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ON FUNCTIONAL GENERALIZATION OF OSTROWSKI
INEQUALITY FOR CONFORMABLE FRACTIONAL INTEGRALS

T. TUNC!, H. BUDAK!, M. Z. SARIKAYA', §

ABSTRACT. In this study, we establish a generalized Ostrowski type integral inequality
for conformable fractional integrals. We also give some applications for p-norms and
exponential.
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1. INTRODUCTION

In 1938, Ostrowski established the following interesting integral inequality for differ-
entiable mappings with bounded derivatives [11]. This inequality is well known in the
literature as the Ostrowski inequality.

Theorem 1.1 (Ostrowski inequality). Let f : [a,b] — R be a differentiable mapping on

(a,b) whose derivative f' : (a,b) = R is bounded on (a,b), i.e. | f'||,, == sup |f'(t)| < oo.
te(a,b)

Then, we have the inequality

b x—LH) 2
- [ s <[4+ EE oo W

for all z € [a,b]. The constant % is the best possible.

Ostrowski inequality has applications in numerical integration, probability and opti-
mization theory, stochastic, statistics, information and integral operator theory. Until
now, a large number of research papers and books have been written on generalizations
of Ostrowski inequalities and their numerous applications. One of these generalizations

!Department of Mathematics, Faculty of Science and Arts, Diizce University, Diizce, Turkey.
tubatunc03@gmail.com; ORCID: https://orcid.org/0000-0002-4155-955X.
hsyn.budak@gmail.com; ORCID: https://orcid.org/0000-0001-8843-955X.
sarikayamz@gmail.com; ORCID: https://orcid.org/0000-0002-6165-9242.
§ Manuscript received: January 27, 2017; accepted: April 20, 2017.
TWMS Journal of Applied and Engineering Mathematics, Vol.8, No.2 (© Isik University, Department
of Mathematics, 2018; all rights reserved.
495



496 TWMS J. APP. ENG. MATH. V.8, N.2, 2018

is given by S.S. Dragomir in [5]. In this paper, Dragomir show that if f : [a,b] — R is
absolutely continuous on [a,b] and ® : R — R is convex on R, then

- /f@ﬁ @)

for any x € [a,].

The main aim of our study is to establish the conformable fractional version of the
inequality (2). The remainder of this work is organized as follows: In Section 2, we give
the definitions and properties of the conformable fractional derivatives and integrals. Then,
in Section 3, we present a functional generalization of Ostrowski type integral inequality
for conformable fractional integrals and give some special cases of this inequality. Using
these results, we obtain some inequalities for p-norms and exponential in Section 3 and
Section 4, respectively.

Now, we will introduce the conformable integral and derivative:

2. DEFINITIONS AND PROPERTIES OF CONFORMABLE FRACTIONAL DERIVATIVE AND
INTEGRAL

The following definitions and theorems with respect to conformable fractional derivative
and integral were referred in (see, [1]-[4], [6]-[10], [12]-[17]).

Definition 2.1. (Conformable fractional derivative) Given a function f : [0,00) — R.
Then the “conformable fractional derivative” of f of order « is defined by

Do () 1) = timg L) 20

e—0 )

(3)

forallt >0, a € (0,1). If f is a-differentiable in some (0,a), a > 0, lim+ @) (t) exist,
t—0
then define

F0) = lim £ (). (4)

t—0t

We can write () (t) for Do (f) (t) to denote the conformable fractional derivatives of f
of order .. In addition, if the conformable fractional derivative of f of order « exists,
then we simply say f is a-differentiable.

Theorem 2.1. Let o € (0,1] and f,g be a-differentiable at a point t > 0. Then

i. Do (af +bg) = aDqy (f) 4+ 0Dy (g), for all a,b € R,
it. Do (A) = 0, for all constant functions f (t) = A,
i1i. De (fg) = fDaq (g) +gDq (f) )

/ :fDa(g)_gDa(f)'

w. Dy | = 5
g
If f is differentiable, then

— tl—ag

Do) (t) =%

(t). (5)
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Definition 2.2 (Conformable fractional integral). Let o € (0,1] and 0 < a < b. A function
f i [a,b] = R is a-fractional integrable on [a,b] if the integral

/a f () ot = / f (2) 22 1d (6)

exists and is finite. All a-fractional integrable on [a,b] is indicated by L} ([a,b]).

Remark 2.1.

B -1ty - [ L

where the integral is the usual Riemann improper integral, and o € (0, 1].

Theorem 2.2. Let f: (a,b) — R be differentiable and 0 < o < 1. Then, for all t > a we
have

DS () =f(t) = f(a). (7)
We will also use the following important results, which can be derived from the results
above.

Lemma 2.1. Let the conformable differential operator D be given as in (3), where a €
(0,1] and t > 0, and assume the functions f and g are a-differentiable as needed. Then
i. D*(Int) =t=% fort >0
zzDa[fftsds]—ftt fDO‘ (t,s)] das
iii. [} f(x) D (g) () dox = fgl} — [7 g (x) D* (f) («) daz.
The following lemma and theorem was given by Anderson in [3].

Lemma 2.2 (Montgomery Identity). Leta,b,t,z € R with0 < a < b, and let f : [a,b] = R
be a-fractional differentiable for a € (0,1]. Then

/ (2.6) Do f (1) (8)

where
¥ _ g
Boa® g<t<uw

p(z,t) =

B0t <t < b
(0%

Theorem 2.3 (Jensen inequality). Let a € (0,1] and a,b,z,y € [0,00). Ifw : R - R
and g : R — (x,y) are nonnegative, continuous functions with ffw(t)dat > 0, and F :
(z,y) = R is continuous and convex, then

f g(t f F(g (t)dat )
Iy <>dt N f;’ <t>dat '

Corollary 2.1. Under assumptions of Theorem 2.3 with w(t) =1, we have

F (bafaa /ab (t)da t) <t /abF(g(t))dat. (10)

Throughout the paper we consider the norm || f]][mb]’p, p>1as

1
P

1l = /!f P dot
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Now, we present the main results:

3. GENERALIZED OSTROWSKI TYPE INEQUALITY FOR CONFORMABLE FRACTIONAL
INTEGRALS

Theorem 3.1. Let f : [a,b] — R be a-fractional differentiable for a € (0,1]. If F: R — R
1s conver on R, then we have the following inequality

ba_aa

e (55 e

a

b
Ffz) - -2 /f(t)dat (11)

b

o /F <<ta . ba> Daf(t)> dat

T

for any x € [a,b].
Proof. Using the identity (8), we have

z b
[6% 1% — g% ta_ba
— gt | [ (52 ) pasaat s [ (557) astoriat

a x

% — a® o t* — a®
— D, f(t)dat
ba_aoz .%'O‘—CLO‘/< o ) f()
b

b — z® Q t* —b*
Dy f(t)dat
+ba_aa ba_xa/< Qa ) f()

T

for any = € (a,b).
Since F' is a convex function, we obtain

ba_aa

a _ a % o — q@
S N a /( ¢ >Daf(t)dat
b —a® | ¥ — a® o

ol T p— / F(t)dat (12)
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% — a® o ’ t* — a®
F D, f(t)dat
ba_aa (xaaa/< Qa > f() )

b
ba’ _ (0% ta _ ba
TR — / < ) Daf(t)dot

IN

ba — g by — o «

By using inequality (10), we have

Pl j (ta ;“a> Daf(t)dat | < ——— /:CF ((ta ;“a> Daf(t)> dat (13)

a a

and

b b
o e — o a 1 ho
F oo / < = ) Do f(t)dat | < g /F << = ) Daf(t)> dat. (14)

T

Substituting the inequalities (13) and (14) in (12), we obtain the desired inequality (11).

O
Corollary 3.1. Under assumptions of Theorem 3.1,
i) if ¢ = a, then
b b
Pt -5t [ a0t | < 2 [ ((S22) Daro) dut
it) if © = b, then
b b
FlA0) - /f(t)dat <t /F ((ta ;“a> Daf(t)) dot.
Corollary 3.2. With the assumptions of Theorem 3.1, we have
b b
FO) < o [ (s -t [ et | das (15)

IA
P
<
R
(e
IS}
R
[\
- 1
—
PR
<
2
=~
8
Q
~
e

for any x € [a,b].
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Proof. By using the inequality (10), we have

b b
« «
T /F f(z) — To— /f(t)dat) dox

a

F (bao‘aa/b (f(x) S /bf(t)dat) da:v)

Y

which completes the proof of left-hand side of the inequality (15).
On the other hand, integrating the inequality (11) with respect to x on [a,b], we get

b

< /bF f(x)—baf /f(t)dat do (16)

ba — aq“ a®




T.TUNC ET ALL: ON FUNCTIONAL GENERALIZATION OF OSTROWSKI... 501

and similarly
b b

L, = / /F ((ta;ba> Daf(t)> dot | dox (18)
) (£ )

Substituting the inequalities (17) and (18) in (16), we obtain the right-hand side of the
inequality (15). Therefore, the proof is completed. O

Corollary 3.3. If we write the inequality (11) for the convex function F(z) = |z|P, p > 1,
then we have the inequality

I p— /ﬂWJ (19)

z b
« e _ q& p o _ po p

< Do f(#)P dat Do f(#)P dot

_bmwa/( - )\fU\ +/( . )IfU!

for any x € [a,b].
Using the Hélder inequality for conformable fractional integrals, we get

(20)
1 qo o
/ ( - ) !Daf(t)!pdaH/ ( ) | Do f(t)[P dat
a «
( & —g® +1 . o
]ﬁ ( o )p HDaf”z[)mx},oov Zf Daf S Loo [a, JJ]
1
< v (ze—q%\P+1/Y . o B
- <“/:01—$-1>7 (=5*) HDaf||;E)a7$],pﬁ if Daf € Lygla, 2], v> 1, %+ % -1
(:pa;aa)p ||D01f||2[7a,x],p if Dof € Lg‘ [a,x]
¢ a__ o —+1 . o
i1 () DS, 4y oo if Daf € L% [2,1)
1
v (b= \PTL/Y . o _
9 () 5D Sl s Daf € L3 leb], 7> 1, L+ 5 =1
(555) 1D fIIE, 41, if Dof € LS [2,0].
Using the inequalities (19) and (20) for x € [a,b], we have
b p
a
flz) — o ga ft)dat (21)
« 1 % — g\ Pt pe — g\ PH
< p
< ot |(550) T (55T) T 10es e
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if Dof € L, la,b],

IN

1 1 1
a 1 5 % — @ p-&-; pe — o p-&-;
T ¥ IDaf 2,505
b —a® \yp+1 «a Q OLP

if Daf € Lyga,b] and

b p
o
- t)dat
f@) - oo [ 10
Q & — g p he — @ p
- ba_aamax{( o >7< « )}”Do‘fufa,b]m
ey e
- o s | NN PR

if Dof € L [a,b].

Remark 3.1. If we take p =1 in the above inequalities, then for x € [a,b] we have

1 @ a2 « a\2
P _ _
T 207 —a”) (@ = ) + (0" = 2] 1D f g 100
given by Anderson in [3],
b
a
_ t)dat
f(x) ba_aa/f()
1 141 142
o 1 T ¥ —a” v b — a” 7
< Da ’
and
b
a 1|z = a&;ba
F@) — o [ FOdat] < |5+ T2 ] 1Pe a1

4. APPLICATIONS FOR p-NORMS

Theorem 4.1. Let f : [a,b] — R be a-fractional differentiable for o € (0,1].

(22)



T.TUNC ET ALL: ON FUNCTIONAL GENERALIZATION OF OSTROWSKI...

i. if Dof € L% [a,b], then
b

503

fo gt [ 10t (24)

a [a,b],p

2 % b — g 1+1/p
<
B <(P +2)(p+ 1)) < o > 1 Daf la,p),00 -

ii. if Daf € L% [a,b]

ba — a@

1

1
2 P b -\
< ( T ) ( > 1Dt i, »
(yv+1)7 (p+1+1/7v) @
and

iii. if Dof € L% [a,b]

[a,b].p

1 1
1 \7? /2Pt 1\ 7P [p® — g2
() (5 (25 s,

Proof. Integrating the inequality (21), we have

[|#@)-

a

al

b

« 1 @ — g\ P! b — g\ P
< «a dq
< e IDa Sl /[( ~O) () e

2 b — q& p+1 )
- rae (a) 1D

which gives (24).
Integrating the inequality (22), we have
b

[ |-

a

a 1 b P+% pe — o p+%
< D, do
Tt <7p+1> Mo, 5/ < > +< a > ’

2 b —a
- . (" 0 1D
(vp+1)7(p+1+1/y)

t)dot| dox

(26)
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which completes the proof of (25).
Integrating the inequality (23), we have

b

/f(:n) a /bf(t)datpdax

ba_aa
a

b

« a\ P o a\ P
a » ¢ —a e —
= M”Daf”[a,b],p/mw{( a )( a >}“

a

1
a®+b* )
2

_ a » e — o p % — q® p
= m ||DO¢f||[a,b]’p / < o > dax -+ / < a > dax

a

1 (ot b —a®\" o
T opr1\ a 1Pa Wi

This completes the proof of Theorem. O

5. APPLICATIONS FOR THE EXPONENTIAL
If we write the inequality (11) for the convex function F(z) = exp(z), then we obtain

the following inequality

b

exp | fa) — 2 / F(t)dat (27)

ba_aa
a

o C_l o /exp ((ta ;aa> Daf(t)> dat

b
N e
—i—bafaa/exp(( - )Daf(t)>dat

Theorem 5.1. Let f : [a,b] — (0,00) be a-fractional differentiable for oo € (0,1]. Then
we have the following inequalities

IN

for all x € [a, b] .

f(z)
b
exp (baaaa [In f(t)dat>

i oo ((5) )

(28)
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b o pa
o ((5) %)

b

ff(x)dax

a

and

exp (baf‘aafln f(t)dat>

b

(e (55) )
/ @ —a® x* —b* of (x
(e ((5) )

a

for all x € [a,b].

Proof. In (27), if we replace f by In f, we get

b
exp (ln f(z) — T faa /ln f(t)dat)

a

e [ (55) )

for all z € [a, b] .
Using the fact that

b
exp | In f(x) — ba C_l o /ln f(t)dat)

a

b
= exp |Inf(x)—1In {exp (baaaa /lnf(t)dat) })

f(z) f(x)

= exp|In =

for any = € [a,b], we can obtain the inequality (28).

exp (z)i" fb In f (t)dat> exp (,,i‘a fbln f(t)d@)

505

(29)
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Integrating the both sides of the inequality (28) with respect to = over [a,b], we have

b
f f(l‘)dam

exp (bagaa fbln f(t)dat>

b/ w oo
baaaa/(/exp«t - >D;(];§t))dat) doe

a a

b /b " e
+bafaa/ (/exp((t ab >D}“£§t)>dat> do.

a x

IN

Using integration by parts for conformable fractional integral, we have

(jow(52) 22) )
- e ((75) %) e
(25 B
- o (25 B
,,

() )
/ > —x® x* —a® x
= ) e ((5) ) e

b

and similarly,
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b fe% fe% (e%

e ((557) %) e

:a / £~ 1\ Dof(t)

= 5o ((527) B ) e

b aa o o

# e ((557) %) e

E

- [ ((527) 557 e

Hence, the proof of Theorem is completed. O
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