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G.GHORAI, M.PAL: APPLICATIONS OF BIPOLAR FUZZY SETS IN

INTERVAL GRAPHS

G. GHORAI1, M. PAL1, §

Abstract. Currently, bipolar fuzzy graph is a growing research topic as it is the gener-
alization of fuzzy graphs. In this paper, normal and convex bipolar fuzzy sets are defined
and the notion of bipolar fuzzy interval is introduced as a generalization of fuzzy interval
and described various methods of their construction. It is shown that intersection of two
bipolar fuzzy intervals may not be a bipolar fuzzy interval. Finally, bipolar fuzzy interval
graphs is introduced as the intersection graph of a finite family of bipolar fuzzy intervals.
The relationship between the intersection graph of a {α, β}-level family of bipolar fuzzy
intervals and {α, β}-cut of the intersection graph for that family have been established.
It is proved that for every bipolar fuzzy interval graph G, the (α, β)-cut level graph Gαβ
is an interval graph for each (α, β) ∈ (0, 1] × [−1, 0). Also, some important hereditary
properties of bipolar fuzzy interval graphs are presented.

Keywords: Bipolar fuzzy set, Normal and convex bipolar fuzzy set, Bipolar fuzzy interval,
Bipolar fuzzy interval graph.

AMS Subject Classification: 05C72, 05C76

1. Introduction

The notion of fuzzy subset of a set was first introduced by Zadeh [33] in 1965. After
that, fuzzy set theory has become an unavoidable research topic in different disciplines
including medical and life sciences, management sciences, social sciences, engineering, sta-
tistics, graph theory, artificial intelligence, signal processing, multi agent system, pattern
recognition, robotics, computer networks, expert systems, decision making and automata
theory. As a generalization of fuzzy sets, Zhang [34, 35] initiated the concept of bipolar
fuzzy sets in 1994. The bipolar fuzzy set constitute a generalization of Zadeh’s fuzzy set
theory whose membership degree range is [−1, 1]. In a bipolar fuzzy set, the membership
degree 0 of an element means that the element is irrelevant to the corresponding property,
the membership degree (0, 1] of an element indicates that the element somewhat satisfies
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the property and the membership degree [−1, 0) of an element indicates that the element
somewhat satisfies the implicit counter-property.

In 1975, Rosenfeld [22] introduced the concept of fuzzy graphs considering the fuzzy
relations between fuzzy sets and developed the structure of fuzzy graphs. Craine [4] first
introduce the concept of fuzzy interval graphs in 1994. Mordeson and Nair [18] discussed
about the properties of fuzzy graphs and hypergraphs. Fuzzy intersection graphs [17] was
characterized by McAllister. Bhutani et al. [3] studied on degrees of end nodes and cut
nodes in fuzzy graphs. In 2011, Akram [1, 2] introduced and studied the bipolar fuzzy
graphs. Yang et al. [32] introduced generalized bipolar fuzzy graphs and Ghorai and Pal
[12] introduced generalized regular bipolar fuzzy graphs. Samanta and Pal studied bipo-
lar fuzzy hypergraphs [25], irregular bipolar fuzzy graphs [26], m-step fuzzy competition
graphs [28]. Rashmanlou et al. [20] investigated some more properties of bipolar fuzzy
graphs. Samanta et al. [29] introduced the bipolar fuzzy intersection graphs. Some more
work on fuzzy graphs and bipolar fuzzy graphs cane be found on [23, 24, 27, 30, 31]. Later
on, Ghorai and Pal [7, 8, 9, 10, 11] introduced and studied many variations of generalized
m-polar fuzzy graphs. Intersection graphs are very important tool in many applications
of our real world problems as well as theoretical points of view. Considering bipolar fuzzy
models, one can get more precision, flexibility and comparability to the system as com-
pared to the classical and fuzzy models. This motivates us to define bipolar fuzzy interval
graph as a generalization of fuzzy interval graph. For this purpose, normal and convex
bipolar fuzzy sets are defined to introduce the notion of bipolar fuzzy interval as a gen-
eralization of fuzzy interval. Different methods has been described for their formulation.
It is shown by an example that intersection of two bipolar fuzzy intervals may not be a
bipolar fuzzy interval. Finally, the notion of bipolar fuzzy interval graph is introduced for
a finite family of bipolar fuzzy intervals and studied many results of it.

2. Preliminaries

In this section, we briefly recall some definitions of undirected graphs, the notions of
fuzzy sets, fuzzy intersection graphs, fuzzy intervals, fuzzy interval graphs, bipolar fuzzy
sets and bipolar fuzzy intersection graphs. For further details see references [6, 13, 14, 15,
16, 19].

Definition 2.1. [13] A graph is an ordered pair G∗ = (V,E), where V is the set of vertices
of G∗ and E is the set of all edges of G∗. Two vertices x and y in an undirected graph
G∗ are said to be adjacent in G∗ if xy is an edge of G∗. A simple graph is an undirected
graph that has no loops and no more than one edge between any two different vertices.

Definition 2.2. [13] A subgraph of a graph G∗ = (V,E) is a graph H = (W,F ), where
W ⊆ V and F ⊆ E.

Definition 2.3. [13] Consider the cartesian product G∗ = G∗1×G∗2 = (V,E) of graphs G∗1
and G∗2. Then V = V1 × V2 and E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) :
z ∈ V2, x1y1 ∈ E1}.

Definition 2.4. [13] Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two simple graphs. Then
the composition of the graph G∗1 with G∗2 is denoted by G∗1[G∗2] = (V1 × V2, E

0), where
E0 = E ∪ {(x1, x2)(y1, y2) : x1y1 ∈ E1, x2 6= y2} and E is defined in G∗1 × G∗2. Note that
G∗1[G∗2] 6= G∗2[G∗1].

Definition 2.5. [13] The union of two simple graphs G∗1 = (V1, E1) and G∗2 = (V2, E2) is
the simple graph with the vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G∗1 and
G∗2 is denoted by G∗ = G∗1 ∪G∗2 = (V1 ∪ V2, E1 ∪ E2).
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Definition 2.6. [13] The join of two simple graphs G∗1 = (V1, E1) and G∗2 = (V2, E2) is
the simple graph with the vertex set V1 ∪ V2 and edge set E1 ∪E2 ∪E′, where E′ is the set
of all edges joining the nodes of V1 and V2 and assume that V1 ∩ V2 = ∅. The join of G∗1
and G∗2 is denoted by G∗ = G∗1 +G∗2 = (V1 ∪ V2, E1 ∪ E2 ∪ E′).

Definition 2.7. [33] A fuzzy subset µ on a set X is a map µ : X → [0, 1], called the
membership function. A map ρ : X × X → [0, 1] is called a fuzzy relation on X if
ρ(x, y) ≤ min{µ(x), µ(y)} for all x, y ∈ X. A fuzzy relation ρ is symmetric if ρ(x, y) =
ρ(y, x) for all x, y ∈ X.

Definition 2.8. [15, 34] Let X be a non empty set. A bipolar fuzzy set B in X is an
object having the form B = {(x, µPB(x), µNB (x)) : x ∈ X} where µPB : X → [0, 1] and
µNB : X → [−1, 0] are mappings.

For the sake of simplicity, we use the symbol B = (µPB, µ
N
B ) for the bipolar fuzzy set

B = {(x, µPB(x), µNB (x)) : x ∈ X}.

Definition 2.9. [34] Let X be a non empty set. Then we call a mapping A = (µPA, µ
N
A ) :

X ×X → [0, 1]× [−1, 0] a bipolar fuzzy relation on X.

Definition 2.10. [28] Let A = (µPA, µ
N
A ) be a bipolar fuzzy set on a non empty set X.

Height of A is denoted by h(A) and is defined as h(A) = max{µPA(x) : x ∈ X} and depth
of A is denoted by d(A) and is defined by d(A) = min{µNA (x) : x ∈ X}.

Definition 2.11. [18] Let F={α1, α2, . . . , αn} be a finite family of fuzzy subsets of a set
V and consider F as a crisp vertex set. The fuzzy intersection graph of F is the fuzzy
graph Int(F)=(µ, ρ) where µ : F → [0, 1] is defined by µ(αi) = h(αi) and ρ : F × F :→

[0, 1] is defined by ρ(αi, αj) =

{
h(αi ∩ αj) if i 6= j

0 if i = j.

Definition 2.12. [18] Let V be a linearly ordered set. A fuzzy interval I on V is a normal,
convex fuzzy subset of V. That is, there exists an x ∈ V with I(x) = 1 and the ordering
w ≤ y ≤ z implies that I(y) ≥ min{I(w), I(z)}.

A fuzzy interval graph is the fuzzy intersection graph of a finite family of fuzzy intervals.

Definition 2.13. [28] Let F= {B1 = (µPB1
, µNB1

), B2 = (µPB2
, µNB2

), . . . , Bn = (µPBn , µ
N
Bn

)}
be a finite family of bipolar fuzzy sets defined on a non empty set X. Consider F as crisp
vertex set V={v1, v2, . . . vn}. The bipolar fuzzy intersection graph of F is the bipolar fuzzy
graph (A,B) where A = (µPA, µ

N
A ) is a bipolar fuzzy set on V and B = (µPB, µ

N
B ) is a bipolar

fuzzy set on E = V ×V . µPA : V → [0, 1] is defined by µPA(vi) = h(Bi) and µNA (vi) = d(Bi).

µPB : V × V → [0, 1] is defined by µPB(vi, vj) =

{
h(Bi ∩Bj) if i 6= j

0 if i = j.

Similarly, µNB (vi, vj) =

{
d(Bi ∩Bj) if i 6= j

0 if i = j.

3. Bipolar fuzzy intervals

In this section, bipolar fuzzy intervals are defined on a linearly ordered set X as a
generalization of fuzzy intervals. Before going into the bipolar fuzzy intervals, we first
define normal and convex bipolar fuzzy sets.

Definition 3.1. A bipolar fuzzy set A = (µPA, µ
N
A ) on a non empty set X is said to be

normal if h(A) = 1 and d(A) = −1.
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Definition 3.2. Let A = (µPA, µ
N
A ) be a bipolar fuzzy set on a linearly ordered set X. A

is said to be convex bipolar fuzzy set if µPA is a convex fuzzy set of X and µNA is a concave
fuzzy set of X, i.e. for w, y, z ∈ X with w ≤ y ≤ z implies µPA(y) ≥ min{µPA(w), µPA(z)}
and µNA (y) ≤ max{µNA (w), µNA (z)}.

Theorem 3.1. All {α, β}-cut of a bipolar fuzzy set on a linearly ordered set X is convex
for all (α, β) ∈ (0, 1]× [−1, 0).

Proof. Let A = (µPA, µ
N
A )) be a bipolar fuzzy set on X and (α, β) ∈ (0, 1]× [−1, 0).

We know that, Aαβ := {x ∈ X : µPA(x) ≥ α and µNA (x) ≤ β}.
To show that Aαβ is convex for all (α, β) ∈ (0, 1] × [−1, 0), we have to show that for

w, y, z ∈ Aαβ with w ≤ y ≤ z, µPA(y) ≥ min{µPA(w), µPA(z)} and µNA (y) ≤ max{µNA (w), µNA (z)}.
Now w, y, z ∈ Aαβ implies µPA(w) ≥ α, µPA(y) ≥ α, µPA(z) ≥ α and

µNA (w) ≤ β, µNA (y) ≤ β, µNA (z) ≤ β.
Therefore, µPA(y) ≥ α = min{µPA(w), µPA(z)},
i.e. µPA(y) ≥ min{µPA(w), µPA(z)} and
µNA (y) ≤ β = max{µNA (w), µNA (z)}, i.e. µNA (y) ≤ max{µNA (w), µNA (z)}.
Hence the result. �

Definition 3.3. Let X be a linearly ordered set. A bipolar fuzzy interval I on X is a normal,
convex bipolar fuzzy subset of X. It is denoted by I = (µPI , µ

N
I ) where µPI : X → [0, 1] and

µNI : X → [−1, 0] are mappings.

Example 3.1. Examples of bipolar fuzzy intervals are shown in Fig. 1. In this Figure,
(a) represents the bipolar fuzzy set expressing the proposition “close to 1.3”, (b) represents
the bipolar fuzzy set expressing the proposition “close to 1”, (c) and (d) represent some
basic types of bipolar fuzzy sets which are bipolar fuzzy intervals.

Remark 3.1. If µPI (x) 6= 0 and µNI (x) = 0 for all x ∈ X, it is the situation that the
bipolar fuzzy interval becomes fuzzy interval on X.

4. Operations on bipolar fuzzy intervals

In this section, Cartesian product, union and intersection on bipolar fuzzy intervals are
defined. It is shown that Cartesian product and union of two bipolar fuzzy intervals is
again a bipolar fuzzy interval. Also, an example is constructed to show that intersection of
two bipolar fuzzy intervals may not be a bipolar fuzzy interval. Throughout this section,
it is assumed that for any two ordered sets X and Y , the order on X×Y and X ∪Y is the
order which is defined in [5]. First of all, Cartesian product of two bipolar fuzzy intervals
is defined and proved that it is again a bipolar fuzzy interval.

Definition 4.1. Let I1 = (µPI1 , µ
N
I1

) and I2 = (µPI2 , µ
N
I2

) be two bipolar fuzzy intervals on
the linearly ordered sets X and Y respectively. Then the cartesian product of I1 and I2 is
a bipolar fuzzy set on X × Y denoted by I1 × I2 = (µPI1 × µ

P
I2
, µNI1 × µ

N
I2

) and is defined as:

(µPI1 × µ
P
I2

)(x, y) = min{µPI1(x), µPI2(y)} and

(µNI1 × µ
N
I2

)(x, y) = max{µNI1(x), µNI2(y)} for all (x, y) ∈ X × Y .

Proposition 4.1. If I1 = (µPI1 , µ
N
I1

) and I2 = (µPI2 , µ
N
I2

) be two bipolar fuzzy intervals on
the linearly ordered sets X and Y respectively, then I1 × I2 is a bipolar fuzzy interval on
X × Y in the product order.
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Figure 1. Different bipolar fuzzy intervals expressing their corresponding
bipolar fuzzy sets

Proof. To show I1 × I2 = (µPI1 × µ
P
I2
, µNI1 × µ

N
I2

) is a bipolar fuzzy interval, we show that it
is a normal and convex bipolar fuzzy subset of X × Y .

Normality of I1×I2 = (µPI1×µ
P
I2
, µNI1×µ

N
I2

) follows from the normality of I1 = (µPI1 , µ
N
I1

)

and I2 = (µPI2 , µ
N
I2

).

For convexity of I1 × I2 = (µPI1 × µ
P
I2
, µNI1 × µ

N
I2

), we show that for w = (w1, w2), y =
(y1, y2), z = (z1, z2) ∈ X × Y with w ≤ y ≤ z
⇒ (µPI1 × µ

P
I2

)(y) ≥ min{(µPI1 × µ
P
I2

)(w), (µPI1 × µ
P
I2

)(z)} and

(µNI1 × µ
N
I2

)(y) ≤ max{(µNI1 × µ
N
I2

)(w), (µNI1 × µ
N
I2

)(z)}.
Now in product order on X × Y , w ≤ y ≤ z
⇒ w1 ≤ y1 ≤ z1 and w2 ≤ y2 ≤ z2

Thus, µPI1(y1) ≥ min{µPI1(w1), µPI1(z1)}, µNI1(y1) ≤ max{µNI1(w1), µNI1(z1)} and

µPI2(y2) ≥ min{µPI2(w2), µPI2(z2)}, µNI2(y2) ≤ max{µNI2(w2), µNI2(z2)}.
Therefore, {µPI1(y1), µPI2(y2)} ≥ min{min{µPI1(w1), µPI1(z1)},min{µPI2(w2), µPI2(z2)}}
= {min{µPI1(w1), µPI2(w2)},min{µPI1(z1), µPI2(z2)}
= {(µPI1 × µ

P
I2

)(w), (µPI1 × µ
P
I2

)(z)}
i.e. min{µPI1(y1), µPI2(y2)} ≥ min{(µPI1 × µ

P
I2

)(w), (µPI1 × µ
P
I2

)(z)},
i.e. (µPI1 × µ

P
I2

)(y) ≥ min{(µPI1 × µ
P
I2

)(w), (µPI1 × µ
P
I2

)(z)}.
Similarly, (µNI1 × µ

N
I2

)(y) ≤ max{(µNI1 × µ
N
I2

)(w), (µNI1 × µ
N
I2

)(z)}.
Hence the result. �
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Union of bipolar fuzzy intervals is also a bipolar fuzzy set which is defined here. They
are in fact, bipolar fuzzy interval proved in Proposition 4.2.

Definition 4.2. Let I1 = (µPI1 , µ
N
I1

) and I2 = (µPI2 , µ
N
I2

) be two bipolar fuzzy intervals on
the linearly ordered sets X and Y respectively. Then the union of I1 and I2 is a bipolar
fuzzy set on X ∪ Y denoted by I1 ∪ I2 = (µPI1 ∪ µ

P
I2
, µNI1 ∪ µ

N
I2

) and is defined as:

(µPI1 ∪ µ
P
I2

)(x) = µPI1(x) if x ∈ X − Y ,

(µPI1 ∪ µ
P
I2

)(x) = µPI2(x) if x ∈ Y −X and

(µPI1 ∪ µ
P
I2

)(x) = max{µPI1(x), µPI2} if x ∈ X ∩ Y ;

(µNI1 ∪ µ
N
I2

)(x) = µNI1(x) if x ∈ X − Y ,

(µNI1 ∪ µ
N
I2

)(x) = µNI2(x) if x ∈ Y −X and

(µNI1 ∪ µ
N
I2

)(x) = min{µNI1(x), µNI2} if x ∈ X ∩ Y .

Proposition 4.2. If I1 = (µPI1 , µ
N
I1

) and I2 = (µPI2 , µ
N
I2

) be two bipolar fuzzy intervals
on the disjoint linearly ordered sets X and Y respectively, then I1 ∪ I2 is a bipolar fuzzy
interval on the ordered set X ∪ Y .

Proof. To show that I1 ∪ I2 = (µPI1 ∪ µ
P
I2
, µNI1 ∪ µ

N
I2

) is a bipolar fuzzy interval, we show
that it is a normal and convex bipolar fuzzy subset of X ∪ Y .

Normality of I1 ∪ I2 = (µPI1 ∪µ
P
I2
, µNI1 ∪µ

N
I2

) follows from the normality of I1 = (µPI1 , µ
N
I1

)

and I2 = (µPI2 , µ
N
I2

).

For convexity of I1 ∪ I2 = (µPI1 ∪ µ
P
I2
, µNI1 ∪ µ

N
I2

), we show that for w, y, z ∈ X ∪ Y with

w ≤ y ≤ z implies (µPI1 ∪µ
P
I2

)(y) ≥ min{(µPI1 ∪µ
P
I2

)(w), (µPI1 ∪µ
P
I2

)(z)} and (µNI1 ∪µ
N
I2

)(y) ≤
max{(µNI1 ∪ µ

N
I2

)(w), (µNI1 ∪ µ
N
I2

)(z)}.
Now w, y, z ∈ X ∪ Y , means w, y, z ∈ X or w, y, z ∈ Y (since X ∩ Y = ∅).
Case (i): Let w, y, z ∈ X be such that w ≤ y ≤ z. Since I1 is a bipolar fuzzy interval,

therefore I1 is a bipolar fuzzy convex set.
Convexity of I1 implies that µPI1(y) ≥ min{µPI1(w), µPI1(z)} and µNI1(y) ≤ max{µNI1(w), µNI1(z)}.
Now µPI1(y) = (µPI1 ∪ µ

P
I2

)(y), µPI1(w) = (µPI1 ∪ µ
P
I2

)(w), µPI1(z) = (µPI1 ∪ µ
P
I2

)(z) and

µNI1(y) = (µNI1 ∪ µ
N
I2

)(y), µNI1(w) = (µNI1 ∪ µ
N
I2

)(w), µNI1(z) = (µNI1 ∪ µ
N
I2

)(z).

Hence, (µPI1 ∪ µ
P
I2

)(y) ≥ min{(µPI1 ∪ µ
P
I2

)(w), (µPI1 ∪ µ
P
I2

)(z)}
and (µNI1 ∪ µ

N
I2

)(y) ≤ max{(µNI1 ∪ µ
N
I2

)(w), (µNI1 ∪ µ
N
I2

)(z)}.
Case (ii): Let w, y, z ∈ Y be such that w ≤ y ≤ z. Similarly, convexity of I2 implies

the convexity of I1 ∪ I2. Hence, I1 ∪ I2 is a bipolar fuzzy interval. �

The intersection of bipolar fuzzy intervals is only a bipolar fuzzy set. An example is
constructed below to support this.

Definition 4.3. Let {Ii}i∈Λ be a family of bipolar fuzzy intervals on a linearly ordered set
X. Then

⋂
i∈Λ

Ii is a bipolar fuzzy set on X denoted by
⋂
i∈Λ

Ii = (µP∩Ii , µ
N
∩Ii) and is defined

as µP∩Ii(x) = min{µPIi(x) : i ∈ Λ} and µN∩Ii(x) = max{µNIi (x) : i ∈ Λ} for all x ∈ X.

The intersection of a family of bipolar fuzzy intervals on a linearly ordered set may not
be a bipolar fuzzy interval. For example, let us consider the bipolar fuzzy intervals I1 and
I2 as shown in Fig. 2. Here, h(I1 ∩ I2) = 0.2 and d(I1 ∩ I2) = −0.45.

So, I1 ∩ I2 is not normal. Hence I1 ∩ I2 is not a bipolar fuzzy interval.
For a given family of bipolar fuzzy sets, it’s {α, β}-level family is defined as follows.

Definition 4.4. Let (α, β) ∈ (0, 1] × [−1, 0). For a family F of bipolar fuzzy subsets,
{α, β}-level family of F is defined as Fαβ ={Bα

β : B ∈ F}.
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I1 I2

�

I1 ∩ I2
0.2

−0.45

Figure 2. Intersection of two bipolar fuzzy intervals

5. Bipolar fuzzy interval graphs

Fuzzy intersection graphs and fuzzy interval graphs were introduced in [18]. In 2014,
Samanta et al. [28] introduced bipolar fuzzy intersection graphs of a finite family F of
bipolar fuzzy sets. In this section, bipolar fuzzy interval graph is defined for a finite
family F of bipolar fuzzy intervals defined in Section 3. In other words, bipolar fuzzy
interval graphs are the intersection graphs of a finite family of bipolar fuzzy intervals.
Also, the relationship between the intersection graph of a {α, β}-level family of bipolar
fuzzy intervals and {α, β}-cut of the intersection graph of that family is established.

Definition 5.1. Let F={I1 = (µPI1 , µ
N
I1

), I2 = (µPI2 , µ
N
I2

), . . . , Im = (µPIm , µ
N
Im

)} be a finite
family of bipolar fuzzy intervals on a linearly ordered set X and consider F as a crisp
vertex set V. The bipolar fuzzy interval graph of F is the bipolar fuzzy intersection graph
G= Int(F)=(A,B) where A = (µPA, µ

N
A ) is a bipolar fuzzy set of V defined by µPA(Ii) =

h(Ii) = 1, µNA (Ii) = d(Ii) = −1 for all i = 1, 2, . . . ,m and B = (µPB, µ
N
B ) is a bipolar

fuzzy set in E = V × V defined by µPB(Ii, Ij) = h(Ii ∩ Ij) if i 6= j and 0 if i = j and
µNB (Ii, Ij) = d(Ii ∩ Ij) if i 6= j and 0 if i = j; i, j = 1, 2, . . . ,m.

Example 5.1. Let us consider three bipolar fuzzy intervals I1, I2, I3 (see Fig. 3). Here
h(I1∩I2) = 0.25, d(I1∩I2) = −0.43, h(I2∩I3) = 0.1, d(I2∩I3) = −0.19. The corresponding
bipolar fuzzy interval graph is shown in Fig. 3.

Remark 5.1. If F={I1 = (µPI1 , µ
N
I1

), I2 = (µPI2 , µ
N
I2

), . . . , Im = (µPIm , µ
N
Im

)} is a family
of bipolar fuzzy intervals on a linearly ordered set X and (α, β) ∈ (0, 1] × [−1, 0), then
Int(Fαβ )= (Int(F))αβ . The graph Int(Fαβ ) has one vertex for each Ii ∈ F such that (Ii)

α
β 6=

φ or equivalently such that h(Ii) ≥ α and d(Ii) ≤ β. The pair {(Ii)αβ , (Ij)αβ} is an edge of

Int(Fαβ ) if and only if i 6= j and (Ii)
α
β ∩ (Ij)

α
β 6= φ; equivalently if and only if h(Ii∩Ij) ≥ α

and d(Ii ∩ Ij) ≤ β. Similarly, the graph (Int(F))αβ has one vertex for each Ii ∈ F such

that h(Ii) ≥ α and d(Ii) ≤ β. The pair Ii, Ij is an edge of (Int(F))αβ if and only if i 6= j

and h(Ii ∩ Ij) ≥ α and d(Ii ∩ Ij) ≤ β. As graphs, two structures are equivalent.

Theorem 5.1. Let G = Int(F) be a bipolar fuzzy interval graph. Then for each (α, β) ∈
(0, 1]× [−1, 0), the {α, β}-cut level graph Gαβ is an interval graph.
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(a) Three bipolar fuzzy intervals I1, I2 and I3

(b) Bipolar fuzzy interval graphs corresponding to the bipolar fuzzy intervals of (a)

Figure 3. Bipolar fuzzy interval graph

Proof. Let G = Int(F) for a family of bipolar fuzzy intervals F={I1 = (µPI1 , µ
N
I1

), I2 =

(µPI2 , µ
N
I2

), . . . , Im = (µPIm , µ
N
Im

)}.
For each (α, β) ∈ (0, 1]× [−1, 0), convexity implies that Iαβ ∈ Fαβ is a crisp interval. By

Remark 5.1, Gαβ = (Int(F))αβ=Int(Fαβ ) and Gαβ is an interval graph. �

6. Operations on bipolar fuzzy interval graphs

In this section, some important hereditary properties of bipolar fuzzy interval graphs
is discussed using the operations of Cartesian product, composition, union and join. New
bipolar fuzzy interval graphs is constructed by applying the above operations on any two
bipolar fuzzy interval graphs. Throughout this section the edge between two vertices u
and v is denoted by uv rather than (u, v) because when we take Cartesian product, a
vertex of the graph is, in fact, an ordered pair.

Definition 6.1. Let G1 = Int(V1) = (A1, B1) and G2 = Int(V2) = (A2, B2) be two bipolar
fuzzy interval graphs, where A1 = (µPA1

, µNA1
) is a bipolar fuzzy subset of V1 = {I1

1 =

(µP
I11
, µN

I11
), I1

2 = (µP
I12
, µN

I12
), . . . , I1

m = (µPI1m
, µNI1m

)} and A2 = (µPA2
, µNA2

) is a bipolar fuzzy

subset of V2 = {I2
1 = (µP

I21
, µN

I21
), I2

2 = (µP
I22
, µN

I22
), . . . , I2

n = (µPI2n
, µNI2n

)}; I1
i = (µP

I1i
, µN

I1i
), i =

1, 2, . . . ,m and I2
j = (µP

I2j
, µN

I2j
); j = 1, 2, . . . , n are the bipolar fuzzy intervals on the linearly

ordered sets X and Y respectively. B1 = (µPB1
, µNB1

) and B2 = (µPB2
, µNB2

) are bipolar
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subsets of E1 = V1×V1 and E2 = V2×V2 respectively. Then the Cartesian product of two
bipolar fuzzy interval graphs G1 and G2 is denoted by G1 ×G2 = (A1 ×A2, B1 ×B2) and
is defined as:

(i) For all (I1
i , I

2
j ) ∈ V1 × V2, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

(µPA1
× µPA2

)(I1
i , I

2
j ) = min{h(I1

i ) = 1, h(I2
j ) = 1} = 1

(µNA1
× µNA2

)(I1
i , I

2
j ) = max{d(I1

i ) = −1, d(I2
j ) = −1} = −1.

(ii) For all I1
i ∈ V1, for all I2

j I
2
k ∈ E2, i = 1, 2, . . . ,m, j, k = 1, 2, . . . , n

(µPB1
× µPB2

)((I1
i , I

2
j )(I1

i , I
2
k)) = min{h(I1

i ) = 1, h(I2
j ∩ I2

k)}
(µNB1

× µNB2
)((I1

i , I
2
j )(I1

i , I
2
k)) = max{d(I1

i ) = −1, d(I2
j ∩ I2

k)}.
(iii) For all I2

i ∈ V2, for all I1
j I

1
k ∈ E1, i = 1, 2, . . . , n, j, k = 1, 2, . . . ,m

(µPB1
× µPB2

)((I1
j , I

2
i )(I1

k , I
2
i )) = min{h(I1

j ∩ I1
k), h(I2

i ) = 1}
(µNB1

× µNB2
)((I1

j , I
2
i )(I1

k , I
2
i )) = max{d(I1

j ∩ I1
k), d(I2

i ) = −1}.
Proposition 6.1. If G1 and G2 are the two bipolar fuzzy interval graphs, then G1 × G2

is a bipolar fuzzy interval graph.

Proof. Let I1
i ∈ V1, I2

j I
2
k ∈ E2 where i = 1, 2, . . . ,m; j, k = 1, 2, . . . , n.

Then
(µPB1

× µPB2
)((I1

i , I
2
j )(I1

i , I
2
k))

= min{h(I1
i ) = 1, h(I2

j ∩ I2
k)}

≤ 1 = min{min{h(I1
i ), h(I2

j )},min{h(I1
i ), h(I2

k)}}
= min{(µPA1

× µPA2
)(I1

i , I
2
j ), (µPA1

× µPA2
)(I1

i , I
2
k)}.

(µNB1
× µNB2

)((I1
i , I

2
j )(I1

i , I
2
k))

= max{d(I1
i ) = −1, d(I2

j ∩ I2
k)}

≥ −1 = max{max{d(I1
i ), d(I2

j )},max{d(I1
i ), d(I2

k)}}
= max{(µNA1

× µNA2
)(I1

i , I
2
j ), (µNA1

× µNA2
)(I1

i , I
2
k)}.

Let I2
i ∈ V2, I

1
j I

1
k ∈ E1 where i = 1, 2, . . . , n, j, k = 1, 2, . . . ,m.

Then
(µPB1

× µPB2
)((I1

j , I
2
i )(I1

k , I
2
i ))

= min{h(I1
j ∩ I1

k), h(I2
i ) = 1}

≤ 1 = min{min{h(I1
j ), h(I2

i )},min{h(I1
k), h(I2

i )}}
= min{(µPA1

× µPA2
)(I1

j , I
2
i ), (µPA1

× µPA2
)(I1

k , I
2
i )}.

(µNB1
× µNB2

)((I1
j , I

2
i )(I1

k , I
2
i ))

= max{d(I1
j ∩ I1

k), d(I2
i ) = −1}

≥ −1 = max{max{d(I1
j ), d(I2

i )},max{d(I1
k), d(I2

i )}}
= max{(µNA1

× µNA2
)(I1

j , I
2
i ), (µNA1

× µNA2
)(I1

k , I
2
i )}.

By Proposition 4.1, V1×V2 = {I1
i ×I2

j : I1
i ∈ V1, I

2
j ∈ V2, i = 1, 2, . . . ,m; j = 1, 2, . . . , n}

is a family of bipolar fuzzy intervals on X × Y . Therefore, G1 ×G2 = Int(V1 × V2).
This completes the proof. �

Now the composition of two bipolar fuzzy interval graphs is considered.

Definition 6.2. Let G1 = Int(V1) = (A1, B1) and G2 = Int(V2) = (A2, B2) be two bipolar
fuzzy interval graphs, where A1 = (µPA1

, µNA1
) is a bipolar fuzzy subset of V1 = {I1

1 =

(µP
I11
, µN

I11
), I1

2 = (µP
I12
, µN

I12
), . . . , I1

m = (µPI1m
, µNI1m

)} and A2 = (µPA2
, µNA2

) is a bipolar fuzzy

subset of V2 = {I2
1 = (µP

I21
, µN

I21
), I2

2 = (µP
I22
, µN

I22
), . . . , I2

n = (µPI2n
, µNI2n

)}; I1
i = (µP

I1i
, µN

I1i
), i =

1, 2, . . . ,m and I2
j = (µP

I2j
, µN

I2j
); j = 1, 2, . . . , n are the bipolar fuzzy intervals on the linearly
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ordered sets X and Y respectively. B1 = (µPB1
, µNB1

) and B2 = (µPB2
, µNB2

) are bipolar
subsets of E1 = V1 × V1 and E2 = V2 × V2 respectively. Then the composition of G1 and
G2 is denoted by G1[G2] = (A1 ◦A2, B1 ◦B2) and is defined as:

(i) For all (I1
i , I

2
j ) ∈ V1 × V2, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

(µPA1
◦ µPA2

)(I1
i , I

2
j ) = min{h(I1

i ) = 1, h(I2
j ) = 1} = 1

(µNA1
◦ µNA2

)(I1
i , I

2
j ) = max{d(I1

i ) = −1, d(I2
j ) = −1} = −1.

(ii) For all I1
i ∈ V1, for all I2

j I
2
k ∈ E2, i = 1, 2, . . . ,m, j, k = 1, 2, . . . , n

(µPB1
◦ µPB2

)((I1
i , I

2
j )(I1

i , I
2
k)) = min{h(I1

i ) = 1, h(I2
j ∩ I2

k)}
(µNB1

◦ µNB2
)((I1

i , I
2
j )(I1

i , I
2
k)) = max{d(I1

i ) = −1, d(I2
j ∩ I2

k)}.
(iii) For all I2

i ∈ V2, for all I1
j I

1
k ∈ E1, i = 1, 2, . . . , n, j, k = 1, 2, . . . ,m

(µPB1
◦ µPB2

)((I1
j , I

2
i )(I1

k , I
2
i )) = min{h(I1

j ∩ I1
k), h(I2

i ) = 1}
(µNB1

◦ µNB2
)((I1

j , I
2
i )(I1

k , I
2
i )) = max{d(I1

j ∩ I1
k), d(I2

i ) = −1}.
(iv) For all (I1

i , I
2
j )(I1

k , I
2
l ) ∈ E0 − E, i, k = 1, 2, . . . ,m, j, l = 1, 2, . . . , n

(µPB1
◦ µPB2

)((I1
i , I

2
j )(I1

k , I
2
l )) = min{h(I2

j ) = 1, h(I2
l ) = 1, h(I1

i ∩ I1
k)}

(µNB1
◦ µNB2

)((I1
i , I

2
j )(I1

k , I
2
l )) = max{d(I2

j ) = −1, d(I2
l ) = −1, d(I1

i ∩ I1
k)}

where E0 = {(I1
i , I

2
j )(I1

i , I
2
k) : I1

i ∈ V1; I2
j I

2
k ∈ E2; i = 1, 2, . . . ,m; j, k = 1, 2, . . . , n}∪

{(I1
j , I

2
i )(I1

k , I
2
i ) : I2

i ∈ V2; I1
j I

1
k ∈ E1; i = 1, 2, . . . , n; j, k = 1, 2, . . . ,m}∪

{(I1
i , I

2
j )(I1

k , I
2
l ) : I1

i I
1
k ∈ E1; I2

j 6= I2
l ; i, k = 1, 2, . . . ,m; j, l = 1, 2, . . . , n} and

E = {(I1
i , I

2
j )(I1

i , I
2
k) : I1

i ∈ V1; I2
j I

2
k ∈ E2; i = 1, 2, . . . ,m; j, k = 1, 2, . . . , n} ∪

{(I1
j , I

2
i )(I1

k , I
2
i ) : I2

i ∈ V2; I1
j I

1
k ∈ E1; i = 1, 2, . . . , n; j, k = 1, 2, . . . ,m}.

Proposition 6.2. If G1 and G2 are two bipolar fuzzy interval graphs, then G1[G2] is a
bipolar fuzzy interval graph.

Proof. Let I1
i ∈ V1, I2

j I
2
k ∈ E2; where i = 1, 2, . . . ,m; j, k = 1, 2, . . . , n.

Then
(µPB1

◦ µPB2
)((I1

i , I
2
j )(I1

i , I
2
k))

= min{h(I1
i ) = 1, h(I2

j ∩ I2
k)} ≤ 1 = min{min{h(I1

i ), h(I2
j )},min{h(I1

i ), h(I2
k)}}

= min{(µPA1
◦ µPA2

)(I1
i , I

2
j ), (µPA1

◦ µPA2
)(I1

i , I
2
k)}.

(µNB1
◦ µNB2

)((I1
i , I

2
j )(I1

i , I
2
k))

= max{d(I1
i ) = −1, d(I2

j ∩ I2
k)} ≥ −1 = max{max{d(I1

i ), d(I2
j )},max{d(I1

i ), d(I2
k)}}

= max{(µNA1
◦ µNA2

)(I1
i , I

2
j ), (µNA1

◦ µNA2
)(I1

i , I
2
k)}.

Let I2
i ∈ V2, I

1
j I

1
k ∈ E1 where i = 1, 2, . . . , n; j, k = 1, 2, . . . ,m.

In this case,
(µPB1

◦ µPB2
)((I1

j , I
2
i )(I1

k , I
2
i ))

= min{h(I1
j ∩ I1

k), h(I2
i ) = 1} ≤ 1 = min{min{h(I1

j ), h(I2
i )},min{h(I1

k), h(I2
i )}}

= min{(µPA1
◦ µPA2

)(I1
j , I

2
i ), (µPA1

◦ µPA2
)(I1

k , I
2
i )}.

(µNB1
◦ µNB2

)((I1
j , I

2
i )(I1

k , I
2
i ))

= max{d(I1
j ∩ I1

k), d(I2
i ) = −1} ≥ −1 = max{max{d(I1

j ), d(I2
i )},max{d(I1

k), d(I2
i )}}

= max{(µNA1
◦ µNA2

)(I1
j , I

2
i ), (µNA1

◦ µNA2
)(I1

k , I
2
i )}.

Let (I1
i , I

2
j )(I1

k , I
2
l ) ∈ E0 − E; i, k = 1, 2, . . . ,m; j, l = 1, 2, . . . , n.

So, I1
i I

1
k ∈ E1, I

2
j 6= I2

l .
Now,
(µPB1

◦ µPB2
)((I1

i , I
2
j )(I1

k , I
2
l ))

= min{h(I2
j ) = 1, h(I2

l ) = 1, h(I1
i ∩I1

k)} ≤ 1 = min{min{h(I1
i ), h(I2

j )},min{h(I1
k), h(I2

l )}}
= min{(µPA1

◦ µPA2
)(I1

i , I
2
j ), (µPA1

◦ µPA2
)(I1

k , I
2
l )}.
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(µNB1
◦ µNB2

)((I1
i , I

2
j )(I1

k , I
2
l ))

= max{d(I2
j ) = −1, d(I2

l ) = −1, d(I1
i ∩I1

k)} ≥ −1 = max{max{d(I1
i ), d(I2

j )},max{d(I1
k), d(I2

l )}}
= max{(µNA1

◦ µNA2
)(I1

i , I
2
j ), (µNA1

◦ µNA2
)(I1

k , I
2
l )}.

By Proposition 4.1, V1×V2 = {I1
i ×I2

j : I1
i ∈ V1, I

2
j ∈ V2, i = 1, 2, . . . ,m; j = 1, 2, . . . , n}

is a family of bipolar fuzzy intervals on X × Y .
Therefore, G1 ◦G2 = Int(V1 × V2).
Hence G1[G2] is a bipolar fuzzy interval graph. �

Below, the union of two bipolar fuzzy interval graphs is considered.

Definition 6.3. Let G1 = Int(V1) = (A1, B1) and G2 = Int(V2) = (A2, B2) be two bipolar
fuzzy interval graphs, where A1 = (µPA1

, µNA1
) is a bipolar fuzzy subset of V1 = {I1

1 =

(µP
I11
, µN

I11
), I1

2 = (µP
I12
, µN

I12
), . . . , I1

m = (µPI1m
, µNI1m

)} and A2 = (µPA2
, µNA2

) is a bipolar fuzzy

subset of V2 = {I2
1 = (µP

I21
, µN

I21
), I2

2 = (µP
I22
, µN

I22
), . . . , I2

n = (µPI2n
, µNI2n

)}; I1
i = (µP

I1i
, µN

I1i
), i =

1, 2, . . . ,m and I2
j = (µP

I2j
, µN

I2j
); j = 1, 2, . . . , n are the bipolar fuzzy intervals on the disjoint

linearly ordered sets X and Y respectively. B1 = (µPB1
, µNB1

) and B2 = (µPB2
, µNB2

) are
bipolar subsets of E1 = V1 × V1 and E2 = V2 × V2 respectively where it is assumed that
V1 ∩ V2 = ∅. Then the union of G1 and G2 is denoted by G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2)
and is defined as:

(i) (µPA1
∪ µPA2

)(I1
i ) = h(I1

i ) = 1 for all I1
i ∈ V1, i = 1, 2, . . . ,m

(µPA1
∪ µPA2

)(I2
i ) = h(I2

i ) = 1 for all I2
i ∈ V2; j = 1, 2, . . . , n

(µPA1
∪ µPA2

)(I) = h(I) = 1 if I ∈ V1 ∩ V2

(µNA1
∪ µNA2

)(I1
i ) = d(I1

i ) = −1 for all I1
i ∈ V1, i = 1, 2, . . . ,m

(µNA1
∪ µNA2

)(I2
i ) = d(I2

i ) = −1 for all I2
i ∈ V2, j = 1, 2, . . . , n

(µNA1
∪ µNA2

)(I) = d(I) = −1 if I ∈ V1 ∩ V2.

(ii) (µPB1
∪ µPB2

)(I1
i I

1
j ) = h(I1

i ∩ I1
j ) for all I1

i I
1
j ∈ E1, i, j = 1, 2, . . . ,m

(µPB1
∪ µPB2

)(I2
i I

2
j ) = h(I2

i ∩ I2
j ) for all I2

i I
2
j ∈ E2, i, j = 1, 2, . . . , n

(µPB1
∪ µPB2

)(I1I2) = h(I1 ∩ I2) if I1I2 ∈ E1 ∩ E2

(µNB1
∪ µNB2

)(I1
i I

1
j ) = d(I1

i ∩ I1
j ) for all I1

i I
1
j ∈ E1, i, j = 1, 2, . . . ,m

(µNB1
∪ µNB2

)(I2
i I

2
j ) = d(I2

i ∩ I2
j ) for all I2

i I
2
j ∈ E2, i, j = 1, 2, . . . , n

(µNB1
∪ µNB2

)(I1I2) = d(I1 ∩ I2) if I1I2 ∈ E1 ∩ E2.

Example 6.1. Consider the bipolar fuzzy interval graphs G1 = Int(V1) = (A1, B1) and
G2 = Int(V2) = (A2, B2), where V1 = {I1, I2, I3, I4} and V2 = {I2, I4, I5, I6, I7}(see Fig.
4). Ai is a bipolar fuzzy set on Vi given by µPAi(Ij) = h(Ij) = 1 and µNAi(Ij) = d(Ij) = −1
for all i = 1, 2; j = 1, 2, . . . , 7. Bi is a bipolar fuzzy subset on Vi × Vi, i = 1, 2 given by
µPB1

(I1I2) = h(I1 ∩ I2) = 0.2, µNB1
(I1I2) = d(I1 ∩ I2) = −0.5, µPB1

(I1I3) = h(I1 ∩ I3) = 0.3,

µNB1
(I1I3) = d(I1∩I3) = −0.3, µPB1

(I2I4) = h(I2∩I4) = 0.4, µNB1
(I2I4) = d(I2∩I4) = −0.3,

µPB1
(I3I4) = h(I3 ∩ I4) = 0.1, µNB1

(I3I4) = d(I3 ∩ I4) = −0.2.

µPB2
(I2I5) = h(I2∩I5) = 0.2, µNB2

(I2I5) = d(I2∩I5) = −0.8, µPB2
(I5I6) = h(I5∩I6) = 0.1,

µNB2
(I5I6) = d(I5∩I6) = −0.4, µPB2

(I6I7) = h(I6∩I7) = 0.3, µNB2
(I6I7) = d(I6∩I7) = −0.5,

µPB2
(I4I5) = h(I4∩I5) = 0.31, µNB2

(I4I5) = d(I4∩I5) = −0.52, µPB2
(I5I7) = h(I5∩I7) = 0.6,

µNB2
(I5I7) = d(I5∩I7) = −0.5. Then by Definition 6.3, we have constructed G1∪G2 which

is shown in Fig. 4.

Proposition 6.3. If G1 and G2 are two bipolar fuzzy interval graphs, then G1 ∪G2 is a
bipolar fuzzy interval graph.
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G1 ∪G2

I7

Figure 4. Union of two bipolar fuzzy interval graphs

Proof. Follows from the definition. �

Finally, the join of two bipolar fuzzy interval graphs is considered. In joining the graphs,
it additionally contains more edges compared to the union of graphs.

Definition 6.4. Let G1 = Int(V1) = (A1, B1) and G2 = Int(V2) = (A2, B2) be two bipolar
fuzzy interval graphs, where A1 = (µPA1

, µNA1
) is a bipolar fuzzy subset of V1 = {I1

1 =

(µP
I11
, µN

I11
), I1

2 = (µP
I12
, µN

I12
), . . . , I1

m = (µPI1m
, µNI1m

)} and A2 = (µPA2
, µNA2

) is a bipolar fuzzy

subset of V2 = {I2
1 = (µP

I21
, µN

I21
), I2

2 = (µP
I22
, µP

I22
), . . . , I2

n = (µPI2n
, µPI2n

)}; I1
i = (µP

I1i
, µN

I1i
), i =

1, 2, . . . ,m and I2
j = (µP

I2j
, µN

I2j
); j = 1, 2, . . . , n are the bipolar fuzzy intervals on the disjoint

linearly ordered sets X and Y respectively. B1 = (µPB1
, µNB1

) and B2 = (µPB2
, µNB2

) are
bipolar subsets of E1 = V1 × V1 and E2 = V2 × V2 respectively. Then the union of G1 and
G2 is denoted by G1 +G2 = (A1 +A2, B1 +B2) and is defined as:

(i) (µPA1
+ µPA2

)(I) = (µPA1
∪ µPA2

)(I)

(µNA1
+ µNA2

)(I) = (µNA1
∪ µNA2

)(I) if I ∈ V1 ∪ V2.

(ii) (µPB1
+ µPB2

)(I1I2)=(µPB1
∪ µPB2

)(I1I2)

(µNB1
+ µNB2

)(I1I2) = (µNB1
∪ µNB2

)(I1I2) if I1I2 ∈ E1 ∪ E2.

(iii) (µPB1
+ µPB2

)(I1I2)=max{h(I1), h(I2)}
(µNB1

+ µNB2
)(I1I2)=min{d(I1), d(I2)} if I1I2 ∈ E′ where E′ is the set of all edges

joining the edges of V1 and V2.

Proposition 6.4. If G1 and G2 are two bipolar fuzzy interval graphs, then G1 +G2 is a
bipolar fuzzy interval graph.

Proof. Similar to the other cases. �
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7. Conclusions

The use of intersection graphs, fuzzy intersection graphs and in particular, interval
graphs, fuzzy interval graphs are very important to understand a number of real world
problems. So, in this paper, a natural extension to fuzzy intervals, fuzzy interval graphs
are introduced and studied several results of it. Finally, bipolar fuzzy interval graph is
introduced. The developed theoretical results of this paper will certainly help to find more
important results and algorithms on the mentioned field. Our next plan is to extend our
research work on applications of bipolar fuzzy interval graphs, m-polar fuzzy graphs, m-
polar fuzzy intersection graphs, m-polar fuzzy interval graphs, m-polar fuzzy hypergraphs,
etc.
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