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ON THE BEHAVIORS OF A CLASS OF SINGULAR TYPE ROUGH
HIGHER ORDER COMMUTATORS ON GENERALIZED WEIGHTED
MORREY SPACES

FERIT GURBUZ, §

ABSTRACT. In this paper, we study the boundedness of a class of singular type rough
higher order commutators defined by

T () = po. [ Y) (A(z) — A@)™ fy)dy

Qz
lz —yl”

and
MEA™ f(z) = sup = / Q@ — )| |A (@) — A@)|™ |£()] dy,

r>0 "
|x—y|<r
where m € N and Q € Ls(S™ ') (s> 1) is a homogeneous function of degree 0 on
R"™ and satisfies the integral zero property over the unit sphere S"~! on generalized
weighted Morrey spaces, respectively. As an application, we get the boundedness of
these operators on weighted Morrey spaces, respectively. Keywords: Higher order (= m-

th order) commutator operators, rough kernel, A » weight, generalized weighted Morrey
space.

AMS Subject Classification: 42B20, 42B25

1. INTRODUCTION AND MAIN RESULTS

Let Q € Lg(S™1), 1 < s < 00, Qux) = Qz) for any p > 0, z € R™\ {0} and satisfy
the cancellation condition

/ Q' )do(a') = 0, (1)
gn—1
where 2/ = a for any z # 0.
We first recall the definitions of the rough Calderén-Zygmund(C-Z) singular integral
operator T and a related rough Hardy-Littlewood(H-L) maximal operator M.

Definition 1.1. Let f € Llloc (R™). The the rough C-Z singular integral operator Tq and
the rough H-L mazximal operator Mq are defined by
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Tof@) = po. | 2E=D p0ay,
J

|z —y|™

1
Maf (@) =swp o [ 120 =)l I W] d,
>0 T
|[z—y|<r
On the other hand, in 1965, Calderén [2] introduced the commutator [A, S] on R which

is defined by
[A,S] f (z) = A(x) Sf (z) — S(Af) (x)

where A € Lip (R) and the operator S := i o H, H denotes the Hilbert transform defined
f

by
Hf (x)= p.v.i_/ac (_y)ydy.
R

The operator [A,S] is also so called Calderén commutator Note that the commutator

[A, 5] can be rewritten as [A, v/—A], where A = 4L is the Laplacian operator in R. Thus,
the study of the commutator [A, S] plays an 1mportant role in some characterizations of
function spaces and so on (see [5] for example). Moreover, in [2], Calderén proved that if
A € Lip (R), then the Calderén commutator [A, S] is bounded on L,(R) for all 1 < p < oo.
In the same paper [2], Calderén also gave a generalization of the commutator [A, S] is in
higher dimensions:

Sé’lf (x) = p.v./
RTL

Qz—y)Az) - A(y)
lz —yl™ |z -yl

f(y)dy.

Later, Bajsanski and Coifman [1] studied the generalized Calderén commutator as follows:

S47 1 (@) = po. [ TES IR pipa,

[z =yl |z -

here R, (A;x,y) is the difference between a function A (z) defined on R™ and its Taylor
polynomial of degree m — 1 with center y:

R (Ajm,y) = Ax) — ) ;DWA()( —y)7,
[v|<m—1

and we have used the notations: fy is a multi-index v = (y1,---,v) € Z}. Moreover,

v = Z’Yu Y= H%' and z7 = Hz% Similarly, provided that D; = 895

=1 =1
n
E'Yi

vl i=1
0 Al — 0

Azt - Oz o
k2
[ 1o+

i=1

DVA(z) = A(z) = D'DJ...DI" A (z)
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is the partial derivative of A which is assumed to exist in the classical sense almost every-
where on R"™.

Inspired by the above works, Cohen and Gosselin [3] introduced the following generalized
commutator of T,

T4 f(z) = pv. / — ,n+m1 o (45 2,) £ (3)dy

and the corresponding generalized commutator of Mg, is defined by

1
Mg f(x) = SUD T / Uz —y)Rin (A2, ) f(y)| dy,
r>
le—y|<r
where 2 € Ls(S"1) (s > 1) is a homogeneous function of degree 0 and satisfies (1), m € N,
Ry, (A;z,y) is as above.
Thus, if m =1, Tg‘? and Mé reduce to the commutators of T and Mg, respectively:

AT )= A0 Tof ()~ o A1)
= po / S (4@) - A ) Sy

and
(A, Mq] f (2) = A(2) Maf () — Mo (Af) ()
1 / 12z — )14 () — A@W)| £ ()] dy.

r>0 1"
|lz—y|<r

On the other hand, since the commutator has a close relation with partial differential
equations and pseudo-differential operator, the theory of higher order (= m-th order)
commutator has been received extensive studies in the last 3 decades. In the following we
list a few of them about a class of singular type higher order (= m-th order) commutator
operators which are related to the study in this article.

Now, let us consider the following higher order (= m-th order) commutator operator of
To:

Ty f(z) = To (( <>—A<->>mf<->><x>, m=0,12,...,

/ ) (A = AW )y ®)

and the corresponding higher order (= m-th order) commutator operator of Mgq:

M f(@) = Mo (A) = AQ)" FO) (@), m=012..,
—swp [ R0 =)l A @) - AW W) dy, 3)

r>0 T
lz—y|<r

Moreover, the following pointwise inequality holds:

My™ f (@) < T (f]) () = eR™, @)
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for all positive measurable function f. Indeed, in order to do this, we need to define an
operator by

2@ —y)|

|z —ylm
Rn

Tio™ (1f]) () = p.v A (z) — A@)[™ | £(y) dy, (5)

where Q € L1(S" 1) (s > 1) is a homogeneous function of degree 0 on R™. On the other
hand, for any r > 0, we get

i@z [ B - agriswla

|z —y|"
lz—y|<r
>5[ el A@ - AW W) d
lz—yl<r

Thus, taking the supremum for » > 0 in the inequality above, we obtain (4), which
completes the proof. Moreover, for m = 1 above, Tg‘;1 ™ and Mé " obviously reduce to
the above commutators [A, Tg| and [A, Mgq], respectively. Also, Té, 5 and Méf are trivial
generalizations of the above commutators [A, Tq] and [A, Mq], respectively.

Here and henceforth, F' ~ G means FF 2 G 2 F; while FF 2 G means F > CG
for a constant C' > 0; and p’ always denotes the conjugate index of any p > 1, that
is, z% =1 % and also C' stands for a positive constant that can change its value in
each statement without explicit mention. Throughout the paper we assume that z € R”
and r > 0 and also let B(x,r) denotes z-centred Euclidean ball with radius r, B®(z,r)
denotes its complement and |B(z,7)| is the Lebesgue measure of the ball B(z,r) and
|B(x,r)| = vur™, where v, = |B(0,1)].

Now, we recall the definition of weighted Lebesgue spaces as follows.

Definition 1.2. (Weighted Lebesgue space) Let 1 < p < oo and given a weight func-
tion w (z) € Ap (R™), we shall define weighted Lebesgue spaces as

1

P

Ly(w) = Lp(R™ w) = ¢ [+ | fllz,. = /\f(ﬂﬂ)\pw(fv)dx <oop, l<p<oo

Loow = Loo(R™,w) = {f Nl oo = esisRl}Lp |f(z)|w(z) < oo} )

Here and later, A, denotes the Muckenhoupt classes. That is, w (x) € A, (R") for some
1<p<ooif
p—1

1 / 1 __1
g1 [ w@)dy /w(y) idy | <C
| B | Bl
B B
for all balls B (see [6] for more details). By Holder’s inequality,

_1
w P

|B| S w(B)»

Ly/(B)
is valid. Moreover, by (1.3) in [6] and (6),

1/p

el

w75 ~ |B]
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is also valid.
Set L > 1. Since w € Az, by (1.3) in [6] we get

_1

<ty —1/p
L ,( p )/(B(Io,t)) ~ t ||w||L1(B(x07t)) (7)

s’

Also, for s’ < p < oo, it is clear that w € Ap implies w € Ap.
Suppose that w € A, (R™), by the definition of A, (R"), we know that

w'P e Ay (R™). (8)
If we Az, by (8) we know
wli(g)/ € A(ﬂ)/
Since w'~(¥)" e A(ﬂ)/, by (1.3) in [6] we know
1

() (B o)) O 5 6 ol (B ©

It is known that A, C A;if 1 <p < s < 00, and that w € A, for some 1 <p < sifw € A,
with s > 1, and also [w]a, < [w]a,.

S

Now, let us list some definitions and known results:

Definition 1.3. (BMO function) Denote the bounded mean oscillation function space
by

BMO(R") = {f € L°(R") : || f|l« := sup Myp < oo},
BCR"®

here and in the sequel

1 1
Myni= B/ @) = folde. f5= o B/ F(y)dy.

Definition 1.4. (Weighted BMO function) Denote the weighted bounded mean oscil-
lation function space by

BMOR", w) = {f € Llffu(]R”) and w € Ao (R") ¢ || fll4w := sup My p . < oo},
BCR"
here and in the sequel

1
M Baw = w(B)/]f(x) — fBw
B

w(@)de,  fpu= w(lB) B/ Fwyw (v) dy.

Lemma 1.1. [4]
(1) Suppose that 1 < p < 00, w(x) € A (R™), f € BMO(R™), m > 0, z € R™ and
r1,72 > 0. Then

1
B / £ ) = FBers)

B(z,r1)

P (y)dy < <1 + ’hl :—1
2

)m (10
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(i7) Suppose that 1 < p < oo, w(z) € A, (R"), f € BMO(R"), m > 0, z € R" and
ri,r0 > 0. Then

1
Y

]. / /
_ ()P < (141

B(z,r1)

1

) T
T2

Before giving the main results of this paper, we introduce another space which plays
important roles in PDE. Except the weighted Lebesgue space Ly(w), the weighted Morrey
space Ly .(w), which is a natural generalization of L,(w) is another important function
space. The weighted Morrey space L .(w) = Lp.(R",w), 1 < p <00, 0 < k < 1, is
the collection of all classes of locally integrable functions f whose weighted Morrey space
norm

K

£l 2y (w) = zeﬂigg>0 lwll 1 By I Ly, B
is finite. Note that for x = 0, we have L, ,(w) = Ly(w). This space was introduced in 2009
by Komori and Shirai in [7] in order to study the boundedness of classical operators in
harmonic analysis. Then, Guliyev [4] has given a concept of generalized weighted Morrey
spaces M)y, , (w) which could be viewed as extension of Ly, .(w). This generalization can
be summarized as follows:
For 1 < p < oo, positive measurable function ¢(x,r) on R™ x (0,00) and nonnegative
measurable function w on R", f € M, ,(w) = M, ,(R",w) if f € Lé‘?q’fv(]R”) and

1

£l a1, () = xef&%o WHWHLIP(B(I,,«)) | £1 2y (w, Br))
r=1 1
is finite. Note that for ¢(z,7) = ||wHLf(B(ac 0 <k <1and o(z,r) = ||wHL1”(B($ )y We

have M, ,(w) = Ly x(w) and M), ,(w) = Ly(w), respectively.
The aim of the present paper is to study the boundedness of the operators T, é‘ ™ and

Mé ™ generated by Tq and Mg with BMO functions on generalized weighted Morrey

spaces, respectively. That is, in this paper we will consider this problem. As an application,

we obtain the boundedness of these operators on weighted Morrey spaces, respectively.
Now, let us state our main results as follows.

Theorem 1.1. Suppose that 1 < p < 0o, 8’ < p, Q € Ly(S" 1) (s > 1) is a homogeneous
function of degree 0 and satisfies (1) such that m € N, w € Ar, A € BMO (R") and

To™ s defined as (2). Then,

1
A, :
HTQ mf‘ S AL lwllZ, s

Ly(w,B(wo,r)) 2o,7))

T AN -1 1
<[ (108 Uy iy 0 e (010
2r

Theorem 1.2. Suppose that 1 < p < oo, s’ < p, Q € Ls(S" 1) (s > 1) is a homogeneous
function of degree 0 and satisfies (1) such that m € N, w € A», A€ BMO (R"), Té’m,
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Mé’m are defined as (2), (3) and the pair (1, 2) satisfies the condition

1

00 N es;inog 901(%7')”111“2 B(z,7)) dt

/<1+ln r) == T = ))7 S ea(@ ). 12

yl Hszl(B(x,t))

Then,

o H < . 13
H ! Mp,pq (w,R™) ~ ”f”Mp,m(w’R )’ ( )
prn H < . 14
H / My, (wR™) 173ty o "

Corollary 1.1. Suppose that 1 < p < oo, s’ < p, Q € Ly(S" 1) (s > 1) is a homogeneous
function of degree 0 and satisfies (1) such thatm € N, w € Ar, A€ BMO(R"), 0 <k <

1, Tg’?’m, Mé’m are defined as (2), (3) and the pair (¢1,p2) satisfies the condition (12).
Then,

|737]

<
Lpn UJR ||f||Lp:K'(w7Rn) ’

|25

<
L;Dn UJR ||f||va"V(w7Rn) '

2. PROOFS OF THE MAIN RESULTS

We begin with the proof of Theorem 1.1 which plays a great role in the proof of Theorem
1.2.
Proof of Theorem 1.1.

Proof. Without loss of generality, it is sufficient for us to show that the conclusion is true
for k = 2 since there is no essential difference for the general case.

For any zo € R", we write as f = f1 + f2, where fi (y) = f (¥) XB(zo.2r) V), f2 (y) =
f(v) X(B(zo,2r))C (y), 7 > 0 and X p(z,2r) denotes the characteristic function of B (zq, 2r).
Then

Let us estimate HTS’2f1‘

A2 A,2 A2

p(w,B(zo,r) ‘ p(w,B(zo,r) wBa:o,))'

and HTS’%&‘

, respectively.

Ly(w,B(zo,r)) Ly(w,B(zo,r))
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From Corollary 7 in [8] and also by taking o = 0 there, it is similar to the estimate of
(2.8) in [6], we have

fras

< HTS’2f1‘

Lp(er(x()rr)) Lp(ern)

S AN 2y o,
= 1AL 111, (0, 50,20

1 1 dt

2
S AR 10, ooy | 1550000 1900 i)
2r

1
S A -

r > 1 1
(102 1Mt Tl 5

2r

). Firstly,

Now, let us estimate the second part (= HTélQ fz)
Ly(w,B(zo0,r))

(A (-T) —A (y))2 = (A (33) - AB(z,r),w)272 (A (aj) - AB(r,r),w) (A (y) - AB(m,r),w)Jr(A (y) - AB(m,r),w)2

is valid. Next, for any given = € B (z¢,r) we have

75212 ()] S [(A @) = Apgary )| ITafa ()] +
2| (A( AB(:M) W) [To ((A(y) = Apge.ryw) f2) ()] +
‘Tﬂ( () AB(z,r) w) fz)( )‘
= F1 + F> + F3.

(1) For the estimate used in Fj, we first have to prove the below inequality:

1
-1 1
Tafa @S [ 11y 50000 101 a0 2 (15)

By (2.11) in [6], we get (15). Thus, we have

1
F < ’ AB (@,r),w ’/‘fHpron, )HwHLl th))tdt'

Later, taking L, (w, B (xo,r))-norm above and by (i) of the Lemma 1.1, we obtain

2 P
||F1||Lp(w,B(x0,r)) S Al HwHLl(B(zo,r))

oo

t\? -1 1
p
X / (1 +1In 7‘) ”fHLp(w,B(xo,t)) HwHLl(B(xo,t))gdt-

2r
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(13) Second, for F3, it is obvious that z € B (zg,7), y € (B (xo, 27“))(J implies |zg — y| =
|z — y|. Thus, by Fubini’s theorem, Holder’s inequality and (2.2) in [5], we get

:‘Tg( (¥) — A w)’ f2>( )‘

d
/ [ paoryul 19 = )1 W] dy iy

2r 2r<|zo—y|<t

dt
s/ [ 140) = Anonal 1f )12 = )l i
2r B(zo,t)
L 1
) [e'e] p A 2s’ S/d Q Sd dt
< |A(Y) = Ap(aorw| |1 W) dy Qe —yldy |
2r (xo,t) B(Io,t)
< 7 2s’ s’ 1 dt
~ ‘A(y)_AB(xo,r),w| ‘f(y)| dy ‘B(l‘o,zt)’S W (16)
2r (fPO,t)

On the other hand, set v = g. From w € A,, we know w" € A,. Since s’ < p, it
follows from Holder’s inequality that

L
7

[ 1A® = Ann ) U@ dy | S 10 5000 [(A0) = b

(1'07t)

Ly, (wlfy/,B(.’E(),t)) '

(17)
Later, by (i7) of the Lemma 1.1 and using (9), we get
A . —A 2’ _ / A —A 25’V 1-v/ d
H( () B(xo,r),w) LS/V/(wlf”/,B(mo,t)) ‘ (y) B(xo,r),w‘ w (y) Yy
(zo,t)
2 1
t — b
AR (1m0 ) (0 (5 an.0)
2 t\? W o2
SIAR (14100 ) ol fp 09

At last, substituting (17) and (18) into (16), we get

F3:]TQ(( (9) — Ap(any)’ 12) (@)

£\ —1 1
S 412 / (14105} 171y e T 5
2r
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Thus, taking L, (w, B (x0,r))-norm above

1
-
1El w0y S NAI I, a0y

7 £\ 2 -1 1
p
X/<1+lnr> 1112, B0, 19N L (B o ) 7 9

2r
Similarly, F5 has the same estimate above, that is, it is analogous to the estimates of
F3 = )TQ (( (Y) — AB(ar) w) fg) (z )’ above, we have

‘TQ (( ( ) AB:BT w)f?)( )’

t 1 1
<4, / (1102 ) 110300000 1901 e 3 (19)

Thus, by (ii) of the Lemma 1.1 and (19), we get
Fy=2 |( AB(az ), wq)| ‘TQ fe? ((A (y) - AB(x,r),w‘l) f2) (.’E)|

2
/ 1 1
<142 / <1+lnr) PR =
2r

Here we omit the details, thus the inequality

) 1
HF2HLp(w,B(xo,r)) S AL Hszl(B(a:o,r))

T £\? -1 1
8 / <1 i T) Hf”Lp(va(ﬂfoyt)) HwHLlp(B(:voi))Edt.

2r

is valid.

Putting estimates [|F1([; . Bao.r) 1F21lL, (w0 1F21 L, (w,B(0,r)) together, we get
the desired conclusion

1
A2 < 2 =
HT f ’ Ly(w,B(z0,r)) ~ HAH* HwHZﬂB(xOﬂ"))
0o . 9 B .
% / (1 +lnr) HfHLp(va(xo,t)) HU’HLlp(B(xO,t));dt-
2r

Combining all the estimates for , we get

Lp(wa(wO 7T))

A2
T3 fi|

and HTS’?’QfQ‘

Lp(wa(wO 7T))

1
17821, ey = VA I, (5
T £\? -1 1
X / <1 +1In 7") Hf”Lp(w,B(xo,t)) HwHLlp(B(xo,t))gdt-
2r
Therefore, Theorem 1.1 is completely proved. ]

Proof of Theorem 1.2.
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Proof. We consider (13) firstly. By the proof of Theorem 2.2. in [6],
HfHLP (w,B(zo,t))

/ ~ ]\4117 £1 (’LU,]R )

is valid. Later, for s’ < p < oo and w € Az, since (1, p2) satisfies (12) and by (20), we
have

Vi t\" -1 1
/ <1 +1In 7") HfHLp(w,B(xo,t)) HwHLf(B(IO’t)){dt

r
1

™ f essinf 1 (0, W7, (5o at
g/(l—FlnT) ” HLp(va(xoi)) t<T<00 . 1(B(zo T))7
" essinf @1(z0, DIWIL, (5ao,m)) 1lZ, (B0,

1
- T ™ essind o1(o, DIWNL, (5ag.r) dt
S Alagy iy ey [ (110 T 7
P
" N2, (3w 0y
S I lagyp, (0 ) P2(20, 7). (21)
At last, by (11) and (21), we get

_1
HTAme =  sup o9 (33077“)_1 HwHLlp(B(moT) H f’

My, (w,R™) 2oER™ >0 Ly(w,B(zo,r))

SNAIT sup @ (x0,7) 7"
zoER™ r>0

T AN ~1 1
X/(l—i—lnr) HfHLp(w,B(aco,t)) HwHLlp(B(xmt))Zdt

T

<A 1 1lagy o e -

Hence, we have completed the proof of (13). O

We are now in a place of proving (14) in Theorem 1.2. The conclusion of (14) is a direct
consequence of (13) and (4). Indeed, from the process proving (13), it is easy to see that
the conclusions of (13) also hold for T“é”m defined as (5). Combining this with (4), we can
immediately obtain (14), which completes the proof of (14).

3. CONCLUSIONS

In this work, we study the boundedness of the higher order commutators of singular
integral and maximal operators with rough kernels. Under the conditions that the rough
kernels belong to Lg(S™ 1) (s > 1), some bounds for the above operators on the general-
ized weighted Morrey spaces were established. As applications, the boundedness of these
operators on weighted Morrey spaces are also obtained.



(1]
2]
3]

(4]

ON THE BEHAVIORS OF A CLASS OF SINGULAR TYPE ROUGH HIGHER ORDER... 219

REFERENCES

Bajsanski,B. and Coifman,R., (1966), On singular integrals, Proc. Sympos. Pure Math. Chicago,
Illinois, X, pp.1-17.

Calderén,A.P., (1965), Commutators of singular integral operators, Proc. Nat. Acd. Sci. USA, 53,
pp.1092-1099.

Cohen,J. and Gosselin,J., (1986), A BMO estimate for multilinear singular integrals, Illinois J. Math.,
30, pp.445-464.

Guliyev,V.S., (2012), Generalized weighted Morrey spaces and higher order commutators of sublinear
operators, Eurasian Math. J., 3, 3, pp.33-61.

Giirbiiz,F., (2017), Sublinear operators with rough kernel generated by Calderén-Zygmund operators
and their commutators on generalized Morrey spaces, Math. Notes, 101, 3, pp.429-442.

Girbiiz,F., (2018), On the behaviors of sublinear operators with rough kernel generated by Calderdn-
Zygmund operators both on weighted Morrey and generalized weighted Morrey spaces, Int. J. Appl.
Math. & Stat., 57, 2, pp.33-42.

Komori,Y. and Shirai,S., (2009), Weighted Morrey spaces and a singular integral operator, Math.
Nachr., 282, 2, pp.219-231.

Iida,T., (2016), Weighted estimates of higher order commutators generated by BM O-functions and
the fractional integral operator on Morrey spaces, J. Inequal. Appl., 4, pp.1-23.

Ferit Giirbiiz received his BSc (Maths), MSc (Maths) and PhD (Maths) degrees
from Ankara University, Ankara, Turkey in 2008, 2011 and 2015, respectively. At
present, he is working as an assistant professor in the Department of Mathematics

WK Education at Hakkari University (Turkey). His research interests focus on harmonic
analysis, Morrey type spaces, singular integrals, maximal operators, Riesz potential,
\F 4 Marcinkiewicz integrals associated with Schrédinger operators, rough kernel.




