|sn − sm| = 0, (3)
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where [nλ] denotes the integer part of nλ.
The interest in summability methods is that they provide a way to understand sequences

or series which are divergent. There are, for instance, important summability methods
due to Abel, Euler, Cesàro, Borel and others.

Given two summability methods (X) and (Y ), we write (X) ⊆ (Y ) if a sequence sum-
mable (X) is summable (Y ) to the same number. Also, if there is a sequence summable
(Y ) but not summable (X), we write (X) ⊂ (Y ).

For any two regular summability methods (X) and (Y ) with (X) ⊂ (Y ), the sufficient
conditions under which sn → ξ(Y ) implies sn → ξ(X) are called Tauberian conditions
and the corresponding theorems are called Tauberian theorems. Most frequently in the
theory of summability, the case in which method X is equivalent to the usual convergence
is considered.

The main object of the present paper is to prove Tauberian theorems for the (B)(`, k)
summability.

2. Lemmas

In this section, we shall give the following lemmas required in the proofs of our main
theorems.

The identities below were obtained in the study of Sezer and Çanak [18].

Lemma 2.1. For every integer k ≥ 0, the assertions

(i) t
(k)
n − t(k+1)

n = v
(k)
n ,

(ii) v
(k)
n − v(k+1)

n = (n+ 1)`n−1∆v
(k+1)
n ,

(iii) v
(k)
n = (n+ 1)`n−1∆t

(k+1)
n

are valid.

The following lemma is a corollary of the theorem given by Kwee (Theorem A, [9]).

Lemma 2.2. If sn → ξ(`, 1) and (sn) is slowly oscillating with respect to summability
(`, 1), then (sn) is convergent to ξ.

Lemma 2.3. If sn → ξ(B), then, for each positive integer k, t
(k)
n → ξ(B).

The above lemma due to Kwee [11] indicates that (B)(`, k) method includes (B) method.
Also, it can be easily seen via Lemma 4 of Parameswaran [15] that this inclusion is strict.

Lemma 2.4. If (sn) is slowly oscillating with respect to summability (`, 1), then (v
(0)
n ) is

bounded and slowly oscillating with respect to summability (`, 1).

Proof. Since we have the identity

1

`n

n∑
j=0

sn − sj
j + 1

=
1

`n

n∑
j=0

n∑
i=j+1

∆si
j + 1

=
1

`n

n∑
j=1

`j−1∆sj = v(0)n ,

slow oscillation of (sn) implies boundedness of (v
(0)
n ) from the proof of Theorem 2 in [14].

Now, we need to show that (v
(0)
n ) is slowly oscillaiting with respect to summability (`, 1).
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From Lemma 2.1, for k = 0 we have ∆t(1)n =
v
(0)
n

(n+ 1)`n−1
. Then, for some number H > 0

∣∣∣∆t(1)n ∣∣∣ =
∣∣∣t(1)n − t(1)n−1∣∣∣ ≤ H

(n+ 1)`n−1
.

Hence, we find∣∣∣t(1)m − t(1)n ∣∣∣ ≤ m∑
j=n+1

∣∣∣t(1)j − t(1)j−1∣∣∣
≤

(
1

(m+ 1)`m−1
+

1

m`m−2
+ · · ·+ 1

(n+ 2)`n

)
H

≤
(
`m − `n
`n

)
H.

It follows from the last inequality above that

max
n<m≤[nλ]

∣∣∣t(1)m − t(1)n ∣∣∣ ≤ (`[nλ] − `n`n

)
H. (4)

Next, taking lim sup of both sides of the inequality (4) as n tends to ∞ yields

lim sup
n→∞

max
n<m≤[nλ]

∣∣∣t(1)m − t(1)n ∣∣∣ ≤ lim sup
n→∞

(
`[nλ] − `n

`n

)
H. (5)

Now, letting λ→ 1+ from the both sides of (5) we obtain

lim
λ→1+

lim sup
n→∞

max
n<m≤[nλ]

∣∣∣t(1)m − t(1)n ∣∣∣ ≤ 0,

which means (t
(1)
n ) is slowly oscillating with respect to summability (`, 1). Therefore,

considering the identity (1) slow oscillation of (v
(0)
n ) follows. �

The following lemma due to Kwee [10] indicates that convergence of (v
(0)
n ) to zero is a

Tauberian condition for the (`, 1) summability.

Lemma 2.5. If sn → ξ(`, 1) and v
(0)
n = o(1), then (sn) is convergent to ξ.

Our main theorems based on the following well-known Tauberian results given for the
Borel summability in Hardy’s famous book of Divergent Series [7].

Lemma 2.6. If sn → ξ(B) and
√
n∆sn = O(1), then (sn) is convergent to ξ.

Lemma 2.7. If sn → ξ(B) and
√
n∆sn = o(1), then (sn) is convergent to ξ.

3. Main Results

In this section, we state and prove following Tauberian theorems for the (B)(`, k)
summability.

Theorem 3.1. If sn → ξ(B)(`, k) and

v(k)n = O(
√
n log n), (6)

then sn → ξ(`, k + 1).
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Proof. By the hypothesis of the theorem, we have t
(k)
n → ξ(B), which also implies from

Lemma 2.3

t(k+1)
n → ξ(B). (7)

Then, since

v(k)n = (n+ 1)`n−1∆t
(k+1)
n = O(

√
n log n),

we get √
n∆t(k+1)

n = O(1). (8)

Thus, it follows from (7), (8) and Lemma 2.6 that sn → ξ(`, k + 1). �

Corollary 3.1. ([11]) If sn → ξ(B) and

v(0)n = O(
√
n log n), (9)

then sn → ξ(`, 1).

Proof. Take k = 0 in Theorem 3.1. �

Corollary 3.2. ([16]) If sn → ξ(B) and

sn = O(
√
n log n), (10)

then sn → ξ(`, 1).

Proof. Considering the assumption (10) together with Stolz-Cesàro theorem ([13], p.85),

we obtain tn = O(
√
n log n). Hence, the identity (1) implies v

(0)
n = O(

√
n log n), which

completes the proof. �

Corollary 3.3. If sn → ξ(B)(`, k) and (sn) is slowly oscillating with respect to summa-
bility (`, 1), then (sn) is convergent to ξ.

Proof. Taking Lemma 2.4 and the slow oscillation of (sn) into account, we have v
(k)
n = O(1)

and the slow oscillation of (t
(k)
n ) for each integer k > 0. Then, we also have v

(k)
n =

O(
√
n log n). This yields

lim
n→∞

t(k+1)
n = ξ (11)

from Theorem 3.1. Now, combining Lemma 2.2 and the slow oscillation of (t
(k)
n ), it follows

lim
n→∞

t(k)n = ξ. (12)

Considering (11) and (12) and arguing in the same way, we observe that (sn) is convergent
to ξ. �

Corollary 3.4. If sn → ξ(B)(`, k) and

n log n∆sn = O(1), (13)

then (sn) is convergent to ξ.

Proof. The proof is completed by the fact that the assumption (13) implies the slow
oscillation of (sn). �

Corollary 3.5. If sn → ξ(B)(`, k) and

n log n∆sn = o(1), (14)

then (sn) is convergent to ξ.

Proof. Condition (14) is sufficient for (13). �
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Note that, the above corollary is a generalization of a classical Tauberian theorem due
to Ishiguro [8] given for the (`, 1) summability.

Theorem 3.2. If sn → ξ(B)(`, k + 1) and

n log n∆v(k+1)
n = o(1), (15)

then sn → ξ(`, k).

Proof. Since t
(k+1)
n → ξ(B), we easily get

t(k+2)
n → ξ(B) (16)

by using Lemma 2.3. From the identity

t(k+1)
n − t(k+2)

n = v(k+1)
n (17)

we find
v(k+1)
n → 0(B). (18)

Moreover, it is obvious from (15) that
√
n∆v(k+1)

n = o(1). (19)

Considering (18) and (19) together with Lemma 2.7 we obtain

v(k+1)
n = (n+ 1)`n−1∆t

(k+2)
n = o(1), (20)

that implies √
n∆t(k+2)

n = o(1).

Now, applying Lemma 2.7 to the sequence (t
(k+2)
n ) we conclude

lim
n→∞

t(k+2)
n = ξ. (21)

Using (20) and (21), we get via identity (17) that

lim
n→∞

t(k+1)
n = ξ. (22)

By Lemma 2.1, we also have

v(k)n − v(k+1)
n = (n+ 1)`n−1∆v

(k+1)
n ,

which necessiates
v(k)n = o(1) (23)

from (15) and (20). Therefore, since

t(k)n − t(k+1)
n = v(k)n ,

we conclude sn → ξ(`, k), which completes the proof. �

Corollary 3.6. If sn → ξ(B)(`, k + 1) and

v(0)n = o(1), (24)

then (sn) is convergent to ξ.

Proof. Suppose v
(0)
n = o(1), then for all integer k ≥ 1, we get v

(k)
n = o(1). Hence, by the

identity v
(k)
n − v(k+1)

n = (n+ 1)`n−1∆v
(k+1)
n , it follows

n log n∆v(k+1)
n = o(1).

Thus, from Theorem 3.2 we obtain sn → ξ(`, k) which is equivalent to t
(k−1)
n → ξ(`, 1).

Since,
v(k−1)n = t(k−1)n (v(0)n ) = v(0)n (t(k−1)n ) = o(1)
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we get sn → ξ(`, k− 1) by using Lemma 2.5. Continuing in the same fashion, we conclude
lim
n→∞

sn = ξ. This completes the proof. �
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