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HIGHER ORDER PERTURBATION EXPANSION FOR ION-ACOUSTIC

SOLITARY WAVES WITH Q-NONEXTENSIVE NONTHERMAL

VELOCITY DISTRIBUTION

H. DEMIRAY1, §

Abstract. The basic nonlinear equations describing the dynamics of a two component
plasma consisting of cold positive ions and electrons obeying hybrid q- nonextensive non-
thermal velocity distribution are examined through the use of modified PLK formalism
and the reductive perturbation method and obtained the KdV equation for the lowest
order term in the perturbation expansion. The method is further extended to include
the contribution of higher order terms in the expansion; the evolution equation for the
second order term is found to be the degenerate(linearized) KdV equation with non-
homogeneous term. Seekink the localized travelling wave solution (solitons) to these
evolution equations we obtained the speed correction terms and the wave profiles. Nu-
merical results for the set of suitable parameters( Williams et. al. [23]) are shown inb
the form of some graphs. The combined effect of nonextensive parameter (q) and the
nonthermal parameter (α ) on the soliton dynamics has also been studied.
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1. Introduction

Solitons are localized pulse shaped stable nonlinear entities which arise as a manifes-
tation of balance between the nonlinearity and dispersion. Washimi and Taniuti [1] were
the first to use the reductive perturbation method to derive the Korteweg-deVries(KdV)
equation for ion-acoustic solitons(IASs) in plasma. Early investigations on IASs were
based on the particle distribution obeying Maxwellian distribution. Such distributions are
believed to be valid universally for the macroscopic ergodic equilibrium systems. However,
it is now well established that the space and laboratory plasmas indicate the presence of
energetic particles in tailed- particle distribution. Different models proposed to describe
this phenomenon manifest themselves by influencing wave dynamics through modification
of the particle distribution. Thus, electron and ion distributions play a crucial role in
characterizing the physics of nonlinear waves [2]. Observations made by Viking space-
craft [3] and Freja satellite [4] showed the significance of electrostatic solitary structures
in magetosphere with density depletion. To explain these observations Cairns et al. [5]
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introduced a distribution to model enhanced high energy tails in terms of a parameter α,
which measures the deviation from the Maxwellian distribution function. It was shown
that, the nature of ion sound solitary structure may change in the presence of nonthermal
electrons.

In another development, there have been growing interest to study nonextensive sta-
tistical mechanics based on the deviations of the Boltzmann-Gibbs-Shannon (BGS) en-
tropic measures. It is to be pointed out that the system with long range interactions,
long range memory and intrinsic inhomogeneity are intractable within the framework of
BGS statistics. As is known, the plasma systems far away from equilibrium with power
law distribution, can be studied within the framework of nonextensive statistics initiated
by Tsallis [6] as a generalization of BGS statistics. A crucial property of this entroy is
pseudo-additivity such that

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B)

for the systems A and B. It may be mentioned that nonlocality or long range interactions
are introduced by the multiplicative term accounting for correlation between the subsys-
tems. The index q that underpins the generalized Tsallis entropy is connected to the
dynamics of the system and measures the amount of its nonextensivity. Tsallis entropy
has been used with some success in a number of research work in plasma physics( see,
for instance [7, 8]). Recently, Tribeche et al.[9] extended the work Cairn et al.[5] and
proposed a hybrid Cairn-Tsallis distribution. This distribution is suitable to provide a
better fit over a wide range of the space observations due to two parameter representation
as well as the flexibility of the nonextensive q- parameter. Amour et al. [10] applied this
hybrid model to study the electron-acoustic solitary waves in plasma and showed that this
model did not support the compressive electron-acoustic soliton. Recently, Wang et al.
[11] used this model to study solitary waves and rogue waves. From the study of modu-
lational instability, they found that the electron-acoustic solitary waves can exist in such
a plasma. It was further shown that the regions of existence and amplitude of solitary
waves and rogue waves are effected by the nonextensive parameter q and the nonthermal
parameter α. More recently, Bouzit et al.[12] studied ion-acoustic waves in a mixed nonex-
tensive high energy -tail electron distribution. They investigated the effect of an interplay
between nonthermality and nonextensivity on ion-acoustic soliton nature and associated
rogue waves. They further observed that that, ion-acoustic soliton exhibits compression or
rarefaction depending on the nonextensivity and nonthermality of modulational instabil-
ity of ion-acoustic waves, Bouzit et al. [13] employed Cairns -Tsallis velocity distribution
and observed that both nonthermal and nonextensive parameters affect the domains of
instabilities.

As is known, in solving the nonlinear evolution equations through the use of reductive
perturbation method the lowest order term in the perturbation expansion is character-
ized by the Korteweg-deVries(KdV) equation. As the amplitude of the wave increases,
the width and velocity of a soliton deviates from from the one predicted by the KdV
model. Ikezi et al.[14] and Ikezi[15] claimed that the experimental data for ion-acoustic
solitary waves (IASWs) do not fit well for the soliton solution obtained from the KdV
equations. To improve the accuracy of the solution the modications in the theory have
been suggested by Kato et al.[16]. To study the higher order terms in the perturbation
expansion, the use of reductive perturbation method (Taniuti[17]) lead to the secularity
in the solution which can be removed by introducing some additional slow scale variables
( Sugimoto and Kakutani[18] or by the re-normalization procedure by Kodama and Taniuti[19].
The re-normalization method is rather heuristic and criticized by several scientists ( see,
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Malfliet and Wieers [20]; Demiray [21, 22]). To eliminate such secularities in the solution,
Demiray [21] presented a method so called ”the modified reductive perturbation method”,
which is based on the idea that the higher order nonlinearities should be balanced by higher
order dispersive effects. The detail of the method can be found in the above references.

In the present work, using the basic nonlinear equations of a two component plasma
consisting of cold positive ions and electrons obeying hybrid q- nonextensive nonthermal
velocity distribution, we studied the propagation of small but finite amplitude waves in
such a medium through the use of modified PLK formalism and the reductive perturbation
method and obtained the KdV equation for the lowest order term in the perturbation
expansion. The method is further extended to include the contribution of higher order
terms in the expansion; the evolution equation for the second order term is found to
be the degenerate(linearized) KdV equation with non-homogeneous term. Seeking the
localized travelling wave solution (solitons) to these evolution equations we obtained the
speed correction terms and the wave profiles. Numerical results for the set of suitable
parameters( Williams et. al. [23]) are shown inb the form of some graphs. The combined
effect of nonextensive parameter (q) and the nonthermal parameter (α ) on the soliton
dynamics has also been studied.

2. Basic Field Equations

We consider a homogeneous, collisionless, unmagnetized plasma consisting of cold pos-
itive ions with electrons obeying q-nonextensive nonthermal velocity distribution. The
dynamics of such system may be described by the set of normalized equations[23],

∂ni
∂t

+
∂

∂x
(uni) = 0, (1)

∂u

∂t
+ u

∂u

∂x
+
∂φ

∂x
= 0, (2)

∂2φ

∂x2
= ne − ni, (3)

where ni and ne are the normalized ion and electron number densities, u is the fluid velocity
of ions and φ is the electrostatic potential, respectively. The normalized q-nonextensive
nonthermal electron density profile is given by [9]

ne = [1 + (q − 1)φ]
q+1

2(q−1) (1 +G1φ+G2φ
2), (4)

where the parameter q, called the nonextensive parameter, stands for the strength of
nonextensive system and the coefficients G1 and G2 are defined by

G1 = −16qα/(3− 14q + 15q2 + 12α), G2 = −(2q − 1)G1. (5)

Here α is a parameter determining the number of nonthermal electrons in the model. The
range and the validity of ( q, α) for solitons are discussed by Williams et. al. [23]. In
the extensive limiting case (q → 1) and α = 0, the above distribution reduces to the
well-known Maxwell- Boltzmann velocity distribution. For ( q → 1 ) and α 6= 0, the above
distribution reduces to Cairn distribution [5].

For small φ, by expanding (4) into a power series, the electron number density ne may
be expressed by

ne = 1 + d1φ+ d2φ
2 + d3φ

3 + ... , (6)
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where the coefficients d1, d2, d3,

are defined by

d1 = G1 +
q + 1

2
, d2 = G2 +G1(

q + 1

2
) +

(q + 1)(3− q)
8

,

d3 =
(q + 1)(3− q)(5− 3q)

48
+G1

(q + 1)(3− q)
8

+G2
(q + 1)

2
. (7)

The equations (1)-(3) and (6) will be used as we study the solitary waves of small- but
finite amplitude.

3. Modified PLK Formalism

When the classical reductive perturbation method ( Washimi and Taniuti [1]) is applied
to study the higher order perturbation expansion it leads to the secularity in the progressive
wave solution ( Sugimoto and Kakutani [18]). To remove such secularities Demiray [21]
presented the modified reductive perturbation method, which is mainly based on the
balance between the higher order nonlinearities and higher order dispersive effects.

In the present work, we shall show that the modified form of extended PLK method
can efficiently used to study the effects of higher order perturbation expansion. For that
purpose we introduce the following strained coordinates

ε1/2(x− λt) = ξ + p(τ), τ = ε3/2t, (8)

where ε is the smallness parameter measuring the weakness of nonlinearity, λ is a parameter
to be determined from the solution, and p(τ) is an unknown function characterizing the
higher order dispersive effects. Introducing (8) into (1)-(3) and (6) the following equations
are obtained:

−(λ+ ε
dp

dτ
)
∂ni
∂ξ

+ ε
∂ni
∂τ

+
∂

∂ξ
(niu) = 0, (9)

−(λ+ ε
dp

dτ
)
∂u

∂ξ
+ ε

∂u

∂τ
+ u

∂u

∂ξ
+
∂φ

∂ξ
= 0, (10)

ε
∂2φ

∂ξ2
= 1 + d1φ+ d2φ

2 + d3φ
3 + ...− ni. (11)

We shall assume that the field quantities ni, u, φ and the unknown function p(τ) can be
expanded into power series in ε as:

ni = 1 + εn
(1)
i + ε2n

(2)
i + ε3n

(3)
i + ...,

u = εu(1) + ε2u(2) + ε3u(3) + ....,

φ = εφ(1) + ε2φ(2) + ε3φ(3) + ....,

p = εp1 + ε2p2 + ε3p3 + ........ . (12)

Introducing the expansion (12) into the field equations (1)-(3) and (6) and setting the
coefficients of like powers of ε equal to zero, the following sets of differential equations are
obtained:

O(ε) equations:

−λ
∂n

(1)
i

∂ξ
+
∂u(1)

∂ξ
= 0, −λ∂u

(1)

∂ξ
+
∂φ(1)

∂ξ
= 0, n

(1)
i = d1φ

(1). (13)
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O(ε2) equations:

−λ
∂n

(2)
i

∂ξ
+
∂u(2)

∂ξ
+
∂n

(1)
i

∂τ
+

∂

∂ξ
[n

(1)
i u(1)] = 0,

−λ∂u
(2)

∂ξ
+
∂φ(2)

∂ξ
+
∂u(1)

∂τ
+

∂

∂ξ
[
u(1)

2

2
] = 0,

n
(2)
i = d1φ

(2) + d2(φ
(1))2 − ∂2φ(1)

∂ξ2
.. (14)

O(ε3) equations:

−λ
∂n

(3)
i

∂ξ
+
∂u(3)

∂ξ
+
∂n

(2)
i

∂τ
− dp1

dτ

∂n
(1)
i

∂ξ
+

∂

∂ξ
[n

(1)
i u(2) + n

(2)
i u(1)] = 0,

−λ∂u
(3)

∂ξ
+
∂φ(3)

∂ξ
+
∂u(2)

∂τ
− dp1

dτ

∂u(1)

∂ξ
+

∂

∂ξ
[u(1)u(2)] = 0,

n
(3)
i = d1φ

(3) + 2d2φ
(1)φ(2) + d3[φ

(1)]3 − ∂2φ(2)

∂ξ2
. (15)

3.1. Solution of the field equations. From the solution of the set (13) one obtains

φ(1) = Φ1(ξ, τ), u(1) = d
1/2
1 Φ1, n

(1)
i = d1Φ1, λ = (d1)

−1/2, (16)

where Φ1(ξ, τ)is an unknown function of its arguments and its evolution equation will be
obtained later.

Introducing (16) into the set (14) we have

−λ
∂n

(2)
i

∂ξ
+
∂u(2)

∂ξ
+ d1

∂Φ1

∂τ
+ d

3/2
1

∂

∂ξ
(Φ2

1) = 0,

−λ∂u
(2)

∂ξ
+
∂φ(2)

∂ξ
+ d

1/2
1

∂Φ1

∂τ
+
d1
2

∂

∂ξ
(Φ2

1) = 0,

n
(2)
i = d1Φ2 + d2Φ1

2 − ∂2Φ1

∂ξ2
.. (17)

The solution of (17) gives

n
(2)
i = d1Φ2 + d2Φ1

2 − ∂2Φ1

∂ξ2
,

u(2) = d1
1/2Φ2 + (

d2

2d1
1/2
− d1

3/2

4
)Φ2

1 −
1

2d1
1/2

∂2Φ1

∂ξ2
, (18)

and
∂Φ1

∂τ
+ µ1Φ1

∂Φ1

∂ξ
+ µ2

∂3Φ1

∂ξ3
= 0. (19)

where the coefficients µ1 and µ2 are defined by

µ1 =
3

2
d
1/2
1 − d2

d
3/2
1

, µ2 =
1

2d
3/2
1

. (20)
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The evolution equation ( 20) is known as the conventional Korteweg-deVrie(KdV) equa-
tion.

To find the solution for O(ε3) equations, we first eliminate u(3) between the first two
equations of (15) and obtain

∂

∂ξ
[φ(3) − λ2n(3)i ] +

∂

∂τ
[u(2) + λn

(2)
i ]− dp1

dτ

∂

∂ξ
[λn

(1)
i + u(1)]

+
∂

∂ξ
[λn

(1)
i u(2) + λn

(2)
i u(1) + u(1)u(2)] = 0. (21)

Inserting the solutions (16) and (18) into (21) we have

∂Φ2

∂τ
+ (

3

2
d
1/2
1 − d2

d
3/2
1

)
∂

∂ξ
(Φ1Φ2) +

1

2d
3/2
1

∂3Φ2

∂ξ3
= R2(Φ1). (22)

where R2(Φ1) is defined by

R2(Φ1) = (
d1
4
− 3

2

d2
d1

)Φ1
∂Φ1

∂τ
+

3

4d1

∂3Φ1

∂ξ2∂τ
+ (

3

2

d3

d1
3/2

+
3

4
d1

3/2 − 3d2

d1
1/2

)Φ2
1

∂Φ1

∂ξ

+
1

d1
1/2

∂

∂ξ
(Φ1

∂2Φ1

∂ξ2
) +

dp1
∂τ

∂Φ1

∂ξ
. (23)

Here the evolution equation (22) is the linearized (degenerate) KdV equation with non-
homogeneous term R2(Φ1).

3.2. Solitary waves. In this sub-section we shall study the propagation of solitary waves
in such a medium. For that purpose, we shall seek a progressive wave solution to the
evolution equations (19) and (22) of the following form

Φi(ξ, τ) = Φi(ζ), ζ = χ(ξ − cτ), i = 1, 2, (24)

where c is the speed of propagation and χ is a constant to be determined from the solution.
Inserting (24) for i = 1 into the evolution equation (19), we have

−cΦ′1 + (
3

2
d
1/2
1 − d2

d
3/2
1

)Φ1Φ1
′ +

χ2

2d
3/2
1

Φ1
′′′ = 0, (25)

where the prime denotes the differentiation of the corresponding quantity with respect to
ζ. Integrating (25) with respect to ζ and utilizing the localization condition, i.e., Φ1 and
its various order derivatives vanish as ζ → ±∞, we obtain

−cΦ1 + (
3

4
d
1/2
1 − d2

2d
3/2
1

)Φ1
2 +

χ2

2d
3/2
1

Φ1
′′ = 0. (26)

This nonlinear ordinary differential equation assumes a solitary wave solution of the form

Φ1 = a sech2ζ, (27)

where a is the constant wave amplitude, c and χ are given by

c = (
d1

1/2

2
− d2

3d1
3/2

)a, χ2 = (
d1

2

4
− d2

6
)a. (28)

To obtain the progressive wave solution to the evolution equation (22), we insert (24) for
i = 2 into (22), integrate the result with respect to ζ and utilize the localization condition
yields the following non-homogeneous differential equation

Φ′′2 + (
12

a
Φ1 − 4)Φ2 = (3

d2
d1
− d1

2
)Φ1

2 − 3
χ2

d1
Φ′′1
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+
1

χ2
(d3 +

d1
3

2
− 2d1d2)Φ1

3 + 2d1Φ1Φ
′′
1 + 2

d1
3/2

χ2

dp1
dτ

Φ1. (29)

Noting the relation

Φ′′1 = 4Φ1 −
6

a
Φ1

2, (30)

the equation (29) can be written as follows:

Φ′′2 + (
12

a
Φ1 − 4)Φ2 = (2

d1
3/2

χ2

dp1
dτ
− 12

χ2

d1
)Φ1 + 12d1Φ1

2 +
1

χ2
(d3 −

5

2
d1

3)Φ1
3. (31)

The term proportional to Φ1 causes secularity (Demiray [22]). In order to remove the
secularity the coefficient of Φ1 must vanish, which yields

dp1
dτ

= 6
χ4

d1
5/2

, or p1 = 6
χ4

d1
5/2

τ. (32)

Here dp1
dτ = 6χ4/d1

5/2 corresponds to the speed correction term of order ε. The remaining
parts of the equation (31) become

Φ2
′′ + (

12

a
Φ1 − 4)Φ2 = 12d1Φ1

2 +
1

χ2
(d3 −

5

2
d1

3)Φ1
3. (33)

The particular solution of this equation may be given as follows:

Φ2 = c1Φ1 + c2Φ1
2, (34)

where the coefficients c1 and c2 are defined by

c1 =
(6d3 − 8d1d2 − 3d1

3)a2

24χ2
, c2 =

(5d1
3 − 2d3)a

16χ2
. (35)

The total solution up to O(ε3) may be given by

φ = εa{[1 + ε
(6d3 − 8d1d2 − 3d1

3)a2

24χ2
]sech2ζ

+ε[
(6d1

3 − 2d3)

16χ2
a2]sech4ζ}+ O(ε3). (36)

with

ζ = ε1/2χ{x− [
1

d1
1/2
− ε( 2χ2

d1
3/2

)− ε2( 6χ4

d1
5/2

)− ..]t}, (37)

where

χ2 = (
d21
4
− d2

6
)a. (38)

3.3. Results and Discussions. In the present work, we studied the propagation of
weakly nonlinear waves in a two component plasma consisting of cold ions and electrons
obeying nonextensive and nonthermal velocity distribution. By applying the modified PLK
formalism and the reductive perturbation method to the basic equations, we obtained a
KdV equation (19) for ion-acoustic solitons to the lowest order term of perturbation. We
analyze numerically the range the range of parameters valid for model to exhibit soliton
behavior( Williams et. al. [23]). The sign of µ1 is important for the characterization of
solitons. The region µ1 < 0 corresponds to the rarefactive solitons whereas µ1 > 0 is for
compressive solitons . The regions of validity of these two types of solitons are depicted
on Fig.1. The transition from compressive to rarefactive solitons occurs with increasing α
for fixed values of q.
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The Fig.2, which characterizes the compressive solitons, displays the lowest order (Φ1),
second order (Φ2) and the dressed solitons Φ = εΦ1 + ε2Φ2 as a function of ζ for the
nonextensive parameter q = 0.8 , the nonthermal parameter α = 0.0 and ε = 0.5, a = 1.
It is seen the wave amplitudes are always positive. The Fig.3, which characterizes the
rarefactive solitons, again displays the lowest order, the second order and the dressed soli-
tons as a function of ζ for the nonextensive parameter q = 0.7, the nonthermal parameter
α = 0.1 and ε = 0.5, a = −1. As is seen from the figure, the amplitude of the lowest order
and the dressed solitons are negative whereas the amplitude of the second order soliton is
positive.

4. Conclusion

In the present work, using the basic nonlinear equations of a two component plasma
consisting of cold positive ions and electrons obeying hybrid q- nonextensive nonthermal
velocity distribution, we studied the propagation of small but finite amplitude waves in
such a medium through the use of modified PLK formalism and the reductive perturbation
method and obtained the KdV equation for the lowest order term in the perturbation
expansion. The method is further extended to include the contribution of higher order
terms in the expansion; the evolution equation for the second order term is found to
be the degenerate(linearized) KdV equation with non-homogeneous term. Seeking the
localized travelling wave solution (solitons) to these evolution equations we obtained the
speed correction terms and the wave profiles. Numerical results for the set of suitable
parameters( Williams et. al. [23]) are shown in the form of some graphs. The combined
effect of nonextensive parameter (q) and the nonthermal parameter (α ) on the soliton
dynamics has also been studied.
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