
TWMS J. App. Eng. Math. V.8, N.1a, 2018, pp. 220-229

SECOND HANKEL DETERMINANT PROBLEM FOR SEVERAL

CLASSES OF ANALYTIC FUNCTIONS RELATED TO SHELL-LIKE

CURVES CONNECTED WITH FIBONACCI NUMBERS
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Abstract. In this paper, we investigate upper bounds for the second Hankel determi-
nant in several classes of analytic functions in the open unit disc, related to shell-like
curves and connected with Fibonacci numbers.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk U =
{z : z ∈ C and |z| < 1} and let S denote the class of functions in A which are univalent
in U and normalized by the conditions f(0) = f ′(0)− 1 = 0 and are of the form:

f (z) = z +

∞∑
n=2

anz
n. (1)

We say that f is subordinate to F in U, written as f ≺ F , if and only if f(z) = F (w(z))
for some analytic function w such that |w(z)| ≤ |z| for all z ∈ U.

If f ∈ A and

zf ′(z)

f(z)
≺ p(z) or 1 +

zf ′′(z)

f ′(z)
≺ p(z) or (1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ p(z)

where p(z) = 1+z
1−z , then we say that f is starlike or convex or α−convex function, respec-

tively. These functions form known classes denoted by S∗, C orM(α), respectively. These
classes are very important subclasses of the class S in geometric function theory.

In [14], Sokó l introduced the class SL of shell-like functions as the set of functions f ∈ A
which is described in the following definition:
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Definition 1.1. The function f ∈ A belongs to the class SL if it satisfies the condition
that

zf ′(z)

f(z)
≺ p̃(z)

with

p̃(z) =
1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

Later, Dziok et al. in [1] and [2] defined and introduced the class KSL and SLMα

of convex and α−convex functions related to a shell-like curve connected with Fibonacci
numbers, respectively. These classes can be given in the following definitions.

Definition 1.2. The function f ∈ A belongs to the class KSL of convex shell-like functions
if it satisfies the condition that

1 +
zf ′′(z)

f ′(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

Definition 1.3. The function f ∈ A belongs to the class SLMα, (0 ≤ α ≤ 1) if it satisfies
the condition that

α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)

zf ′(z)

f(z)
≺ p̃(z) =

1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618.

The class SLMα is related to the class KSL only through the function p̃ and SLMα 6=
KSL for all α 6= 1. It is easy to see that KSL = SLM1. The function p̃ is not univalent in
U, but it is univalent in the disc |z| < (3−

√
5)/2 ≈ 0.38. For example, p̃(0) = p̃(−1/2τ) = 1

and p̃(e∓i arccos(1/4)) =
√

5/5, and it may also be noticed that

1

|τ |
=

|τ |
1− |τ |

,

which shows that the number |τ | divides [0, 1] such that it fulfils the golden section. The
image of the unit circle |z| = 1 under p̃ is a curve described by the equation given by

(10x−
√

5)y2 = (
√

5− 2x)(
√

5x− 1)2,

which is translated and revolved trisectrix of Maclaurin. The curve p̃(reit) is a closed
curve without any loops for 0 < r ≤ r0 = (3−

√
5)/2 ≈ 0.38. For r0 < r < 1, it has a loop,

and for r = 1, it has a vertical asymptote. Since τ satisfies the equation τ2 = 1 + τ, this
expression can be used to obtain higher powers τn as a linear function of lower powers,
which in turn can be decomposed all the way down to a linear combination of τ and 1.
The resulting recurrence relationships yield Fibonacci numbers un:

τn = unτ + un−1.
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In 1976, Noonan and Thomas [10] stated the sth Hankel determinant for s ≥ 1 and
k ≥ 1 as

Hs(k) =

∣∣∣∣∣∣∣∣∣∣
ak ak+1 . . . ak+s−1

ak+1 ak+2 . . .
...

...
...

...
...

ak+s−1 . . . . . . ak+2(s−1)

∣∣∣∣∣∣∣∣∣∣
, (2)

where a1 = 1.
This determinant has also been considered by several authors. For example, Noor [11]

determined the rate of growth ofHs(k) as k →∞ for functions f given by (1) with bounded
boundary. Ehrenborg in [3] studied the Hankel determinant of exponential polynomials.
The Hankel transform of an integer sequence and some of its properties were discussed by
Layman in [8]. Also, several authors considered the case s = 2. Especially, H2(1) = a3−a22
is known as Fekete-Szegö functional and this functional is generalized to a3 − µa22 where
µ is some real number [4]. Estimating for an upper bound of |a3 − µa22| is known as the
Fekete-Szegö problem. In [13], Raina and Sokó l considered Fekete-Szegö problem for the
class SL. In 1969, Keogh and Merkes [7] solved this problem for the classes S∗ and C.
The second Hankel determinant is H2(2) = a2a4 − a23. Janteng [5] found the sharp upper
bound for |H2(2)| for univalent functions whose derivative has positive real part. Also, in
[6] Janteng et al. obtained the bounds for |H2(2)| for the classes S∗ and C.

Let P(β), 0 ≤ β < 1, denote the class of analytic functions p in U with p(0) = 1 and
Re{p(z)} > β. Especially, we will use P instead of P(0).

Theorem 1.1. ([2]) The function p̃(z) = 1+τ2z2

1−τz−τ2z2 belongs to the class P(β) with β =√
5/10 ≈ 0.2236.

Now we give the following lemmas which will use in proving.

Lemma 1.1. ([12]) Let p ∈ P with p(z) = 1 + c1z + c2z
2 + · · · , then

|cn| ≤ 2, for n ≥ 1. (3)

If |c1| = 2, then p(z) ≡ p1(z) ≡ (1+xz)/(1−xz) with x = c1/2. Conversely, if p(z) ≡ p1(z)
for some |x| = 1, then c1 = 2x. Furthermore, we have∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|
2

2
. (4)

If |c1| < 2, and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|
2

2 , then p(z) ≡ p2(z), where

p2(z) =
1 + x̄wz + z(wz + x)

1 + x̄wz − z(wz + x)
,

and x = c1
2 , w =

2c2−c21
4−|c1|2 and |c2 −

c21
2 | = 2− |c1|

2

2 .

Lemma 1.2. ([9]) Let p ∈ P with coefficients cn as above, then

|c3 − 2c1c2 + c31| ≤ 2. (5)

In this paper, we use ideas and techniques used in geometric function theory. The
central problem considered here is the sharp upper bounds for the functional |a2a4 − a23|
of functions in the classes SL, KSL and SLMα, depicted by the Fibonacci numbers,
respectively.
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2. Main Results

In [13], Raina and Sokó l proved the following result:

Theorem 2.1. If p(z) = 1 + p1z + p2z
2 + · · · , and p ≺ p̃, then

|p1| ≤ |τ | (6)

and
|p2| ≤ 3τ2. (7)

The above estimates are sharp.

Now, we prove the following theorem as addition to Theorem 2.1.

Theorem 2.2. If p(z) = 1 + p1z + p2z
2 + · · · , and p ≺ p̃, then

|p3| ≤ 4|τ |3. (8)

The result is sharp.

Proof. If p ≺ p̃, then there exists an analytic function w such that |w(z)| ≤ |z| in U
and p(z) = p̃(w(z)). Therefore, the function

h(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + . . . (9)

is in the class P(0). It follows that

w(z) =
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · · (10)

and

p̃(w(z)) = 1 + p̃1

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}
+p̃2

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}2

+p̃3

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}3

+ · · ·

= 1 +
p̃1c1z

2
+

{
1

2

(
c2 −

c21
2

)
p̃1 +

c21
4
p̃2

}
z2

+

{
1

2

(
c3 − c1c2 +

c31
4

)
p̃1 +

1

2
c1

(
c2 −

c21
2

)
p̃2 +

c31
8
p̃3

}
z3 + · · · . (11)

To find the coefficients p̃n of the function p̃, on putting τz = t , then we have

p̃(z) =
1 + τ2z2

1− τz − τ2z2
=

(
t+

1

t

)
t

1− t− t2

=
1√
5

(
t+

1

t

)(
1

1− (1− τ)t
− 1

1− τt

)
=

(
t+

1

t

) ∞∑
n=1

(1− τ)n − τn√
5

tn
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=

(
t+

1

t

) ∞∑
n=1

unt
n = 1 +

∞∑
n=1

(un−1 + un+1)τ
nzn, (12)

where

un =
(1− τ)n − τn√

5
, τ =

1−
√

5

2
(n = 1, 2, . . .). (13)

This shows that the relevant connection of p̃ with the sequence of Fibonacci numbers un,
such that u0 = 0, u1 = 1, un+2 = un + un+1 for n = 0, 1, 2, · · · . Now using (11), we get

p̃(z) = 1 +

∞∑
n=1

p̃nz
n

= 1 + (u0 + u2)τz + (u1 + u3)τ
2z2 +

∞∑
n=3

(un−3 + un−2 + un−1 + un)τnzn

= 1 + τz + 3τ2z2 + 4τ3z3 + 7τ4z4 + 11τ5z5 + · · · . (14)

Thus, p̃1 = τ, p̃2 = 3τ2 and

p̃n = (un−1 +un+1)τ
n = (un−3 +un−2 +un−1 +un)τn = τ p̃n−1 + τ2p̃n−2 (n = 3, 4, 5, . . .).

If p(z) = 1 + p1z + p2z
2 + · · · , then using (10) and (13) , we have

p1 =
c1
2
τ, (15)

p2 =
1

2

(
c2 −

c21
2

)
τ +

3

4
c21τ

2, (16)

and

p3 =
1

2

(
c3 − c1c2 +

c31
4

)
τ +

3

2
c1

(
c2 −

c21
2

)
τ2 +

1

2
c31τ

3. (17)

In [13], Raina and Sokó l proved Theorem 2.1 and obtained sharp estimates for |p1| and
|p2|. Now we shall obtain sharp estimate for |p3|. Taking absolute value of (17) we can
write

|p3| =
∣∣∣∣12
(
c3 − c1c2 +

c31
4

)
τ +

3

2
c1

(
c2 −

c21
2

)
τ2 +

1

2
c31τ

3

∣∣∣∣
=

∣∣∣∣12
(
c3 − c1c2 +

c31
4

)
τ +

3

2
c1

(
c2 −

c21
2

)
(τ + 1) +

1

2
c31(2τ + 1)

∣∣∣∣
=

∣∣∣∣{1

2

(
c3 − 2c1c2 + c31

)
+
c1
4

(
c2 −

c21
2

)
+

7

4
c1c2

}
τ +

{
3c1
2

(
c2 −

c21
2

)
+
c31
2

}∣∣∣∣ (18)

It is known that

∀n ∈ N, τ =
τn

un
− xn, xn =

un−1
un

, lim
n→∞

un−1
un

= |τ | ≈ 0.618. (19)
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Therefore, we have

|p3| =
∣∣∣∣{1

2

(
c3 − 2c1c2 + c31

)
+

1

4
c1

(
c2 −

c21
2

)
+

7

4
c1c2

}
τn

un

+

{
−1

2

(
c3 − 2c1c2 + c31

)
xn +

2− xn
4

c1

(
c2 −

c21
2

)
+

4− 7xn
4

c1c2

}∣∣∣∣
≤
∣∣∣∣12 (c3 − 2c1c2 + c31

)
+

1

4
c1

(
c2 −

c21
2

)
+

7

4
c1c2

∣∣∣∣ |τ |nun
+

∣∣∣∣−1

2

(
c3 − 2c1c2 + c31

)
xn +

2− xn
4

c1

(
c2 −

c21
2

)
+

4− 7xn
4

c1c2

∣∣∣∣
≤
{

1

2
|c3 − 2c1c2 + c31|+

1

4
|c1|

∣∣∣∣c2 − c21
2

∣∣∣∣+
7

4
|c1c2|

}
|τ |n

un

+

{
|c3 − 2c1c2 + c31|

2
xn +

2− xn
4
|c1|

∣∣∣∣c2 − c21
2

∣∣∣∣+
|4− 7xn|

4
|c1||c2|

}
.

By (19), for sufficiently large n we have |4− 7xn| = 7xn − 4. Therefore, from (3), (4) and
(5) we can write

|p3| ≤
{

1 +
1

4
|c1|

(
2− |c1|

2

2

)
+

7

2
|c1|
}
|τ |n

un
+

{
xn +

2− xn
4
|c1|

(
2− |c1|

2

2

)
+

7xn − 4

2
|c1|
}

=

{
1 + 4|c1| −

|c1|3

8

}
|τ |n

un
+

{
xn + (3xn − 1)|c1| −

2− xn
8
|c1|3

}
.

We have

max
y∈[0,2]

{
1 + 4y − y3

8

}
= 8 at y = 2,

since

lim
n→∞

{
1 + 4|c1| −

|c1|3

8

}
|τ |n

un
= 0.

Furthermore, for sufficiently large n we have

max
y∈[0,2]

{
xn + (3xn − 1)y − 2− xn

8
y3
}

= 8xn − 4 at y = 2,

so

lim
n→∞

max
y∈[0,2]

{
xn + (3xn − 1)y − 2− xn

8
y3
}

= 8|τ | − 4 = 4|τ |3.

Therefore, we get

lim
n→∞

[{
1 + 4|c1| −

|c1|3

8

}
|τ |n

un
+

{
xn + (3xn − 1)|c1| −

2− xn
8
|c1|3

}]
≤ 4|τ |3

which shows that

|p3| ≤ 4|τ |3.
If we take in (9)

h(z) =
1 + z

1− z
= 1 + 2z + 2z2 + . . . ,

then putting c1 = c2 = c3 = 2 in (17) gives p3 = 4τ3 and it shows that (8) is sharp. It
completes the proof.



226 TWMS J. APP. ENG. MATH. V.8, N.1A, 2018

Comjecture 2.1. If p(z) = 1 + p1z + p2z
2 + · · · , and p ≺ p̃, then

|pn| ≤ (un−1 + un+1)|τ |n, n = 1, 2, 3, . . . ,

where u0 = 0, u1 = 1, un+2 = un + un+1 for n = 0, 1, 2, . . ., is the Fibonacci sequence.
This bound would be sharp for the function (14).

This conjecture has been just verified for n = 3 in last Theorem 2.2, while for n = 1, 2
it was proved in [13].

Theorem 2.3. If f(z) = z + a2z
2 + . . . belongs to SL, then

|a2a4 − a23| ≤
11

3
τ4. (20)

Proof. For given f ∈ SL, define p(z) = 1 + p1z + p22z
2 + · · · , by

zf ′(z)

f(z)
= p(z)

where p ≺ p̃. Hence

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a22)z2 + (3a4 − 3a2a3 + a32)z

3 + · · · = 1 + p1z + p22z
2 + · · ·

and

a2 = p1, a3 =
p21 + p2

2
, a4 =

p31 + 3p1p2 + 2p3
6

.

Therefore,

a2a4 − a23 =
1

12
(−p41 + 4p1p3 − 3p22). (21)

Using Theorem 2.1 and Theorem 2.2, we obtain

|a2a4 − a23| =

∣∣∣∣ 1

12
(−p41 + 4p1p3 − 3p22)

∣∣∣∣
≤ 1

12

(
|p1|4 + 4|p1||p3|+ 3|p2|2

)
≤ 1

12

(
|τ |4 + 4|τ |4|τ |3 + 3(3τ2)2

)
=

1

12

(
|τ |4 + 16|τ |4 + 27|τ |4

)
=

11

3
τ4.

�

The bound in 20 is not sharp. So we give the following conjecture for sharpness.

Comjecture 2.2. If f(z) = z + a2z
2 + . . . belongs to SL, then

|a2a4 − a23| ≤ τ4. (22)

The bound is sharp.

Theorem 2.4. If f(z) = z + a2z
2 + . . . belongs to KSL, then

|a2a4 − a23| ≤
4

9
τ4.
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Proof. For given f ∈ KSL, define p(z) = 1 + p1z + p22z
2 + · · · , by

1 +
zf ′′(z)

f ′(z)
= p(z)

where p ≺ p̃ in U. Hence

1+
zf ′′(z)

f ′(z)
= 1+2a2z+(6a3−4a22)z

2 +(12a4−18a2a3 +8a32)z
3 + · · · = 1+p1z+p22z

2 + · · ·

and

a2 =
p1
2
, a3 =

p21 + p2
6

, a4 =
p31 + 3p1p2 + 2p3

24
.

Therefore, using Theorem 2.1 and Theorem 2.2, we obtain

|a2a4 − a23| ≤
4

9
τ4.

�

Theorem 2.5. If f(z) = z + a2z
2 + ... belongs to SLMα, then

|a2a4 − a23| ≤
145α5 + 625α4 + 1061α3 + 867α2 + 330α+ 44

12(1 + α)4(1 + 2α)2(1 + 3α)
τ4.

Proof. For given f ∈ SLMα, define p(z) = 1 + p1z + p22z
2 + · · · , by

(1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
= p(z)

where p ≺ p̃ in U. Hence

(1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
= 1 + (1 + α)a2z + [2(1 + 2α)a3 − (1 + 3α)a22]z

2

+[3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a32]z
3 + · · · = 1 + p1z + p22z

2 + · · ·

and

a2 =
p1

1 + α
, a3 =

(1 + 3α)p21 + (1 + α)2p2
2(1 + α)2(1 + 2α)

,

a4 =
3(1 + 3α)(1 + 5α)p31 + 3(1 + α)2(1 + 5α)p1p2 − 2(1 + 2α)(1 + 7α)p31 + 2(1 + α)3(1 + 2α)p3

6(1 + α)3(1 + 2α)(1 + 3α)
.

Therefore, using Theorem 2.1 and Theorem 2.2, we obtain

|a2a4 − a23| ≤
145α5 + 625α4 + 1061α3 + 867α2 + 330α+ 44

12(1 + α)4(1 + 2α)2(1 + 3α)
τ4.

�

It is clear that if we take α = 0 and α = 1 in Theorem 2.5, we obtain the results of
Theorem 2.3 and Theorem 2.4, respectively.
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3. Concluding Remarks and Observations

In our present article, we have obtained sharp estimates for second Hankel determinants
of several classes of analytic functions related to shell-like curves connected with Fibonacci
numbers. Firstly, we have found a sharp bound estimate for third coefficient of a function
with positive real part which is subordinate to a shell-like curve and have given a conjecture
for general case. Secondly, we have studied the problem of finding the upper bounds
associated with the second Hankel determinant H2(2) for these classes. We have also
considered several results which are closely related to our investigation in this paper.
However, we give some conjectures for sharpness of bounds.
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