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COMPRESSIVE SPECTRAL RENORMALIZATION METHOD

C. BAYINDIR1, §

Abstract. In this paper a novel numerical scheme for finding the sparse self-localized
states of a nonlinear system of equations with missing spectral data is introduced. As
in the Petviashivili’s and the spectral renormalization method, the governing equation is
transformed into Fourier domain, but the iterations are performed for far fewer number of
spectral components (M) than classical versions of the these methods with higher number
of spectral components (N). After the converge criteria is achieved for M components,
N component signal is reconstructed from M components by using the l1 minimization
technique of the compressive sampling. This method can be named as compressive
spectral renormalization (CSRM) method. The main advantage of the CSRM is that,
it is capable of finding the sparse self-localized states of the evolution equation(s) with
many spectral data missing.

Keywords: Spectral renormalization, Petviashivili’s method, compressive sampling, spec-
tral methods, nonlinear Schrödinger equation.

AMS Subject Classification: 81Q05, 65T50

1. Introduction

Missing spectral data in many branches of physics limits the applicability of analysis
tools and devices and assessment techniques. These branches include but are not limited
to optics, geophysics, electromagnetics and communication technology [1, 2]. Although
shorter wavelengths are more vulnerable to attenuation compared to longer wavelengths,
longer wavelengths can also be lost during their propagation in medium therefore any
spectral component of a signal may be lost [3]. Different approaches are proposed to deal
with problems that occur due to missing spectral data. Few of these approaches can be
summarized as below: A modification of the singular spectrum analysis that analyzes time
series with missing data is proposed in [1]. The missing data recovery via a nonparametric
iterative adaptive approach and nonparametric spectral analysis with missing data via the
expectation maximization algorithms are two other tools used in literature to overcome
this problem [2]. The method of Marquardt is applied to a single 26-parameter equation,
which models known long-wavelength loss mechanisms for rapid and accurate modeling
of the spectral-loss profiles of lightguide fibers, in [4]. A compressive sensing (CS) based
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approach for stationary and non-stationary stochastic process power spectrum estimation
with missing data is recently proposed in [5].

It remains an open question what the stable self-localized solutions would be in a non-
linear field with missing spectral data. To overcome this problem, we propose a novel
numerical scheme that can attain the stable sparse self-localized solutions of the nonlin-
ear system of equations with many missing spectral data. We test the applicability of the
proposed method on a 1D Schrödinger-like equation which is widely used as a model equa-
tion in optics, hydrodynamics, quantum mechanics, Bose-Einstein condensation [6, 7, 8].
The proposed method utilizes iterations in the Fourier domain for a far fewer number of
spectral components (M) than classical versions of the Petviashivili’s method or spectral
renormalization method (SRM) with higher number of spectral components (N). After
the converge criteria is achieved for M components, the signal with N components can be
reconstructed from M components by the l1 minimization technique of the compressive
sampling. The name proposed for this method is compressive spectral renormalization
(CSRM) method. Compared to SRM, the main advantage of the CSRM is that, it is ca-
pable of finding the sparse self-localized states of the evolution equation(s) with far fewer
spectral data. For example for fiber optical communications, where some data is lost
during the propagation of the optical pulse or considering memory and time constraints
they may be intentionally ignored, CSRM can be used to find self localized states of the
system of equations studied. We discuss the implementation of the proposed method and
its advantages and limitations using single and dual soliton solutions of the NLS and an
NLS-like equation with a potential used to model the photorefractive lattice solitons and
with saturable nonlinearity.

2. Methodology

2.1. Review of the Spectral Renormalization Method. Self-localized solutions of
many nonlinear systems can be found by various computational techniques such as shoot-
ing, self-consistency and relaxation [6]. Another method known is the Petviashvili’s
method which is based on transforming the governing nonlinear equation into Fourier
space, as in the case of general Fourier spectral schemes [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22], and determining a convergence factor according to the degree of
a single nonlinear term [6, 23]. This method was introduced by Petviashvili and applied
to Kadomtsev-Petviashvili (2D Korteweg de-Vries) equation [23]. Later, it has been de-
veloped and applied to many other systems which model many different phenomena such
as lattice vortices, dark and gray solitons [6, 24]. Since Petviashvili’s method works well
for nonlinearities with fixed homogeneity only, a novel spectral renormalization method
(SRM) is proposed in [6, 25] which is capable of finding the localized solutions in waveg-
uides with different types of nonlinearities. The SRM essentially transforms the governing
equation into Fourier space and couples it to a nonlinear integral equation which is basically
an energy conservation principle for the iterations in the Fourier space [6]. This coupling
makes the initial conditions to converge to the self-localized solutions of the nonlinear
system studied [6]. Also, some alternative methods, such as the pseudo-spectral method
is proposed in order to find convergence factor explicitly from the governing equation, not
by using the nonlinear integral equation [26, 27].

SRM is spectrally efficient, it can be applied to many different physical problems with
different higher-order nonlinearities and is easy to implement [6]. Following [6], we give a
brief review of the SRM considering a 1D NLS-like equation as

iζz + ζxx − V (x)ζ +N(|ζ|2)ζ = 0 (1)
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where z is the propagation direction of optical pulse, x is the transverse coordinate, i
denotes the imaginary number and ζ is complex amplitude of the optical field [6]. Using
the ansatz, ζ(x, z) = η(x, µ)exp(iµz), where µ shows the soliton eigenvalue, the NLS-like
equation becomes

−µη + ηxx − V (x)η +N(|η|2)η = 0 (2)

Furthermore the 1D Fourier transform of η can be obtained by

η̂(k) = F [η(x)] =

∫ +∞

−∞
η(x) exp[i(kx)]dx (3)

For a zero optical potential, V = 0, the 1D Fourier transform of Eq. (2) yields

η̂(k) =
F
[
N(|η|2 η)

]
µ+ |k|2

(4)

This formula may be applied iteratively to find the self-localized solutions of the system
studied, as first proposed by Petviashvili in [23]. However iterations of Eq. (3) may grow
unboundedly or may tend to zero [6]. As proposed in [6], this problem can be solved by
introducing a new variable in the form η(x) = αξ(x) which has a 1D Fourier transform

η̂(k) = αξ̂(k). With these substitutions, Eq. (4) becomes

ξ̂(k) =
F
[
N(|α|2 |ξ|2)ξ

]
µ+ |k|2

= Rα[ξ̂(k)] (5)

and thus the iteration scheme is given as

ξ̂j+1(k) =
F
[
N(|αj |2 |ξj |2)ξj

]
µ+ |k|2

(6)

For the normalization part of the SRM, an algebraic condition on the parameter α can be
obtained using the energy conservation principle. Multiplying both sides of Eq. (5) with

the complex conjugate of ξ̂(k), which is ξ̂∗(k), and integrating to evaluate the total energy,
the algebraic condition becomes∫ +∞

−∞

∣∣∣ξ̂(k)
∣∣∣2 dk =

∫ +∞

−∞
ξ̂∗(k)Rα[ξ̂(k)]dk (7)

which is the normalization constraint that ensures the scheme to converge to a stable self-
localized state, solitons. The procedure of obtaining self-localized solutions of a nonlinear
system by the coupled equation analysis reviewed and summarized above is known as the
spectral renormalization method (SRM) [6]. Starting with an initial condition in the form
of a single or multi-Gaussians, Eq. (4) is applied to find the profile for next iteration step,
then the normalization constraint given by Eq. (7) is applied. Iterations can be continued
until the convergence of α is achieved.

Nonzero potentials (V 6= 0) are widely accepted as models for various optical media
such as nondefected or defected photonic crystals. Adding and substracting a pη term
with p > 0 from Eq. (2) in order to avoid singularity of the scheme [6], the 1D Fourier
transform of Eq. (2) becomes

η̂(k) =
(p+ |µ|)η̂
p+ |k|2

−
F [V η]− F

[
N(|η|2)η

]
p+ |k|2

(8)

which is the iteration scheme for a nonzero optical potential [6]. In this paper we are
specifically interested in photorefractive solitons of practical use. Therefore, considering
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the 1D versions of the photorefractive solitons first reported in [28], we set the optical

potential as V = Io cos2(x) and the nonlinear term as N(|η|2) = −1/(1 + |η|2). As
before, one can define a new parameter η(x) = αξ(x) and evaluate its Fourier transform

as η̂(k) = αξ̂(k). With these substitutions iteration formula reads

ξ̂j+1(k) =
(p+ |µ|)
p+ |k|2

ξ̂j −
F [V ξj ]

p+ |k|2

+
1

p+ |k|2
F

[
ξj

1 + |αj |2 |ξj |2

]
= Rαj [ξ̂j(k)]

(9)

The algebraic condition of the SRM for nonzero potential case can be attained by mul-

tiplying both sides of Eq. (9) with the complex conjugate of ξ̂(k), which is ξ̂∗(k), and
integrating to evaluate the total energy the normalization constraint becomes∫ +∞

−∞

∣∣∣ξ̂(k)
∣∣∣2 dk =

∫ +∞

−∞
ξ̂∗(k)Rα[ξ̂(k)]dk (10)

As in the case of zero potentials, an initial condition in the form of a single or multi-
Gaussians converges to self-localized states of the model equation when Eq. (9) is applied
to find the profile for next iteration step and then the normalization constraint given
by Eq. (10) is applied. Iterations can be continued until the convergence of α with a
specified upper bound is achieved. A detailed discussion and application of SRM to 2D
and second-harmonic generation problems can be seen in [6].

2.2. Review of the Compressive Sampling. Compressive sampling (CS) is an efficient
sampling technique which exploits the sparsity of the signal for its reconstruction by using
far fewer samples than the requirements of the Shannon-Nyquist sampling theorem [29, 30].
Since its introduction to the scientific community, CS has been intensively studied as a
mathematical tool in applied mathematics and physics and currently sampling in various
engineering devices such as the single pixel video cameras and efficient A-D converters is
performed using CS. We give a very brief summary of the CS in this section and refer the
reader to [29, 30] for a comprehensive analysis.

Let ζ be a K-sparse signal with N elements. This means that only K of the N elements
of ζ are nonzero. Using orthonormal basis transformations with transformation a matrix
Ψ, ζ can be represented in transformed domain in terms of the basis functions. Typical
orthogonal transformations used in the literature include but are not limited to Fourier,
wavelet or discrete cosine transforms (DCT). Using the orthogonal transformation it is

possible to express the signal as ζ = Ψζ̂ where ζ̂ is the coefficient vector. Discarding the

zero coefficients and keeping the non-zero coefficients of ζ, one can obtain ζs = Ψζ̂s where
ζs denotes the signal with non-zero entries.

CS algorithm states that a K-sparse signal ζ which has N elements can exactly be
reconstructed from M ≥ Cµ2(Φ,Ψ)K log (N) measurements with a very high probability.
In here C is a positive constant and µ2(Φ,Ψ) is the mutual coherence between the sensing
Φ and transform bases Ψ [29, 30]. Taking M projections randomly and using the sensing
matrix Φ the sampled signal can be written as g = Φζ. Therefore the CS problem can be
rewritten as

min
∥∥∥ζ̂∥∥∥

l1
under constraint g = ΦΨζ̂ (11)

where
∥∥∥ζ̂∥∥∥

l1
=
∑

i

∣∣∣ζ̂i∣∣∣. Therefore among all signals that satisfy the given constraints

above, the l1 minimization solution of the CS problem is ζCS = Ψζ̂. l1 minimization is
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only one of the tools that can be used for finding the solution of this optimization problem.
The sparse signals can also be recovered using other optimization techniques such as the
re-weighted l1 minimization or greedy pursuit algorithms [29, 30]. Details of the CS can
be seen in [29, 30].

2.3. Proposed Compressive Spectral Renormalization Method. In a classical SRM
let N be the number of the spectral components used to represent a self-localized solution
of an evolution equation(s). First we select M spectral components at random, where
M < N , and apply SRM for those M components. The random selection of the number
M needs to be done carefully depending on width of the K-sparse self-localized state since
M needs to satisfy the M = O(K log(N/K)) condition of the CS. Starting from the initial
conditions, iterations are performed for obtaining the convergent self-localized states for
M components. After the converge criteria is achieved for M components, N component
signal is reconstructed from M components by using the l1 minimization technique of the
CS. This method can be named as compressive spectral renormalization (CSRM) method.
The advantage of the CSRM is that, it is capable of finding the sparse self-localized states
of the evolution equation(s) with N −M spectral data missing. In practice, for example
in a typical photonic crystal, only few of the spectral data would be expected to be lost, if
any, during the propagation of the optical pulse. In that case, CSRM would be used to find
the self-localized states of the system with the same accuracy of the SRM. Also one can
intentionally undersample the sparse optical signal with monochromators are only used
for selected components, but the accurate self-localized state can still be reconstructed
using CSRM using only those selected components. It is possible to make the selection
of M components deterministically as well, but in that case CS solution would produce
some replicated patterns in the solution which need to be filtered in that case [31].

A similar procedure based on CS which exploits the sparsity of the simulated signal
is proposed for general spectral schemes in [31, 32, 33, 34]. In these works, the main
advantage of using CS in a spectral scheme is to improve the numerical simulation time and
computer memory requirements of the sparse signals. CSRM can also be computationally
advantageous depending on how large N −M is and the number of iteration steps needed
to obtain a convergent solution but for a more general SRM this advantage would be more
clear. If the ansatz ζ(x, z) = η(x, µ)exp(iµ(z)z), where µ(z) shows a propagation distance
dependent soliton eigenvalue, would be used, then finding the self-localized state at any
z would be necessary and thus CSRM would also be computationally very advantageous
while there is negligible accuracy difference between CSRM and SRM.

Although sparsity property of the self-localized states of the model NLS-like equation
in the physical domain is used and random selection of M components are done in Fourier
space, for a state which is sparse in Fourier domain random samples can be taken in the
physical domain and the CSRM can be applied in a pseudospectral manner. Additionally
the CSRM method can be extended to other spectral methods, such as wavelets, DCTs,
Chebyshev and Legendre polynomials, just to name a few.

3. Results and Discussion

3.1. Single and Dual Soliton Solutions of the NLS Equation for Zero Optical
Potential. It is well known that NLS equation, which can be obtained by setting V = 0
and N(|ζ|2) = |ζ|2 in Eq. (1), admits single and dual humped soliton solutions in the form
of sech functions. In this section we assess the accuracy and advantages of the proposed
CSRM using these single and dual soliton solutions. The parameters of the computations
are selected as p = 10, µ = 0.8.
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In Figure 1, the N = 1024 component SRM and M = 256 component CSRM are
compared with the exact single soliton solution of the NLS equation. The initial condition
for this simulation is simply a Gaussian in the form of exp (−x2). The convergence is
defined as the normalized change of α is less than 10−15. Both the SRM and CSRM
converge to the exact single sech type soliton solution within few iteration steps. Both of
the SRM and CSRM are in excellent agreement with the exact solution as it can be seen in
the figure. The normalized root-mean-square error calculated using the exact single sech
type solution and CSRM solution is 7.74× 10−5 in the physical domain and is 7.70× 10−5

in the Fourier domain. The two methods are in excellent agreement as it can be seen in
Figure 1 while CSRM is more advantageous against missing spectral data since it uses
only M = 256 components.
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Figure 1. Comparison of exact, N = 1024 component SRM and M = 256
component CSRM solutions for a) single soliton b) their spectra

In Figure 2, the N = 512 component SRM and M = 64 component CSRM are compared
with the exact single soliton solution of the NLS equation. The initial condition for this
simulation is again a Gaussian. As before, the convergence is defined as the normalized
change of α to be less than 10−15 and both the SRM and CSRM converge to the exact
single sech type soliton solution within few iteration steps. Both of the SRM and CSRM
are in good agreement with the exact solution as shown in figure. The normalized root-
mean-square error for this case, which is calculated using the exact single sech type solution
and CSRM solution, is 1.42×10−2 in the physical domain and is 2.00×10−2 in the Fourier
domain. Compared to the results of the previous case depicted in Figure 1, error slightly
increases due to increased undersampling ratio (N/M). The two methods are in good
agreement as it can be seen in Figure 2 while CSRM is again more advantageous and
robust against missing spectral data than the SRM since it uses only M = 64 components
for the reconstruction of the self-localized state in the form of single soliton.
N = 512 component SRM and M = 128 component CSRM are compared with the dual

soliton solution of the NLS in Figure 3. The initial condition for this simulation is simply
superposition of two Gaussians in the form of exp (−(x− x0)2) + exp (−(x− x1)2) where
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Figure 2. Comparison of exact, N = 512 component SRM and M = 64 com-
ponent CSRM solutions for a) single soliton b) their spectra
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Figure 3. Comparison of exact, N = 512 component SRM and M = 128 com-
ponent CSRM solutions for a) dual soliton b) their spectra

−x0 = x1 = 10. The convergence for dual soliton simulations is defined as the normalized
change of α to be less than 10−5, since a smaller error bound may lead to single soliton
solution. Both the SRM and CSRM converges to the exact dual sech type soliton solution
within few iteration steps. Both of the methods are in excellent agreement as it can be
seen in the figure. The normalized root-mean-square error calculated using the exact single
sech type solution and CSRM solution is 1.55× 10−4 in physical domain and 5.45× 10−5



432 TWMS J. APP. ENG. MATH. V.8, N.2, 2018

in the Fourier domain. Compared to the case with same N and M depicted in Figure 1,
the slight increase in the error is due to dual soliton profile is wider than single soliton
profile, thus has less zero entries which starts to violate the sparsity condition of the CS.

We compare the N = 512 component SRM and the M = 64 component CSRM with
the exact dual soliton solution of the NLS in Figure 4. The initial condition for this
simulation is again superposition of two Gaussians with unit amplitudes located at −10
and 10. As before, the upper bound for the convergence criteria of α is selected as 10−5.
Both the SRM and CSRM converges to the exact dual sech type soliton solution within few
iteration steps. For this case, the normalized root-mean-square error calculated using the
exact dual sech type soliton solution and CSRM solution is 1.32×10−2 in physical domain
and 4.60 × 10−3 in the Fourier domain. The two methods are in acceptable agreement
as it can be seen in the figure. Compared to the case with same N and M depicted in
Figure 3, the increase in the error is due to the dual soliton profile that has less zero values
compared to single soliton, which causes the sparsity condition of the CS to be violated.
It is natural to expect that with higher undersampling ratios (i.e. more missing spectral
data), the error will increase and CSRM may eventually fail. However the capability of
CSRM to capture self-localized solutions despite these large undersampling ratios shows
that it can be a very useful method in evaluating self-localized solutions in many systems
with missing spectral data.
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Figure 4. Comparison of exact, N = 512 component SRM and M = 64 com-
ponent CSRM solutions for a) dual solitons b) their spectra

3.2. Single and Dual Soliton Solutions of NLS-like Equation for Nonzero Op-
tical Potential. Turning our attention to the NLS-like equation given in Eq. (1) for a

nonzero optical potential of V = Io cos2(x) and the nonlinear term given as N(|η|2) =

−1/(1 + |η|2) which are used in practice [28], the iteration formula becomes Eq. (9). In
this iteration formula the parameters are selected as I0 = 1, p = 10, µ = 0.8.

In Figure 5, N = 512 component SRM and M = 128 component CSRM solutions are
compared with each other. The initial condition for this simulation is simply a Gaussian
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in the form of exp (−x2). The convergence is defined as the normalized change of αto be
less than 10−15. Both the SRM and CSRM converge to the solution shown in Figure 5
within few iteration steps. The SRM and CSRM solutions are in excellent agreement as
one can see in the figure. The normalized root-mean-square difference calculated using the
SRM solution and CSRM solution is 2.47×10−4 in the physical domain and is 1.14×10−4

in the Fourier domain. The accuracy difference is of negligible importance but the CSRM
is more advantageous and robust against missing spectral data since it uses only M = 128
components for the reconstruction of the single soliton solution.
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Figure 5. Comparison of N = 512 component SRM and M = 128 component
CSRM solutions for a) single soliton b) their spectra

In Figure 6, N = 1024 component SRM and M = 128 component CSRM solutions are
compared with each other. The initial condition for this simulation is simply a Gaussian.
The convergence is defined as the normalized change of α to be less than 10−15. Both the
SRM and CSRM converge to the solution shown in Figure 6 within few iteration steps.
The SRM and CSRM solutions are in excellent agreement as one can see in the figure.
The normalized root-mean-square difference calculated using the SRM solution and CSRM
solution is 2.48 × 10−4 in the physical domain and is 8.12 × 10−5 in the Fourier domain.
The accuracy difference is of negligible importance but the CSRM is more advantageous
and robust against missing spectral data since it uses only M = 128 components for the
reconstruction of the single soliton solution.

In Figure 7, N = 512 component SRM and M = 128 component CSRM solutions are
compared with each other. The initial condition for this simulation is simply superposition
of two Gaussian in the form of exp (−(x− x0)2) + exp (−(x− x1)2) where −x0 = x1 = 10.
The convergence for criteria for dual soliton simulations is selected as the normalized
change of α to be less than 10−5, since a smaller error bound may lead to single soliton
solution. Both the SRM and CSRM converge to the solution shown in Figure 7 after few
iterations. The SRM and CSRM solutions are in good agreement as depicted in the figure.
The normalized root-mean-square difference calculated using the SRM solution and CSRM
solution is 4.27 × 10−4 in the physical domain and is 9.91 × 10−5 in the Fourier domain.
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Figure 6. Comparison of N = 1024 component SRM and M = 128 component
CSRM solutions for a) single soliton b) their spectra

−50 0 50
0

1

2

3

x

A
m

pl
itu

de

SRM Solution
CSRM Solution

−15 −10 −5 0 5 10 15
0

0.1

0.2

k

S
pe

ct
ra

l a
m

pl
itu

de SRM Solution
CSRM Solution

Figure 7. Comparison of N = 512 component SRM and M = 128 component
CSRM solutions for a) dual soliton b) their spectra

The accuracy difference is of negligible importance but the CSRM is more advantageous
and robust against missing spectral data since it uses only M = 128 components for the
reconstruction of the single soliton solution.

For the last assessment, we compare the N = 512 component SRM and the M =
64 component CSRM solutions of the NLS-like equation with a self focusing saturable
nonlinearity in Figure 8. The initial condition for this simulation is again superpositions
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Figure 8. Comparison of N = 512 component SRM and M = 64 component
CSRM solutions for a) dual soliton b) their spectra

two Gaussian with unit amplitudes located at −10 and 10. As before, the upper bound
for the convergence criteria of α is selected as 10−5. Both the SRM and CSRM converges
to the depicted solution after few iteration steps. For this case, the normalized root-mean-
square difference using the SRM and the CSRM solutions is 4.80×10−3 in physical domain
and 1.40 × 10−3 in the Fourier domain. The two methods are in acceptable agreement
as it can be seen in the figure. Compared to the previous cases, the increase in the error
is due to the less number of zeros in the wider dual soliton profile compared to single
soliton, which causes the sparsity condition of the CS to be violated. The potential term
has also an effect on the violation of CS since it affects the soltion shapes. It is natural to
expect that with higher undersampling ratios (i.e. more missing spectral data), the error
will increase and CSRM may eventually fail as discussed before for the case depicted in
Figure 4. However the capability of CSRM to capture self-localized solutions despite these
large undersampling ratios shows that CSRM can be a very useful method in evaluating
self-localized solutions in many systems with missing spectral data. This method can
also be generalized to many other nonlinear system of equations used to describe many
different physical phenomena and can also be applied to other periodic or nonperiodic
domain spectral methods for evaluating computational solutions under missing spectral
or pseudospectral data.

4. Conclusion and Future Work

In this paper we have proposed a novel numerical scheme for finding the sparse self-
localized states of a nonlinear system of equations when there is missing spectral data. The
method utilizes far fewer number of spectral components (M) than classical versions of the
Petviashivili’s method or spectral renormalization method with higher number of spectral
components (N). After the converge criteria is achieved for M components, the signal
with N components can be reconstructed from M components by the l1 minimization
technique of the compressive sampling. This method can be named as the compressive
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spectral renormalization (CSRM) method. Compared to SRM, the main advantage of
the CSRM is that, it is capable of finding the sparse self-localized states of the evolution
equation(s) with far fewer spectral data. For example for fiber optical communications,
where some data is lost during the propagation of the optical pulse or considering memory
and time constraints they may be intentionally ignored, CSRM can be used to find self
localized states of the system of equations studied. CSRM can also be computationally
advantageous depending on how large N −M is and the number of iteration steps needed
to obtain a convergent solution but for a more general extension of SRM, where soliton
eigenvalue depends of propagation distance, this advantage would be more clear. For
such a case application of SRM at each along fiber point would be necessary thus CSRM
would also be computationally very advantageous while there would be negligible accuracy
difference between CSRM and SRM.

There are some sparse FFT algorithms well developed and used in the literature. As
a future work it is possible to implement these sparse fast transforms for computational
modeling of the sparse signals and provide a comparison with the CSRM. The sequential,
parallel or distributed algorithms can be used for this purpose. The CSRM can also
be incorporated for other type of spectral methods such as those where the wavelets,
DCTs, Legendre, Chebyshev and other forms of basis functions are used for computational
simulations.
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