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ON THE BEHAVIORS OF A CLASS OF SINGULAR TYPE ROUGH

HIGHER ORDER COMMUTATORS ON GENERALIZED WEIGHTED

MORREY SPACES

FERIT GÜRBÜZ1, §

Abstract. In this paper, we study the boundedness of a class of singular type rough
higher order commutators defined by

TA,mΩ f(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n (A (x)−A (y))m f(y)dy

and

MA,m
Ω f(x) = sup

r>0

1

rn

∫
|x−y|<r

|Ω (x− y)| |A (x)−A (y)|m |f(y)| dy,

where m ∈ N and Ω ∈ Ls(S
n−1) (s > 1) is a homogeneous function of degree 0 on

Rn and satisfies the integral zero property over the unit sphere Sn−1 on generalized
weighted Morrey spaces, respectively. As an application, we get the boundedness of
these operators on weighted Morrey spaces, respectively. Keywords: Higher order (= m-

th order) commutator operators, rough kernel, A p
s′

weight, generalized weighted Morrey
space.

AMS Subject Classification: 42B20, 42B25

1. Introduction and main results

Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0} and satisfy
the cancellation condition ∫

Sn−1

Ω(x′)dσ(x′) = 0, (1)

where x′ = x
|x| for any x 6= 0.

We first recall the definitions of the rough Calderón-Zygmund(C-Z) singular integral
operator TΩ and a related rough Hardy-Littlewood(H-L) maximal operator MΩ.

Definition 1.1. Let f ∈ Lloc1 (Rn). The the rough C-Z singular integral operator TΩ and
the rough H-L maximal operator MΩ are defined by
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TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
f(y)dy,

MΩf (x) = sup
r>0

1

rn

∫
|x−y|<r

|Ω (x− y)| |f (y)| dy.

On the other hand, in 1965, Calderón [2] introduced the commutator [A,S] on R which
is defined by

[A,S] f (x) = A (x)Sf (x)− S (Af) (x) ,

= (−1) p.v.
1

π

∫
R

A (x)−A (y)

x− y
f (y)

x− y
dy,

where A ∈ Lip (R) and the operator S := d
dx ◦H, H denotes the Hilbert transform defined

by

Hf (x) = p.v.
1

π

∫
R

f (y)

x− y
dy.

The operator [A,S] is also so called Calderón commutator. Note that the commutator

[A,S] can be rewritten as
[
A,
√
−∆

]
, where ∆ = d2

dx2 is the Laplacian operator in R. Thus,
the study of the commutator [A,S] plays an important role in some characterizations of
function spaces and so on (see [5] for example). Moreover, in [2], Calderón proved that if
A ∈ Lip (R), then the Calderón commutator [A,S] is bounded on Lp(R) for all 1 < p <∞.
In the same paper [2], Calderón also gave a generalization of the commutator [A,S] is in
higher dimensions:

SA,1Ω f (x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
A (x)−A (y)

|x− y|
f(y)dy.

Later, Bajsanski and Coifman [1] studied the generalized Calderón commutator as follows:

SA,mΩ f (x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
Rm (A;x, y)

|x− y|m
f(y)dy,

here Rm (A;x, y) is the difference between a function A (x) defined on Rn and its Taylor
polynomial of degree m− 1 with center y:

Rm (A;x, y) = A (x)−
∑

|γ|≤m−1

1

γ!
DγA (y) (x− y)γ ,

and we have used the notations: γ is a multi-index γ = (γ1, · · · , γn) ∈ Zn+. Moreover,

|γ| =
n∑
i=1

γi, γ! =

n∏
i=1

γi! and xγ =

n∏
i=1

xγii . Similarly, provided that Dj = ∂
∂xj

DγA (x) =
∂|γ|

∂xγ1
1 · · · ∂x

γn
n
A (x) =

∂

n∑
i=1

γi

n∏
i=1

∂xγii

A (x) = Dγ1
1 D

γ2
2 ...D

γn
n A (x)
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is the partial derivative of A which is assumed to exist in the classical sense almost every-
where on Rn.

Inspired by the above works, Cohen and Gosselin [3] introduced the following generalized
commutator of TΩ,

TAΩ f(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n+m−1
Rm (A;x, y) f(y)dy

and the corresponding generalized commutator of MΩ is defined by

MA
Ω f(x) = sup

r>0

1

rn+m−1

∫
|x−y|<r

|Ω(x− y)Rm (A;x, y) f(y)| dy,

where Ω ∈ Ls(Sn−1) (s > 1) is a homogeneous function of degree 0 and satisfies (1), m ∈ N,
Rm (A;x, y) is as above.

Thus, if m = 1, TAΩ and MA
Ω reduce to the commutators of TΩ and MΩ, respectively:

[A, TΩ] f (x) = A (x)TΩf (x)− TΩ (Af) (x)

= p.v.

∫
Rn

Ω(x− y)

|x− y|n
(A (x)−A (y)) f(y)dy

and

[A,MΩ] f (x) = A (x)MΩf (x)−MΩ (Af) (x)

= sup
r>0

1

rn

∫
|x−y|<r

|Ω (x− y)| |A (x)−A (y)| |f(y)| dy.

On the other hand, since the commutator has a close relation with partial differential
equations and pseudo-differential operator, the theory of higher order (= m-th order)
commutator has been received extensive studies in the last 3 decades. In the following we
list a few of them about a class of singular type higher order (= m-th order) commutator
operators which are related to the study in this article.

Now, let us consider the following higher order (= m-th order) commutator operator of
TΩ:

TA,mΩ f(x) = TΩ ((A (x)−A (·))m f (·)) (x) , m = 0, 1, 2, . . . ,

= p.v.

∫
Rn

Ω(x− y)

|x− y|n
(A (x)−A (y))m f(y)dy (2)

and the corresponding higher order (= m-th order) commutator operator of MΩ:

MA,m
Ω f(x) = MΩ ((A (x)−A (·))m f (·)) (x) , m = 0, 1, 2, . . . ,

= sup
r>0

1

rn

∫
|x−y|<r

|Ω (x− y)| |A (x)−A (y)|m |f(y)| dy. (3)

Moreover, the following pointwise inequality holds:

MA,m
Ω f (x) ≤ T̃A,m|Ω| (|f |) (x) x ∈ Rn, (4)
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for all positive measurable function f . Indeed, in order to do this, we need to define an
operator by

T̃A,m|Ω| (|f |) (x) = p.v.

∫
Rn

|Ω(x− y)|
|x− y|n

|A (x)−A (y)|m |f(y)| dy, (5)

where Ω ∈ L1(Sn−1) (s > 1) is a homogeneous function of degree 0 on Rn. On the other
hand, for any r > 0, we get

T̃A,m|Ω| (|f |) (x) ≥
∫

|x−y|<r

|Ω(x− y)|
|x− y|n

|A (x)−A (y)|m |f(y)| dy

≥ 1

rn

∫
|x−y|<r

|Ω (x− y)| |A (x)−A (y)|m |f(y)| dy.

Thus, taking the supremum for r > 0 in the inequality above, we obtain (4), which

completes the proof. Moreover, for m = 1 above, TA,mΩ and MA,m
Ω obviously reduce to

the above commutators [A, TΩ] and [A,MΩ], respectively. Also, TA,kΩ,α and MA,k
Ω,α are trivial

generalizations of the above commutators [A, TΩ] and [A,MΩ], respectively.
Here and henceforth, F ≈ G means F & G & F ; while F & G means F ≥ CG

for a constant C > 0; and p′ always denotes the conjugate index of any p > 1, that
is, 1

p′ := 1 − 1
p and also C stands for a positive constant that can change its value in

each statement without explicit mention. Throughout the paper we assume that x ∈ Rn
and r > 0 and also let B(x, r) denotes x-centred Euclidean ball with radius r, BC(x, r)
denotes its complement and |B(x, r)| is the Lebesgue measure of the ball B(x, r) and
|B(x, r)| = vnr

n, where vn = |B(0, 1)|.
Now, we recall the definition of weighted Lebesgue spaces as follows.

Definition 1.2. (Weighted Lebesgue space) Let 1 ≤ p ≤ ∞ and given a weight func-
tion w (x) ∈ Ap (Rn), we shall define weighted Lebesgue spaces as

Lp(w) ≡ Lp(Rn, w) =

f : ‖f‖Lp,w =

∫
Rn

|f(x)|pw(x)dx

 1
p

<∞

 , 1 ≤ p <∞.

L∞,w ≡ L∞(Rn, w) =

{
f : ‖f‖L∞,w = esssup

x∈Rn
|f(x)|w(x) <∞

}
.

Here and later, Ap denotes the Muckenhoupt classes. That is, w (x) ∈ Ap (Rn) for some
1 < p <∞ if  1

|B|

∫
B

w(y)dy

 1

|B|

∫
B

w(y)
− 1
p−1dy

p−1

≤ C

for all balls B (see [6] for more details). By Hölder’s inequality,

|B| . w (B)
1
p

∥∥∥w− 1
p

∥∥∥
Lp′ (B)

(6)

is valid. Moreover, by (1.3) in [6] and (6),

‖w‖1/pL1(B)‖w
−1/p‖Lp′ (B) ≈ |B|
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is also valid.
Set p

s′ > 1. Since w ∈ A p
s′

, by (1.3) in [6] we get∥∥∥w− 1
p

∥∥∥
L
s′( ps′ )

′ (B(x0,t))
. t

n
s′ ‖w‖−1/p

L1(B(x0,t))
. (7)

Also, for s′ < p <∞, it is clear that w ∈ A p
s′

implies w ∈ Ap.
Suppose that w ∈ Ap (Rn), by the definition of Ap (Rn), we know that

w1−p′ ∈ Ap′ (Rn) . (8)

If w ∈ A p
s′

, by (8) we know

w1−( ps′ )
′
∈ A( ps′ )

′ .

Since w1−( ps′ )
′
∈ A( ps′ )

′ , by (1.3) in [6] we know

(
w1−( ps′ )

′
(B (x0, t))

) 1

( ps′ )
′
s′ . t

n
s′ ‖w‖−1/p

L1(B(x0,t))
. (9)

It is known that Ap ⊂ As if 1 ≤ p < s <∞, and that w ∈ Ap for some 1 < p < s if w ∈ As
with s > 1, and also [w]Ap ≤ [w]As .

Now, let us list some definitions and known results:

Definition 1.3. (BMO function) Denote the bounded mean oscillation function space
by

BMO(Rn) =

{
f ∈ Lloc1 (Rn) : ‖f‖∗ := sup

B⊂Rn
Mf,B <∞

}
,

here and in the sequel

Mf,B :=
1

|B|

∫
B

|f(x)− fB|dx, fB =
1

|B|

∫
B

f(y)dy.

Definition 1.4. (Weighted BMO function) Denote the weighted bounded mean oscil-
lation function space by

BMO(Rn, w) =

{
f ∈ Lloc1,w(Rn) and w ∈ A∞ (Rn) : ‖f‖∗,w := sup

B⊂Rn
Mf,B,w <∞

}
,

here and in the sequel

Mf,B,w :=
1

w(B)

∫
B

|f(x)− fB,w|w (x) dx, fB,w =
1

w (B)

∫
B

f(y)w (y) dy.

Lemma 1.1. [4]
(i) Suppose that 1 ≤ p < ∞, w (x) ∈ A∞ (Rn), f ∈ BMO(Rn), m > 0, x ∈ Rn and

r1, r2 > 0. Then 1

w(B(x, r1))

∫
B(x,r1)

|f(y)− fB(x,r2),w|mpw(y)dy


1
p

.

(
1 +

∣∣∣∣ln r1

r2

∣∣∣∣)m ‖f‖m∗ . (10)
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(ii) Suppose that 1 < p < ∞, w (x) ∈ Ap (Rn), f ∈ BMO(Rn), m > 0, x ∈ Rn and
r1, r2 > 0. Then 1

w1−p′(B(x, r1))

∫
B(x,r1)

|f(y)− fB(x,r2),w|mp
′
w(y)1−p′dy


1
p′

.

(
1 +

∣∣∣∣ln r1

r2

∣∣∣∣)m ‖f‖m∗ .
Before giving the main results of this paper, we introduce another space which plays

important roles in PDE. Except the weighted Lebesgue space Lp(w), the weighted Morrey
space Lp,κ(w), which is a natural generalization of Lp(w) is another important function
space. The weighted Morrey space Lp,κ(w) ≡ Lp,κ(Rn, w), 1 ≤ p < ∞, 0 < κ < 1, is
the collection of all classes of locally integrable functions f whose weighted Morrey space
norm

‖f‖Lp,κ(w) = sup
x∈Rn,r>0

‖w‖
−κ
p

L1(B(x,r))‖f‖Lp(w,B(x,r))

is finite. Note that for κ = 0, we have Lp,κ(w) = Lp(w). This space was introduced in 2009
by Komori and Shirai in [7] in order to study the boundedness of classical operators in
harmonic analysis. Then, Guliyev [4] has given a concept of generalized weighted Morrey
spaces Mp,ϕ (w) which could be viewed as extension of Lp,κ(w). This generalization can
be summarized as follows:

For 1 ≤ p < ∞, positive measurable function ϕ(x, r) on Rn × (0,∞) and nonnegative
measurable function w on Rn, f ∈Mp,ϕ(w) ≡Mp,ϕ(Rn, w) if f ∈ Llocp,w(Rn) and

‖f‖Mp,ϕ(w) = sup
x∈Rn,r>0

1

ϕ(x, r)
‖w‖

− 1
p

L1(B(x,r))‖f‖Lp(w,B(x,r))

is finite. Note that for ϕ(x, r) ≡ ‖w‖
κ−1
p

L1(B(x,r)), 0 < κ < 1 and ϕ(x, r) ≡ ‖w‖
− 1
p

L1(B(x,r)), we

have Mp,ϕ(w) = Lp,κ(w) and Mp,ϕ(w) = Lp(w), respectively.

The aim of the present paper is to study the boundedness of the operators TA,mΩ and

MA,m
Ω generated by TΩ and MΩ with BMO functions on generalized weighted Morrey

spaces, respectively. That is, in this paper we will consider this problem. As an application,
we obtain the boundedness of these operators on weighted Morrey spaces, respectively.

Now, let us state our main results as follows.

Theorem 1.1. Suppose that 1 < p <∞, s′ < p, Ω ∈ Ls(Sn−1) (s > 1) is a homogeneous
function of degree 0 and satisfies (1) such that m ∈ N, w ∈ A p

s′
, A ∈ BMO (Rn) and

TA,mΩ is defined as (2). Then,∥∥∥TA,mΩ f
∥∥∥
Lp(w,B(x0,r))

. ‖A‖m∗ ‖w‖
1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)m
‖f‖Lp(w,B(x0,t))

‖w‖
− 1
p

L1(B(x0,t))

1

t
dt. (11)

Theorem 1.2. Suppose that 1 < p <∞, s′ < p, Ω ∈ Ls(Sn−1) (s > 1) is a homogeneous

function of degree 0 and satisfies (1) such that m ∈ N, w ∈ A p
s′

, A ∈ BMO (Rn), TA,mΩ ,
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MA,m
Ω are defined as (2), (3) and the pair (ϕ1, ϕ2) satisfies the condition

∞∫
r

(
1 + ln

t

r

)m essinf
t<τ<∞

ϕ1(x, τ)‖w‖
1
p

L1(B(x,τ))

‖w‖
1
p

L1(B(x,t))

dt

t
. ϕ2(x, r). (12)

Then, ∥∥∥TA,mΩ f
∥∥∥
Mp,ϕ2 (w,Rn)

. ‖f‖Mp,ϕ1 (w,Rn) , (13)

∥∥∥MA,m
Ω f

∥∥∥
Mp,ϕ2 (w,Rn)

. ‖f‖Mp,ϕ1 (w,Rn) . (14)

Corollary 1.1. Suppose that 1 < p <∞, s′ < p, Ω ∈ Ls(Sn−1) (s > 1) is a homogeneous
function of degree 0 and satisfies (1) such that m ∈ N, w ∈ A p

s′
, A ∈ BMO (Rn), 0 < κ <

1, TA,mΩ , MA,m
Ω are defined as (2), (3) and the pair (ϕ1, ϕ2) satisfies the condition (12).

Then, ∥∥∥TA,mΩ f
∥∥∥
Lp,κ(w,Rn)

. ‖f‖Lp,κ(w,Rn) ,

∥∥∥MA,m
Ω f

∥∥∥
Lp,κ(w,Rn)

. ‖f‖Lp,κ(w,Rn) .

2. Proofs of the main results

We begin with the proof of Theorem 1.1 which plays a great role in the proof of Theorem
1.2.

Proof of Theorem 1.1.

Proof. Without loss of generality, it is sufficient for us to show that the conclusion is true
for k = 2 since there is no essential difference for the general case.

For any x0 ∈ Rn, we write as f = f1 + f2, where f1 (y) = f (y)χB(x0,2r) (y), f2 (y) =
f (y)χ(B(x0,2r))

C (y), r > 0 and χB(x0,2r) denotes the characteristic function of B (x0, 2r).

Then ∥∥∥TA,2Ω f
∥∥∥
Lp(w,B(x0,r))

≤
∥∥∥TA,2Ω f1

∥∥∥
Lp(w,B(x0,r))

+
∥∥∥TA,2Ω f2

∥∥∥
Lp(w,B(x0,r))

.

Let us estimate
∥∥∥TA,2Ω f1

∥∥∥
Lp(w,B(x0,r))

and
∥∥∥TA,2Ω f2

∥∥∥
Lp(w,B(x0,r))

, respectively.
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From Corollary 7 in [8] and also by taking α = 0 there, it is similar to the estimate of
(2.8) in [6], we have∥∥∥TA,2Ω f1

∥∥∥
Lp(w,B(x0,r))

≤
∥∥∥TA,2Ω f1

∥∥∥
Lp(w,Rn)

. ‖A‖2∗ ‖f1‖Lp(w,Rn)

= ‖A‖2∗ ‖f‖Lp(w,B(x0,2r))

. ‖A‖2∗ ‖w‖
1
p

L1(B(x0,r))

∞∫
2r

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

dt

t
.

. ‖A‖2∗ ‖w‖
1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Now, let us estimate the second part (=
∥∥∥TA,2Ω f2

∥∥∥
Lp(w,B(x0,r))

). Firstly,

(A (x)−A (y))2 =
(
A (x)−AB(x,r),w

)2−2
(
A (x)−AB(x,r),w

) (
A (y)−AB(x,r),w

)
+
(
A (y)−AB(x,r),w

)2
is valid. Next, for any given x ∈ B (x0, r) we have∣∣∣TA,2Ω f2 (x)

∣∣∣ . ∣∣∣(A (x)−AB(x,r),w

)2∣∣∣ |TΩf2 (x)|+

2
∣∣(A (x)−AB(x,r),w

)∣∣ ∣∣TΩ

((
A (y)−AB(x,r),w

)
f2

)
(x)
∣∣+∣∣∣TΩ

((
A (y)−AB(x,r),w

)2
f2

)
(x)
∣∣∣

:= F1 + F2 + F3.

(i) For the estimate used in F1, we first have to prove the below inequality:

|TΩf2 (x)| .
∞∫

2r

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt. (15)

By (2.11) in [6], we get (15). Thus, we have

F1 .
∣∣∣(A (x)−AB(x,r),w

)2∣∣∣ ∞∫
2r

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Later, taking Lp (w,B (x0, r))-norm above and by (i) of the Lemma 1.1, we obtain

‖F1‖Lp(w,B(x0,r))
. ‖A‖2∗ ‖w‖

1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.
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(ii) Second, for F3, it is obvious that x ∈ B (x0, r), y ∈ (B (x0, 2r))
C implies |x0 − y| ≈

|x− y|. Thus, by Fubini’s theorem, Hölder’s inequality and (2.2) in [5], we get

F3 =
∣∣∣TΩ

((
A (y)−AB(x,r),w

)2
f2

)
(x)
∣∣∣

.

∞∫
2r

∫
2r<|x0−y|≤t

∣∣A (y)−AB(x0,r),w

∣∣2 |Ω (x− y)| |f (y)| dy dt

tn+1

.

∞∫
2r

∫
B(x0,t)

∣∣A (y)−AB(x0,r),w

∣∣2 |f (y)| |Ω (x− y)| dy dt

tn+1

.

∞∫
2r

 ∫
B(x0,t)

∣∣A (y)−AB(x0,r),w

∣∣2s′ |f (y)|s
′
dy


1
s′
 ∫
B(x0,t)

|Ω (x− y)|s dy


1
s

dt

tn+1

.

∞∫
2r

 ∫
B(x0,t)

∣∣A (y)−AB(x0,r),w

∣∣2s′ |f (y)|s
′
dy


1
s′

|B (x0, 2t)|
1
s
dt

tn+1
. (16)

On the other hand, set ν = p
s′ . From w ∈ Aν , we know w1−ν′ ∈ Aν′ . Since s′ < p, it

follows from Hölder’s inequality that ∫
B(x0,t)

∣∣(A (y)−AB(x0,r),w

)∣∣2s′ |f(y)|s
′
dy


1
s′

. ‖f‖Lp(w,B(x0,t))

∥∥∥(A (·)−AB(x0,r),w

)2∥∥∥
Ls′ν′(w1−ν′ ,B(x0,t))

.

(17)
Later, by (ii) of the Lemma 1.1 and using (9), we get

∥∥∥(A (·)−AB(x0,r),w

)2∥∥∥
Ls′ν′(w1−ν′ ,B(x0,t))

=

 ∫
B(x0,t)

∣∣A (y)−AB(x0,r),w

∣∣2s′ν′ w1−ν′ (y) dy


1
s′ν′

. ‖A‖2∗
(

1 + ln
t

r

)2 (
w1−ν′ (B (x0, t))

) 1
ν′s′

. ‖A‖2∗
(

1 + ln
t

r

)2

t
n
s′ ‖w‖

− 1
p

L1(B(x0,t))
. (18)

At last, substituting (17) and (18) into (16), we get

F3 =
∣∣∣TΩ

((
A (y)−AB(x,r),w

)2
f2

)
(x)
∣∣∣

. ‖A‖2∗

∞∫
2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.
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Thus, taking Lp (w,B (x0, r))-norm above

‖F3‖Lp(w,B(x0,r))
. ‖A‖2∗ ‖w‖

1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Similarly, F2 has the same estimate above, that is, it is analogous to the estimates of

F3 =
∣∣∣TΩ

((
A (y)−AB(x,r),w

)2
f2

)
(x)
∣∣∣ above, we have∣∣TΩ

((
A (y)−AB(x,r),w

)
f2

)
(x)
∣∣

. ‖A‖∗

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(w,B(x0,t))

‖w‖
− 1
p

L1(B(x0,t))

1

t
dt. (19)

Thus, by (ii) of the Lemma 1.1 and (19), we get

F2 = 2
∣∣(A (x)−AB(x,r),wq

)∣∣ ∣∣TΩ,α

((
A (y)−AB(x,r),wq

)
f2

)
(x)
∣∣

. ‖A‖2∗

∞∫
2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Here we omit the details, thus the inequality

‖F2‖Lp(w,B(x0,r))
. ‖A‖2∗ ‖w‖

1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

is valid.
Putting estimates ‖F1‖Lp(w,B(x0,r))

, ‖F2‖Lp(w,B(x0,r))
, ‖F2‖Lp(w,B(x0,r))

together, we get

the desired conclusion∥∥∥TA,2Ω f2

∥∥∥
Lp(w,B(x0,r))

. ‖A‖2∗ ‖w‖
1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Combining all the estimates for
∥∥∥TA,2Ω f1

∥∥∥
Lp(w,B(x0,r))

and
∥∥∥TA,2Ω f2

∥∥∥
Lp(w,B(x0,r))

, we get∥∥∥TA,2Ω f
∥∥∥
Lp(wp,B(x0,r))

. ‖A‖2∗ ‖w‖
1
p

L1(B(x0,r))

×
∞∫

2r

(
1 + ln

t

r

)2

‖f‖Lp(w,B(x0,t))
‖w‖

− 1
p

L1(B(x0,t))

1

t
dt.

Therefore, Theorem 1.1 is completely proved. �

Proof of Theorem 1.2.
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Proof. We consider (13) firstly. By the proof of Theorem 2.2. in [6],

‖f‖Lp(w,B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)‖w‖1/pL1(B(x0,τ))

. ‖f‖Mp,ϕ1 (w,Rn) (20)

is valid. Later, for s′ < p < ∞ and w ∈ A p
s′

, since (ϕ1, ϕ2) satisfies (12) and by (20), we

have
∞∫
r

(
1 + ln

t

r

)m
‖f‖Lp(w,B(x0,t))

‖w‖
− 1
p

L1(B(x0,t))

1

t
dt

.

∞∫
r

(
1 + ln

t

r

)m ‖f‖Lp(w,B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)‖w‖
1
p

L1(B(x0,τ))

essinf
t<τ<∞

ϕ1(x0, τ)‖w‖
1
p

L1(B(x0,τ))

‖w‖
1
p

L1(B(x0,t))

dt

t

. ‖f‖Mp,ϕ1 (w,Rn)

∞∫
r

(
1 + ln

t

r

)m essinf
t<τ<∞

ϕ1(x0, τ)‖w‖
1
p

L1(B(x0,τ))

‖w‖
1
p

L1(B(x0,t))

dt

t

. ‖f‖Mp,ϕ1 (w,Rn) ϕ2(x0, r). (21)

At last, by (11) and (21), we get∥∥∥TA,mΩ f
∥∥∥
Mp,ϕ2 (w,Rn)

= sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1 ‖w‖

− 1
p

L1(B(x0,r))

∥∥∥TA,mΩ f
∥∥∥
Lp(w,B(x0,r))

. ‖A‖m∗ sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1

×
∞∫
r

(
1 + ln

t

r

)m
‖f‖Lp(w,B(x0,t))

‖w‖
− 1
p

L1(B(x0,t))

1

t
dt

. ‖A‖m∗ ‖f‖Mp,ϕ1 (w,Rn) .

Hence, we have completed the proof of (13). �

We are now in a place of proving (14) in Theorem 1.2. The conclusion of (14) is a direct
consequence of (13) and (4). Indeed, from the process proving (13), it is easy to see that

the conclusions of (13) also hold for T̃A,m|Ω| defined as (5). Combining this with (4), we can

immediately obtain (14), which completes the proof of (14).

3. Conclusions

In this work, we study the boundedness of the higher order commutators of singular
integral and maximal operators with rough kernels. Under the conditions that the rough
kernels belong to Ls(S

n−1) (s > 1), some bounds for the above operators on the general-
ized weighted Morrey spaces were established. As applications, the boundedness of these
operators on weighted Morrey spaces are also obtained.
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