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MODELING OF COMBINED NATURAL/THERMOCAPILLARY

CONVECTION FLOWS IN GERMANIUM MELT AT HIGH

TEMPERATURES

F. MECHIGHEL1, N. ARMOUR2, S. DOST2, §

Abstract. A mathematical model for the description of combined natural/ thermocap-
illary convection melt flows in cylindrical (3D) geometry is developed. It is utilized to
model germanium melt convective flows in an isothermal experimental crucible setup.
This experimental setup is devised exclusively to study the dissolution phenomenon of
silicon into germanium melt. In this system, the germanium melt is subjected to higher
temperatures. Using a simplified axisymmetric (2D) model, numerical simulations are
carried out to examine the combined natural/thermocapillary flows developing in the ger-
manium melt. Pure thermocapillary and pure natural convective flows are also studied
numerically.

Keywords: Germanium melt, free surface, Marangoni convection, natural (thermal or
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1. Introduction

Silicon germanium (SiGe) is a promising single crystal material which is very valuable in
the electronics and optoelectronics industry mainly in the Heterojunction Bipolar Tran-
sistor HBT technology [1, 2]. In order to produce such crystals several crystal growth
techniques are used [3]. For instance the Czochralski (Cz) [4], Floating zone (Fz) [5],
horizontal boat Bridgman (HB) [6], liquid encapsulated zone melting [7] and the liquid
phase diffusion (LPD) (also recognized as the multicomponent zone melting (MCZM) [8]).

Among these the most important crystal growth techniques containing free surfaces
are the Fz technique and the Cz method. In these techniques, generally, a melting zone
(liquid phase) is slowly solidified as a cylindrical crystal, vertically oriented. For instance
in Fz, the liquid phase between the feed and seed crystals is held by the surface tension.
A free surface tension is also present in Cz. Thus, when a free surface exists in a crystal
growth technique, the thermocapillary (or Marangoni) convection flow develops in the
melt, driven by surface tension, and plays an important role in producing homogeneous
crystals with uniform properties [9, 10].
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Marangoni convection is also present in the experimental setup considered and investi-
gated in the present work [11, 12]. The setup consists of a crucible similar to that used
in the Melt-Replenishment Czochralski and LPD growth systems (schematically shown in
Fig. 1). This experimental setup was exclusively devised to examine the effects of free
surface. Indeed, in order to investigate the effect of free surface on silicon dissolution in
germanium melt two sets of experiments, with a free surface and without a free surface
were developed [12].

Experiments showed that the convective flows developing in the melt play a key role
in the dissolution behavior. In particular, it was shown that the Marangoni convection
had an important effect on the mixing and on the shape of dissolution interface [12].
The experimental results indicate that silicon dissolution from the bottom of the melt
in the presence of a free surface will occur faster and be subject to instability and melt
inhomogeneity. Accordingly, an appropriate numerical study for the combined surface
tension and buoyancy driven convection flows in the germanium melt is important for
a better understanding of the behavior and structure of melt flows in the system. The
knowledge of the behavior of germanium melt flows at high temperatures is also essential
in the growth of SiGe single crystals by other growth techniques [12].

In the present paper the problem of combined natural/thermocapillary convection in a
cylindrical (three-dimensional 3D) geometry with free surface is modeled mathematically.
The emphasis is on the isothermal experimental crucible setup shown in Fig. 1. Indeed, the
model is adapted to model this system. The combined natural/ thermocapillary convection
flows in the Ge melt was investigated by numerical simulations using an axisymmetric
(two-dimensional 2D) model, and in order to provide further insight into the nature of
these melt flows, in the present crucible setup, numerical simulations were also carried out
for thermocapillary convection flows and natural convection independently.

2. General considerations and mathematical model

2.1. Governing equations for the physical problem. Consider the Ge melt system
in the experimental configuration shown in Fig. 1. The melt, initially at the temperature
Tini = 1073K, is maintained in the quartz crucible/ampoule system as shown in Fig.1. In
this system, the ampoule bottom of radius, (r = R = d/2 = 11mm), located at z = 0,
bounds the melt from below in the horizontal plane. The melt is bounded from the sides
(in azimuthal-direction) by the ampoule wall. The horizontal upper boundary is the free
surface of mean surface tension,σ0, and is located at (z = h = 25mm). All the walls of the
crucible/ampoule system are assumed rigid and stationary. By referring to Fig.1, the free
surface is defined as the interface melt/vacuum separating the melt from the vacuum. In
the present study, the vacuum is assumed as a gas with very small viscosity and thermal
diffusivity. Under these conditions the height of the melt is h = 25mm and thus its volume
is Vmelt ≈ 9503mm3. While, the surface of the free surface is Sint = πd2/4 ≈ 380mm2 .

In the experiment, the crucible/ampoule walls are maintained at the constant tem-
perature of Th ≡ TB = 1373K and the heat flux on the upper free surface (interface
melt/vacuum) is set to be zero, q̇ = q̇int = 0, (Fig. 2). Thus the temperature boundary
conditions read as

TB = Th = T0 + ∆T = 1373K for z = 0 (on the ampoule lower wall) (1)

TB = Th = T0 + ∆T = 1373K for r = d/2 (on the crucible lateral wall) (2)

q̇int = 0 for z = h (on the free surface) (3)
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TA = Tc = T0 = Tref = Tmean melt (reference temperature) (4)

where T0 is the reference temperature which can be taken equivalent to that of the cold
wall (TA) or the mean of the hot and cold wall temperatures ((TA + TB)/2). Since in the
present model, the geometry is cylindrical thus T0 is chosen as the mean temperature of
the melt. Moreover, since the melt is under isothermal conditions thus the choice of the
value of T0 should satisfy the Boussinesq approximation (for which ∆T = TB − T0 < 30).

In the system of cylindrical coordinates, x = (r, φ, z)T , the governing equations for the
physical problem (of combined natural/thermocapillaire convection) shown in Fig. 1 are

∇ · u = 0 (5)

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u + gβT (T − T0) (6)

∂T

∂t
+ u · ∇T = α∇2T (7)

where ρ, ν = µ/ρ, g ,βT and α = k/ρcp are the density, kinematic viscosity, gravity,
thermal expansion coefficient and the thermal diffusivity of the melt, respectively (with
cp is the specific heat melt). Furthermore, u = (ur, uφ, uz)

T , p and T are the velocity,
pressure and temperature fields, written in the system of cylindrical coordinates, (r, φ, z),
respectively.

In the derivation of the above so-called Boussinesq-Oberbeck equations, the Boussinesq
approximation is adopted, the flow regime is assumed to be laminar and the melt is
considered as incompressible. Also, neither heat generation (Joule heating) nor absorption
are considered, furthermore, no heat transfer by radiation is assumed. The thermophysical
properties of the germanium melt are assumed constant and compiled from [13, 14]. These
properties are given in Table 11. In addition to the density dependence of temperature,
ρ(T ), which is evidently included in the Boussinesq approximation, the surface tension
dependence of temperature, σ(T ), is also taken into account in the present model. For
the assumption of small temperature variations, the surface tension may be expressed in
terms of T − T0 as:

σ(T ) ≈ σ0(T0)− γ(T − T0) (8)

where σ0(T0) is the mean surface tension of melt at the reference state 0 (as mentioned
earlier) and γ represents the coefficient of temperature: γ = ∂σ/∂T .

2.2. Velocity and temperature boundary conditions.

2.2.1. Velocity boundary conditions. On the rigid crucible/ampoule walls: The Ge melt
under consideration is bounded from below and tangentially (from the side) by the rigid
and stationary walls of the crucible/ampoule system. Thus

u = 0 (9)

On the free surface (interface melt/vacuum): Along the free surface separating the two
immiscible fluids, melt (1) and vacuum gas (2), (see Fig. 2), the forces acting on the
surface adjacent elements, of the fluids (1) and (2) should be balanced. This leads to the
equilibrium:

Forces acting on the surface elements of fluid (1) = Forces acting on the surface elements
of fluid (2)

1Note that the temperature coefficient value is estimated to be 0.104× 10−4 N/m K.
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If the shape (surface) of the free surface is assumed to be planer (plane interface) the
surface tension is constant and the above equilibrium reads as{

−pI + µ
[
∇u + (∇u)T

]}
(1)
· n =

{
−pI + µ

[
∇u + (∇u)T

]}
(2)
· n (10)

where −pI + µ
[
∇u + (∇u)T

]
is the stresses tensor, expressed in terms of the pressure,

p, and the viscous stress, µ
[
∇u + (∇u)T

]
, by the surface unit. In the above equation µ

represents the dynamic viscosity, I is the identity tensor and n is the normal vector unit
oriented out of the melt (Ge) (1) into the ambient gas vacuum (2) (see Fig. 2).

In the case of a curved interface, however, the surface tension varies along the interface
(located on the plane z = ξ(r, φ)) and generally the following equilibrium may be adopted{
−pI + µ

[
∇u + (∇u)T

]}
(1)
·n+{σ(∇ · n)n− t · ∇σ}(1) =

{
−pI + µ

[
∇u + (∇u)T

]}
(2)
·n

(11)
where the first additional term σ(∇ · n) is the Laplace pressure, in which ∇ · n represents
the mean curvature of the interface and the second additional term is the scalar product
of ∇σ and the tangential vector unit t (which is the orthogonal projection of a vector on
radial plane defined by n , see Fig. 2).

Figure 1. Schematic of the experimental setup (left), the simulated ax-
isymmetric (2D) domain (right).

2.2.2. Temperature boundary conditions. On the melt free surface, the temperature should
be continuous. In the case where the ambient temperature distribution, Tamb, in the
region near the interface, is not unknown, the Newton law is used. In the presence of
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Figure 2. Typical representation of boundary and interface conditions:
the thermal boundary conditions imposed on the system (left) and the free
surface separating two immiscible fluids: the Ge melt (1) and the vacuum
which assumed as a gas (2) (right).

an interface, separating two immiscible fluids, and in the case where the radiation heat
transfer is neglected, the Newton law reads as

kn · ∇T = −hconv(T − Tamb) = −hconv(Tint − Tamb) (across the interface) (12)

where hconv is the convection heat transfer coefficient. The equation (9) describes the
heat flux by conduction ”kn · ∇T”, through the interface, to the heat flux by convection
”hconv(Tint−Tamb)”, expressed in terms of the temperature of the interface surface ”Tint”
and the ambient temperature, Tamb, given at a certain distance, x, from the interface.
Here Tambx represents, thus, the temperature at the reference state ambient denoted by
”amb” (that of the external medium ”i.e. the gas (vacuum) (2)”). Following the value of
hconv two limits can be presented: The first is the limit when hconv → ∞, the external
temperature Tamb should be imposed on the melt free surface,

T ≡ Tint = Tamb (Dirichlet condition) (13)

this is a good approximation if the thermal diffusivity of the external medium ”gas” is
much higher than the melt, [9]. The present problem is not concerned by such an interface
boundary condition since it was assumed that the vacuum is a gas with neglected thermal
diffusivity. The second limit is when hconv → 0 thus:

kn · ∇T = 0 (Neumann condition) (14)
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Table 1. Thermophysical properties of the Germanium melt [13, 14].

Property Value
Thermal conductivity, k[W/Ccm] 0.39
Density, ρ[g/cm3] 5.5
Specific heat, cp[J/Cg] 0.39
Kinematic viscosity, ν[cm2/s] 0.0013
Thermal expansion coefficient, βT [C−1] 1× 10−4

The equation (14), adopted for the experimental crucible setup shown in Fig.1, describes
an interface adiabatic and thus justifies the boundary condition used in the experimental
work that the flux on the interface is set to be zero (as mentioned earlier).

2.3. Dimensionless equations. For the physical problem shown in Fig.1, the follow-
ing characteristic scales are adopted: d for the length2, d2/ν for the time, γ∆Td2/ρν
for the velocity, γ∆Td2/d for the pressure and ∆T for the temperature. Thus, both the
independent dimensionless variables (R,Φ, Z and τ) and the dependent dimensionless vari-
ables (Ur, Uφ, Uz, P and Θ) are given as R = r/d,Φ = φ/d, Z = z/d, τ = t/(d2/ν), Ur =
ur/(γ∆Td2/ρν), Uφ = uφ/(γ∆Td2/ρν), Uz = uz/(γ∆Td2/ρν), P = p/(γ∆T/d) and Θ =

(T − T0)/∆T , where U = (Ur, Uφ, Uz)
T , P , and Θ are the dimensionless velocity, pressure

and temperature fields, respectively. Thus, the above governing equations in dimensionless
forms read as

∇ ·U = 0 (15)

∂U

∂τ
+ReU · ∇U = −∇P +∇2U + (Gr/Re) Θez (16)

∂Θ

∂τ
+ U · ∇Θ = (1/Pr)∇2Θ (17)

where the dimensionless numbers Re = γ∆Td/ρν2, Gr = gβT∆Td3/ν2, Pr = ν/α =
0.0075 and Bd = Gr/Re characterizing the combined natural/Marangoni convection in
the cylindrical (3D) geometry, shown in Fig.1, are given in Table 2. Furthermore, the
present configuration geometry (3D) is characterized by the aspect ratio: Γ3D = h/d =
25/22 = 1.14 ≈ 1.

Table 2. The dimensionless numbers characterizing the problem of com-
bined natural/Marangoni convection flows.

Re Gr Bd = Gr/Re Ra Ma
2.46× 103∆T 7.4× 105∆T 300 5.55× 103∆T 18.45∆T

2.4. Dimensionless velocity and temperature boundary conditions. By referring
to the figure 2 and the above characteristic scales, the dimensionless boundary conditions
associated with the present model are as follows.

2Generally, the height of the melt is taken as the characteristic length for the problem of pure natural
convection. In the present problem (combined convection), however, the interface length (diameter) is
taken as the characteristic length.
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2.4.1. On the rigid crucible/ampoule walls. The velocity and temperature boundary con-
ditions on the rigid and isotherms crucible/ampoule walls, located at Z = 0 (on the
ampoule lower wall) and R = R/d = 1/2 (on the crucible radial wall), respectively, read
as

U = 0,Θ = 0 forZ = 0 andR = 1/2 (18)

Velocity boundary conditions. If the shape of the interface, located on the axial plane
given by Z = Ξ(R,Φ), is assumed to be curved, the stress balance on the interface may
be obtained by the non-dimensionalization and simple projection of the equation (11) on
the (R,Φ, Z) directions. Moreover, in the case of the presence of buoyancy ”Gr 6= 0”
(as in the present case), the surface deformations, created by the flow, should been taken
into account, and corrections to the Boussinesq-Oberbeck equations should be included in
order to ensure the consistence. Thus, it should be assumed only that the free surface is
stationary, [9]. Therefore, the stresses balance on the interface reads as

t · [∇U + (∇U)T ]n + (t · ∇)Θ = 0 (19)

where t and n represent the dimensionless tangential and normal vector units, respectively.

Temperature boundary conditions. In dimensionless form, the thermal boundary condition,
given by (12), reads as

n · ∇Θ = −Bi[Θ−Θamb] (on the the free surface Θ−Θint) (20)

where Bi = hconvd/k is the Biot number. As mentioned early, instead the equation (12),
the present model is concerned by the equation (14) which, in dimensionless form, reads
as

n · ∇Θ = 0 (on the the free surface) (21)

thus for the present configuration: Bi = 0.

2.4.2. Boundary conditions at the axis of symmetry (applied only for 2D model). The
symmetry boundary conditions are used at the axis of symmetry. For physical finite
results, it is required that the radial velocity component be zero. Thus

U = 0, ∂V/∂R = 0,n · ∇Θ = 0 for R = 0 (22)

3. Numerical resolution

To express convection in a 2D (axisymmetric) configuration as shown in Fig. 1, the
equations for mass conservation (15), momentum (16) and energy balances (17), with
associated boundary conditions, equations (18), (19), (21) and (22), for the combined
natural/Marangoni convection melt flows in the crucible must be written in the 2D (ax-
isymmetric) system of coordinates and solved numerically. Results are obtained by using
the COMSOL multiphysics CFD package [15]. Further details about the solution method-
ology are given in the references [16, 17].

4. Results and discussion

Firstly, the non-dimensional numbers characterizing the combined convection melt flows
are predicted and given in Table 2. Values are predicted for various values of ∆T . Recall
that ∆T = TB − T0 should be chosen lesser than 30.
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4.1. Axisymmetric pure thermocapillary convection in the Ge melt. The qual-
itative vortex structures, i.e. the main toroidal vortex and the weak secondary vortex
in the melt, for the present crucible configuration, exist at all Reynolds numbers. Since
the Prandtl number of germanium melt is Pr = 0.0075 (see Table 2), accordingly to the
so-called conductive inertial limit, [9], it is expected that Marangoni (thermocapillary)

convection effects are insignificant in the range of Re� Pr−1/3 ≈ 1540 , but they should
become significant for Re � Pr−1/3 . In order to verify these trends, numerical simula-
tions were carried out for the Re numbers in the range between 1 and 2.12 × 104 (which
corresponds to ∆T between ∼ 0 and 8.6 , see Table 2).

For small Reynolds numbers, numerical simulations show that the strength of the flow is
constant (as expected). Example on the time-dependent flow structures and temperature
distributions for Re = 1000 (i.e. ∆T ≈ 0.4 ) is shown in Fig. 3. For this quite small
Reynolds number, the flow is composed of the main toroidal vortex that rotates clockwise
or counterclockwise3 and the weak secondary vortex, which is developed near the lower
right corner of the crucible. The maximum dimensionless velocity reached in the melt,
after about 1 hour (i.e. τ = 1 )4 , is 1.563 × 10−5 (value reached on the free surface).
By comparing the two velocities reached after 1 hour for the two cases of the Reynolds
numbers (1000 and for instance for 246)5 , one can easily verify that the scaled amplitude
of velocity (i.e. ‖U‖ = ‖u/uc‖ ) is almost constant and relatively independent of the
Reynolds number. For Re=1000, the velocity and temperature distributions, on the free
surface, and the local Nusselt numbers on the surface between the melt and solid (crucible
side wall), at different times, are also shown in Fig. 3. The predicted local Nusselt number
shows fluctuations which clearly indicate the oscillatory nature of thermocapillary flows
in the melt.

When the value of the Re number is increased the inertial effects become significant and
it is expected that the scaled amplitude of velocity will decay as Re−1/3 and finally become
independent of Re, [9]. In this case the streamlines become increasingly non-symmetric
and the center of the main vortex is shifted towards the warm regions of the melt (i.e. close
to the upper right corner of the melt). Example on the time-dependent flow structures
and temperature distributions for Re=3400 (which corresponds to ∆T ≈ 1.38) is shown in
Fig. 4. Examination of the forms of streamlines, shown in Fig. 3 and 4, shows clearly the
previous trends. For Re=3400, the maximum dimensionless velocity reached in the melt,
for instance after about 1 hour, is 1.537× 10−5 . By comparing the two velocities reached
after 1 hour for the cases of Re=1000 and 3400, one can easily verify that the Marangoni
convective effects are insignificant than expected (compare Fig. 3 and 4).

When the Reynolds number is increased further (for instance to Re = 2.28 × 104 (i.e.
∆T ≈ 5.2), the vortex creates a nearly inviscid core, [9], in which the vorticity Ω varies
linearly with the axial direction Z and which is bounded by viscous boundary layers. The
maximum velocity on free surface after 1 hour is 1.296 × 10−5. By comparing the two
velocities reached after 1 hour for the both cases Re=3400 and Re = 2.28 × 104, one
can easily verify that the scaled amplitude of velocity is very close and thus the velocity
becomes slightly independent of Re as expected. It should be emphasized here that the
flow presents signs of instability at the early times when the value of the Re is further
increased and approached the value of ≈ 2.12× 104 (i.e. ∆T ≈ 8.6 ).

3In fact, the sense of rotation changes with time.
4In fact, t = (d2/ν)τ ≈ 3720τ , thus the non-dimensional time τ = 1 corresponds approximately to 1

hour.
5For Re= 246, the velocity reached on free surface after 1 hour is 1.563× 10−5.
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Figure 3. Time-dependent flow and temperature fields in the germanium melt
(Pr=0.0075) for Re=1000, (with Gr=0 and Bi=0).

4.2. Axisymmetric pure natural convection flow in the Ge melt. The other impor-
tant driving force for an axisymmetric convection flow in the germanium melt is buoyancy.
It is well known that when the heating is from below, as in the present crucible system,
the melt flow is similar to the Rayleigh-Benard convection problem and the conductive
state (u = 0) can be unstable [9]. In addition to the heating from below, the present
configuration is also heated from the side. Thus, it will be subjected to very complex
convective motions. In order to give further insight into the nature of melt flows, in the
crucible, numerical simulations were carried out for the pure natural convection flow for
the Gr numbers in the range between 150 and 2.73× 106 (i.e. ∆T between ∼ 0 and 3.7).

The qualitative vortex structures (both the primary and the secondary convection cells
in the melt) exist at all tested Grashof numbers. For small Grashof numbers, Fig. 5
shows the predicted streamlines and isotherms in the melt for Gr=1000 (i.e. Ra=7.5) at
different times. The flow structure is composed from the main counterclockwise rotating
vortex (primary convection cell), formed at early times (Fig. 5a), which persists in the
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Figure 4. Time-dependent flow and temperature fields in the germanium melt
(Pr=0.0075) for Re=3400, (with Gr=0 and Bi=0).

melt and expands with time until reaching the entire domain. At the time τ ≈ 1.5 another
clockwise rotating vortex appears in the melt (near the upper right corner). This vortex
(secondary convection cell) will grow in size with time until occupy the upper half region
of the domain (see Fig. 5).

When the Gr is further increased, for instance to Gr = 1.5×105, the previous predicted
trends are observed. Moreover, it should be emphasize that the strength of flow is increased
when Gr value is increased as expected. The only difference, between these two Grashof
cases, subsists in the time of appearance of secondary convection cell. Indeed, the time of
appearance will decay when Gr reaches values higher than ≈ 3000. Numerical simulations
also showed that the value of Gr ≈ 1.63 × 105 , (i.e. Ra ≈ 1222.5 ) represents a critical
value for flow transition. Indeed, when the Gr number is further increased up to the
above Gr value, the predicted flow structures are considerably altered. An example on the
time-dependent flow structures and temperature distributions for Gr = 1.02× 105 (which
corresponds to ∆T ≈ 1.38 ) is shown in Fig. 6. Moreover, numerical simulations showed
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Figure 5. Time-dependent flow and temperature fields in the germanium melt
(Pr=0.0075) for Gr=3400 (i.e. Ra=7.5), (with Re=0).

that the value Gr ≈ 2.73× 106 (i.e. ∆T ≈ 3.7 ), represents another critical value for flow
structure transition6.

4.3. Axisymmetric combined natural/thermocapillary convection flows in the
Ge melt. For small Grashof and Reynolds numbers, numerical simulations showed that
the flow is axisymmetric as expected. An example on the flow structures and temperature
distributions (for Re=1000 and Gr=1000 i.e. Bd = 1) is shown in Fig. 7. Since ther-
mocapillary convection is commonly accompanied by axial temperature gradients; thus
the Marangoni flow is altered by the effect of buoyancy forces (see and compare the flow
fields shown in Fig. 3, 5 and 7). The flow is mainly driven by buoyancy during early
times (Fig. 7a). Since the Re number is small, the Marangoni flow, formed in the upper
region of melt, is characterized by a vortex of nearly equal strength of circulation but with
different sense (direction) of rotation (Fig. 7b). Depending on the sense of rotation the

6It should be emphasize that the present paper is not concerned by the flow transition and stability.
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Figure 6. Time-dependent flow and temperature fields in the germanium melt
(Pr=0.0075) for Gr=1.02× 106 (i.e. Ra=7650), (with Re=0).

weak thermocapillary surface forces, acting often in the radial positive direction, either
suppress (Fig. 7b) or improve the main vortex motion (Fig. 7c).

The relative strength of thermocapillary forces compared to buoyancy forces depends
on the dynamical Bond number, Bd = Gr/Re = ρgβTd

2/γ. Hence, natural convection
maybe ignored when Bd → 0 (i.e. the length scale tends to zero Lc = d → 0). In the
present crucible configuration, however, Bd∼300, it is expected that the Marangoni are
small and heat transfer is mainly dominated by natural convection. An example on the
flow structures and temperature distributions for Re=3400 and Gr = 1.02×105 (see Table
2) is shown in Fig. 8. The figure shows clearly the above trend. Indeed, by comparing
the streamlines forms in Fig. 8 and 4, one can easily identify that the Marangoni flow is
weakened by natural convection.
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Figure 7. Streamlines and isotherms in the Ge melt (Pr=0.0075) for Re=1000
and Gr=1000 (i.e. Bd=1), (with Bi=0).

5. Conclusion

A mathematical model to describe the combined natural/thermocapillary convection
fluid flows is presented. The model is adapted to that of the combined natural/ thermo-
capillary axisymmetric convection flows developed in the germanium melt. The melt in
the experimental crucible setup was assumed to be under isothermal conditions.

The most important properties of the nonlinear convective flows in the germanium melt
are examined by using a simplified version of the model (axisymmetric). Numerical simu-
lations are carried out to predict the axisymmetric thermocapillary, natural and combined
natural/thermocapillary convective flows in the melt. The predicted properties of the
axisymmetric thermocapillary, natural and combined natural/thermocapillary convective
flows in the germanium melt slightly agree with the experimental results of the study of
dissolution of silicon into a germanium melt [11, 12]. Indeed, as in experiments, numerical
simulations showed that the nature of convective flows develop in the melt exhibit flow
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Figure 8. Streamlines and isotherms in the Ge melt (Pr=0.0075) for Re=3400
and Gr=1.02× 106 (i.e. Bd=300), (with Bi=0).

instabilities and transitions. In particular, it was shown that the Marangoni convection
has an important effect. Flow instability leads to melt inhomogeneity and thus can play an
important role on the dissolution behavior. These trends can strongly affects the mixing
in the melt and the shape of the dissolution interface as reported in [12].

Possible deviations from the experimental results of the present axisymmetric model
predictions are essentially due to non-cylindrical surface deformations, contamination of
the free surface, temperature dependent material parameters, and momentum and heat
transfer to the ambient gas. These effects are neglected in the present model.
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