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ON THE NUMERICAL SOLUTION OF FRACTIONAL ORDER

DIFFERENTIAL EQUATIONS USING TRANSFORMS AND

QUADRATURE

M. UDDIN1, S. KHAN2, KAMRAN3, §

Abstract. In this work, we extended the work of [12] to approximate the solution
of fractional order differential equations by an integral representation in the complex
plane. The resultant integral is approximated to high order accuracy using quadrature.
The accuracy of the method depends on the selection of optimal contour of integration.
Several contour have been proposed in the literature for solving fractional differential
equations. In the present work, we will investigate the applicability of the recently
developed optimal contour in [16] for solving fractional differential equations. Various
fractional order differential equations are approximated and the results are compared
with other methods to demonstrate the efficiency and accuracy of the method for various
optimal contour of integrations.
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1. Introduction

In this work, we want to investigate the applicability of the proposed numerical algo-
rithm for the solution of fractional order differential equations of the form,

Dαw(τ) = f(τ, w(τ)), (1)

where p is the integer defined by p − 1 < α ≤ p, and α is not necessarily an inter, then
one can specify suitable initial conditions,

w(j)(0) = w
(j)
0 , j =, 0, 1, 3, ..., p− 1, (2)

where the Reimann-Liouville differential operators of fractional order α > 0, is defined as

Dαw(τ) =
1

Γ(p− α)

dp

dtp

∫ τ

0

w(u)

(τ − u)α−p+1
du, (3)

where p is the integer defined by p − 1 < α ≤ p ( see [3, 9]). Equations of the form
(1) have many applications and valuable tools in the modelling of various phenomena in
physical and engineering sciences [8, 6, 1, 14, 15]. For the particular case 0 < α < 1, many
important applications occurs, but for α > 1 there are also some important applications.
In the work of [3], it is shown that the problem (1)-(2) has a unique solution under some
strong condition like (linearity of the differential equations). In the present work we
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extended the work of [12] to investigate the applicability of the recently developed contour
of integration [16] to solve the fractional order differential equations of the form (1)-(2). In
the last section, it is shown how the theoretical results may be incorporated for practical
cases. Particularly we investigated the performance of the proposed numerical method for
solving fractional differential equations. The problem is approximated by choosing optimal
contour of integration subject to validation of errors bounds. We considered, the optimal
choices of three different types of contours of integration for our method to gain maximum
possible accuracy in approximating the solution with minimum cost of computations.

Lemma 1.1. For p− 1 < α ≤ p, p ∈ N, the expression for the Laplace transformation of
Caputo fractional order differential operator can be written as:

£

[
dα

dyα
f(τ)

]
=
spF (s)− sp−1f(0)− sp−2f ′(0)− ...− fp−1(0)

sp−α
. (4)

2. Analysis of the Method

In this section, we describe numerical method. We select quadrature step as k > 0 and
the equal weight quadrature rule is applied. The procedure is follows as applying Laplace
Transformation to the problem (1)-(2), we get

ŵ(s) = s−αg(s), (5)

where

g(s) =
[
w0s

α−1 + f̂(s)
]

(6)

and

f̂(s) = £(f(τ)). (7)

Now applying the formal inverse Laplace transform, we get

w(τ) = £−1(ŵ(s)) =
1

2πι

∫
Γ
esτ ŵ(s)ds, R(s) > 0. (8)

where Γ is the contour of integration such that Γ ⊂ Ωr and

s = s(u), (9)

are the points on Γ. Now using equation (8) in equation (9), we find the expression for
w(τ) as an integral in u,

w(τ) =
1

2πι

∫
Γ
es(u)τ ŵ(s(u))s′(u)du. (10)

Now we choose the step k > 0 for the quadrature rule to be use on equation (10). For
simplicity we set sj = s(uj), s

′
j = s′(uj) where uj = jk for −n ≤ j ≤ n, we get

wn(τ) =
k

2πι

n∑
j=−n

esjτ ŵ(sj)s
′
j . (11)

Now to find the approximate solution wn, we solve the 2n + 1 equations given in (5) for
−n ≤ j ≤ n.
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3. Error Analysis of the method

As the numerical solution wn determined the approximate solution (11) for all τ > 0.
In practice, however, the accuracy of approximate solution depends on the choice of the
contour Γ. A number of such contour available one such path is due to [7] given as

s = λ+ ω(1− sin(δ − iu)), (C1) (12)

In fact, when Im u = η, (12) reduces to the left branch of the hyperbola,(
x− λ− ω
ω sin(δ + η)

)2

−
(

y

ω cos(δ + η)

)2

= 1, (13)

here the strip Zr = {u : Im u ≤ r} with r > 0 transformed into the hyperbola
Ωr = {s : u ∈ Zr} ⊃ Γ. let Σφ = {s 6= 0 : |args| ≤ φ} ∪ 0, with 0 < φ < (1 − α)π/2, and

let Σλ
β := λ+ Σβ, Γ ⊂ Ωr ⊂ Σλ

β.

The error bound of the proposed method for hyperbolic path is based on the following
theorem.

Theorem 3.1. [7] Let w(τ) be the solution of (1), with f̂ analytic in Σλ
β. Let 0 < θ < 1,

0 < τ0 < T , , and let b > 0 be defined by cosh b = 1/θT sin δ, where T = t0/t. Let Γ ⊂ Ωr ⊂
Σλ
β, and let the scaling factor be ω = θrn/(bt). Then we have, for the approximate solution

wn defined by (11), with k = b/n ≤ r/ log 2, |wn(τ) − w(τ)| ≤ CMeλτ l(ρrn)e−µn(‖ w0 ‖
+ ‖ f̂ ‖Σλβ ), for τ0 ≤ τ ≤ t, where µ = r(1− θ)/b, ρr = θrT sin(δ − r)/b, and C = Cδ,r,β,

r = 2πr, l(τ) = max(log(1/τ), 1).

Since Talbot’s original contour has a cotangent shape, and is much complicated to
analyze see [10]. Very recently the authors [16] proposed a parabolic contour, which
circumvented the slow decay due to Talbot [13]. The parabola is parameterized as

s = µ(1 + iz)2, (C2), (14)

while the hyperbolic path is re-defined as

s = µ(1 + sin(ιw − q), (C3), (15)

for the strip z = u+ ιc, where c > 0, −∞ < u <∞ the parabolic contour reduces to

s = µ
(
(1− c)2 − u2

)
+ 2µιu(1− c), (16)

Since we are using the trapezoidal rule on the real line, the error bound for the parabolic
path is based on the following theorem

Theorem 3.2. [11] Let z = u + ιy, where u and y are real. Suppose F (z) is analytic in
the strip −c < y < c, for some c > 0, and F (z)→ 0 as |z| → ∞ in the strip. Let for some
M > 0 the function F (z) satisfy∫ ∞

∞
|F (u+ ιr)|du ≤M, 0 < r < c,

then the error estimate is

|wn(τ)− w(τ)| = 2M

e2πc/k − 1
.

The numerical accuracy mainly depends on the optimal contour of integration. The
parabolic path contains parameters µ and c. In the work of [16] these parameters are
optimized as

µ =
π

4
√

8ρ+ 1

n

t
, k =

√
8ρ+ 1

n
, t0 < τ < t, ρ =

t

t0
.
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In such a case the error estimate becomes as

|wn(τ)− w(τ)| = O(e−(2π/
√

8ρ+1)n), n→∞ (17)

In special case when ρ = 1, the optimal parameters and its corresponding error estimate
becomes as

µ =
π

12

n

t
, k =

3

n
, (18)

|wn(τ)− w(τ)| = O(e−(2πn/3), n→∞ (19)

It should be noted that the optimal parameter µ contains the ratio n/t, so the accuracy
will effect with increasing nodes n for a given fixed t. To fix this problem t may be re-
adjusted for better accuracy. This fact is evident from results when using the contours C2

and C3 shown in all figures and tables respectively.

4. Application of the method

In many cases the analytical method is unavailable for solving fractional order differ-
ential equations. So in practical problems of relevance, we have to use some numerical
methods to approximate the solution of fractional order differential equations. In this sec-
tion we validated our algorithms for three different problems, and to show the efficiency
of our method, we compared our results with other methods available in the literature.

4.1. Problem 1. Here we apply the present numerical method to the equation,

Dαw(τ) = βw(τ) + f(τ), (20)

For example if we choose f(τ) = τ2 + 2/Γ(3− α) τ2−α, and α = 0.5, w(0) = 0, β = −1.
In such a case the exact solution is given as w(τ) = τ2. Here we apply our method to
approximate the problem (1)-(2), using three different types of contours C1, C2 and C3

respectively. We used various number of points n along the contour of integration and the
results are shown in table 1 and figure 1 respectively. It is observed that the convergence
is achieved for very large number of nodes n using path C1, while a small number of nodes
n are used to get better accuracy using paths C2 and C3 respectively. The reason for
this that the optimal parameters µ depends on number of nodes n and time τ see for
example (18). As it is evident from the results that the accuracy drops with the increase
in number of nodes n along C2 and C3 respectively. These results are calculated for fixed
value of τ . This problem may be avoided if we increase the time τ with increasing nodes.
It is demonstrated that the present method achieved better accuracy than [3, 2]. In this
computations the parameters used for C1 ( α = 0.5, τ = 5, θ = 0.1, λ = 0, δ = 0.1541,
r = 0.1387, [τo, t] = [0.5, 5]), for C2 ( k = 3/n, µ = πn/12τ), those for C3 (q = 1.1721,
Aq = cosh−1(2q/(4q − π) sin q), k = Aq/n, µ = (4πq − π2)n/Aqτ) respectively.

4.2. Problem 2. Next we consider the test problem,

Dαw(τ) = Γ(2 + α)τ +
1

4
(w(t)− ω − τ1+α), (21)

with exact solution w(τ) = τ1+α + ω. The present method is applied to approximate the
problem (21) for the three contours C1, C2 and C3 respectively. We used various number
of nodes n along the contour of integration and the results are shown in table 2 and figure
2 respectively. We observed similar convergence behavior as achieved in case problem 1.
The corresponding parameters for the three paths are C1 ( α = 0.5, τ = 2, θ = 0.1, w = 0,
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Figure 1. Numerical solution: Plots of absolute error versus n, for the
given three types of contours corresponding to problem (20).

n Error (C1) Error (C2) Error (C3)
15 1.24e-001 6.26e-009 1.13e-012
20 1.80e-003 1.88e-013 1.24e-011
30 7.00e-005 1.63e-012 3.12e-010
40 3.81e-007 3.85e-011 9.51e-008
80 4.33e-008 7.25e-009 2.22e-000
100 2.54e-009 9.85e-005 6.44e+003

[3] [2]
3.56e-004 1.02e-003

Table 1. Numerical solution corresponding to (20).

δ = 0.1541, r = 0.1387, [τo, t] = [0.5, 5]), C2 ( k = 3/n , µ = πn/12τ) and C3 ( q = 1.1721,
Aq = cosh−1 (2q/(4q − π) sin q), k = Aq/n, µ = (4πq − π2)n/Aqt) respectively.

n Error (C1) Error (C2) Error (C3)
15 0.0026 1.1613e-010 2.2765e-013
20 5.5944e-004 3.3468e-014 2.6197e-012
30 7.8852e-005 3.0465e-013 1.0969e-010
40 3.4510e-007 8.5219e-012 3.3494e-008
80 1.8357e-008 2.3197e-007 0.9869
100 5.6914e-010 3.7423e-005 3.0538e+003

[4] [5]
2.6300e-006 7.0900e-007

Table 2. Numerical solution corresponding to (21).
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Figure 2. Numerical solution: Plots of absolute error versus n, for the
given three types of contours corresponding to problem (21).

4.3. Problem 3. In the last test problem

Dw(τ) +Dαw(τ) = f(t), w(0) = 1. (22)

In the present problem, we select a function f(t) = e−t cos(πt), whose transformed function

f̂(s) = (s+ 1)/((s+ 1)2 + π2) has a singularity at s = −1 + ιπ and s = −1 − ιπ. But
the present method successfully and easily approximated the problem by choosing optimal
contour subject to the condition β < π

2 +tan−1(1+λ
π ). For α = 1

2 and using Mittage-Leffler

function and substituting s = ty2 the exact solution is given by

w(t) = E 1
2
(−
√
t) +

∫ 1

0
E 1

2
(−
√
ty)f(t− ty2)2tydy. (23)

The present method is applied to approximate the solution of the problem (22) for the
hyperbolic and parabolic contours respectively. We used various number of points n along
the contour of integration and the results in terms of actual error and corresponding error
estimates l(nρ)e−µN and e−2πn/3 of the method for the contours C1 and C2 respectively.
These results are shown in table 3 and figure 3 respectively. The actual errors agreed with
theoretical error bounds of the method for both hyperbolic and parabolic contours.

5. Conclusion

In this work, we used the Laplace transform inversion numerical method to approximate
the fractional order differential equations. The accuracy of proposed numerical method
mainly depends on the optimal selection of contour of integration. In this work three differ-
ent types of contour have been used to approximate fractional order differential equations.
Comparison of the present method with other methods validated the efficiency over other
methods for approximating the solution of fractional order differential equations. This
procedure is an excellent alternative for approximating same types of fractional order par-
tial differential equations. Solving fractional order differential with time-stepping methods
may faces the problem of instability. On the other hand the present method avoids the
problem of instability.

Acknowledgement The authors would like to extend their gratitude to the reviewers
for their valuable comments.
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Figure 3. Numerical solution: Plots of absolute error versus n, for the
given three types of contours corresponding to problem (22).

n Error (C1) Error bound (C1) Error (C2) Error bound (C2)
5 0.4490 1.5675 0.0216 2.8328e-005
10 0.0343 0.3034 9.3804e-006 8.0249e-010
15 7.9301e-005 0.0609 4.1278e-008 2.2733e-014
30 1.0560e-005 5.2844e-004 1.0112e-012 5.1680e-028
40 1.4798e-007 2.2889e-005 4.1793e-011 4.1472e-037
50 1.2408e-009 1.0013e-006 2.1124e-009 3.3281e-046
60 2.1145e-011 4.4085e-008 5.6829e-009 2.6708e-055
70 1.4735e-012 1.9500e-009 5.3427e-007 2.1433e-064
80 4.9337e-014 8.6551e-011 3.3696e-006 1.7200e-073
90 1.9424e-015 3.8520e-012 6.2873e-005 1.3802e-082

Table 3. Numerical solution using hyperbolic contour C1 ( α = −0.5,
τ = 1, θ = 0.1, w = 02, δ = 0.3812, r = 0.3431, [τo, t] = [0.5, 5]), and
parabolic contour C2 ( k = 3/n , µ = πn/12τ), corresponding to (22).
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