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INDEPENDENTLY SATURATED GRAPHS

Z.N. BERBERLER1, M.E. BERBERLER2, §

Abstract. The independence saturation number IS(G) of a graph G = (V,E) is defined
as min{IS(V ) : v ∈ V } , where IS(v) is the maximum cardinality of an independent
set that contains v. In this paper, we consider and compute exact formulae for the
independence saturation in specific graph families and composite graphs.
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1. Introduction

Graph theoretic techniques provide a convenient tool for the investigation of networks.
It is well-known that an interconnection network can be modeled by a graph with vertices
representing sites of the network and edges representing links between sites of the network.
Therefore various problems in networks can be studied by graph theoretical methods. The
independence based parameters reveal an underlying efficient and stable communication
network. A subset of pairwise nonadjacent vertices in a graph G is called independent (or
stable / internally stable). The cardinality of a maximum size independent set in G is
called the independence (or stability) number (or coefficient of internal stability [1]) of G
and is denoted by β(G). The maximum stable set problem is one of the central problem in
combinatorial optimization, and has been the subject of extensive study. The problem of
determining a stable set of maximum cardinality is a basic algorithmic graph problem oc-
curring in many models in computer science and operations research and finds important
applications in various fields, including computer vision and pattern recognition. Finding
a maximum independent set is a well-known widely-studied NP -hard problem. We refer
to [3] for a review concerning algorithms, applications, and complexity issues of this prob-
lem. Among the independence-type parameters that have been studied, the independence
saturation number is one of the fundamental ones introduced by Subramanian [4]. For
a vertex v of a graph G, IS(v) denotes the maximum cardinality of an independent set
in G which contains v. The independence saturation number of G, denoted by IS(G),
is the value min {IS(V ) : v ∈ V }. Thus IS(G) is the largest positive integer k such that
every vertex of G lies in an independent set of cardinality k. Let v ∈ V be such that
IS(v) = IS(G). Then any independent set of cardinality IS(G) containing v is called an
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IS-set. The problem of determining whether IS(G) ≥ k for any graph G is NP -complete.
Independence saturation number of some classes of graphs are computed in [6].

In this paper, we consider finite undirected graphs without loops and multiple edges.
Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The order
of G is the number of vertices in G. The open neighborhood of is v is N(v) = {u ∈
V (G) | uv ∈ E(G)} and for a set S ⊆ V , N(S) =

⋃
v∈S N(v) . The degree of a vertex

v is degG(v) = |N(v)|. A graph is regular if its vertices all have the same degree. A
r-regular graph is the graph in which the degree of each vertex is r. A vertex of degree
zero is an isolated vertex or an isolate. A leaf or an endvertex or a pendant vertex
is a vertex of degree one and its neighbor is called a support vertex. The maximum
degree of G is 4(G) = max {degG(v)|v ∈ V (G)} whereas the minimum degree of G is
δ(G) = min {degG(v)|v ∈ V (G)} [2].

We use bxc to denote the largest integer not greater than x, and dxe to denote the least
integer not less than x.

The paper proceeds as follows. In section 2, existing literature on independence satu-
ration number is reviewed. The independence saturation numbers for specific graph types
and graph operations are computed and exact formulae are derived.

2. Independence Saturation

2.1. Known results.

Theorem 2.1. [5] If G is an r-regular graph on n vertices with r > 0, then IS(G) ≤ n/2.
Further equality holds if and only if G is bipartite.

Theorem 2.2. [5] For any graph G on n vertices, IS(G) ≤ n − ∆. Further for a tree
T , IS(G) = n − ∆, if and only if V − N(v) is an independent set for every vertex v
of degree ∆ and pu ≤ pv for every u ∈ N(v), where px is the number of pendant vertices
adjacent to x.

Theorem 2.3. [5] Let G be any graph on p (p ≥ 3) vertices. Then

(i) 3 ≤ IS(G) + IS(Ḡ) ≤ p+ 1− (∆− δ) and 2 ≤ IS(G).IS(Ḡ) ≤ (p−∆)(δ+ 1).

(ii) The following are equivalent.

(a) IS(G) + IS(Ḡ) = 3.

(b) IS(G).IS(Ḡ) = 2.

(c) G or Ḡ has the property that it has a unique vertex of degree p − 1 and has
at least one pendant vertex.

(iii) IS(G) + IS(Ḡ) = p+ 1 if and only if G is either Kp or Kp.

Theorem 2.4. [5] The independence saturation of

(a) the complete graph Kn is 1;

(b) the cycle Cn is bn/2c;

(c) the complete bipartite graph Km,n is min {m,n};

(d) the star K1,n is 1.
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2.2. Specific families. We begin this subsection by determining the independence satu-
ration number of specific families of graphs.

Proposition 2.1. (a) β(Pn) = dn/2e

(b) β(Cn) = bn/2c

(c) For n > 3 β ¯(Cn) = 2

Definition 2.1. Let G1 and G2 be two disjoint graphs. The union of G1 and G2 with
disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the graph G =
G1 ∪G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2).

Proposition 2.2. Let G1, G2, ..., Gn be disjoint graphs. If G =
⋃n

i=1Gi, then
β(G) =

∑n
i=1 β(Gi).

Theorem 2.5. The independence saturation of

(a) the null graph Kn is n;

(b) the path Pn (n ≥ 2) is bn/2c;

(c) the wheel Wn is 1;

(d) any complete multipartite graph of order p and least partite set of order r is r;

(e) the comet Ct,r is dt/2e.

Proof. The proofs to (a) and (d) are routine and we omit them.
To prove (a), there exist two cases according to the number of vertices of Pn:

Case 1. If n is odd;
If v is an endvertex of Pn, then IS(v)-set of Pn is also the independent set of G
with maximum cardinality achieving the independence number of Pn, that is,

IS(v) = β(Pn) = dn/2e (1)

If v is not an endvertex of Pn, then IS(v)-set of Pn has the maximum cardinality
of

IS(v) = 1 + β(Pi ∪ Pn−3−i)

where 0 ≤ i ≤ (n− 3)/2.
By Proposition (2.2), we have that

IS(v) = 1 + β(Pi) + β(Pn−3−i)

Now, we have two subcases according to i:

Subcase 1. If i is even, then

IS(v) = 1 + i/2 + (n− 3− i)/2 = (n− 1)/2 (2)

Subcase 2. If i is odd, then

IS(v) = 1 + di/2e+ d(n− 3− i)/2e = (n+ 1)/2 (3)

By Equation (1), (2), and (3), if n is odd, then

IS(Pn) = min {(n+ 1)/2, (n− 1)/2} = (n− 1)/2
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Case 2. If n is even;
If v is an endvertex of Pn, then IS(v)-set of Pn is also the independent set of G
with maximum cardinality achieving the independence number of Pn, that is,

IS(v) = β(Pn) = n/2 (4)

If v is not an endvertex of Pn, then IS(v)-set of Pn has the maximum cardinality
of

IS(v) = 1 + β(Pi ∪ Pn−3−i)

where 0 ≤ i ≤ b(n− 3)/2c
By Proposition (2.2), we have that

IS(v) = 1 + β(Pi) + β(Pn−3−i)

Now, we have two subcases according to i:

Subcase 1. If i is even, then

IS(v) = 1 + i/2 + d(n− 3− i)/2e = n/2 (5)

Subcase 2. If i is odd, then

IS(v) = 1 + di/2e+ (n− 3− i)/2 = n/2 (6)

By Equation (4), (5), and (6), if n is even, then

IS(Pn) = n/2

By Case 1 and Case 2 we have that

IS(Pn) = bn/2c

To prove (c), if G is a wheel of order n+ 1, since the center vertex c of G is adjacent to
the vertices of the outer cycle, then IS(c)-set includes only vertex c with IS(c) = 1. For
a vertex v of the outer cycle, by Theorem (2.4) (b)

IS(v) = bn/2c

for every vertex v, and hence

IS(Wn) = min{1, bn/2c} = 1

To prove (e), define the comet Ct,r to be the graph obtained by identifying one end
of the path Pt with the center of the star K1,r. Label the vertices of Pt sequentially
as v1, v2, ..., vt being vt the center of the star K1,r and label the endvertices of K1,r as
u1, u2, ..., ur. Then, there exist two cases depending on the number of vertices of Pt:

Case 1. t is odd:
For the vertex v1 and for an endvertex ui (1 ≤ i ≤ r), both IS(v1) -set and
IS(ui) -set include the independent set of maximum cardinality of Pt−1 and all
endvertices of K1,r. So,

IS(v1) = IS(ui) = β(Pt−1) + r = (t+ 2r − 1)/2 (7)

For the vertex vi, where 1 < i < t and i is odd, IS(vi)-set includes the independent
set of maximum cardinality of Pi−2 and Pt−(i+1)−1, and all endvertices of K1,r.
Thus,

IS(vi) = β(Pi−2) + 1 + β(Pt−(i+1)−1) + r = (t+ 2r − 1)/2 (8)
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For the vertex vi, where 1 < i < t and i is even, IS(vi)-set includes the independent
set of maximum cardinality of Pi−2 and Pt−(i+1), and all endvertices of K1,r. Thus,

IS(vi) = β(Pi−2) + 1 + β(Pt−(i+1)) + r = (t+ 2r − 1)/2 (9)

For the vertex vt, IS(vt)-set includes the independent set of maximum cardinality
of Pt−2. Then,

IS(vt) = 1 + β(Pt−2) = (t+ 1)/2 (10)

By Equation (7), (8), (9) and (10), we have that for t is odd,

IS(Ct,r) = min {(t+ 2r − 1)/2, (t+ 1)/2} = (t+ 1)/2

Case 2. t is even:
For the vertex v1, IS(v1)-set includes the independent set of maximum cardinality
of Pt and all endvertices of K1,r. So,

IS(v1) = β(Pt) + r = (t+ 2r)/2 (11)

For the vertex vi, where 1 < i < t and i is odd, IS(vi)-set includes the independent
set of maximum cardinality of Pi−2 and Pt−(i+1), and all endvertices of K1,r. Thus,

IS(vi) = β(Pi−2) + 1 + β(Pt−(i+1)) + r = (t+ 2r)/2 (12)

For the vertex vi, where 1 < i < t and i is even, IS(vi)-set includes the independent
set of maximum cardinality of Pi−2 and Pt−(i+1)−1, and all endvertices of K1,r.
Thus,

IS(vi) = β(Pi−2) + 1 + β(Pt−(i+1)−1) + r = (t+ 2r − 2)/2 (13)

For the vertex vt, IS(vt)-set includes the independent set of maximum cardinality
of Pt−2. Then,

IS(vt) = 1 + β(Pt−2) = t/2 (14)

For an endvertex ui (1 ≤ i ≤ r) of K1,r, IS(ui)-set includes the independent
set of maximum cardinality of Pt−1 and all endvertices of K1,r. Thus,

IS(ui) = β(Pt−1) + r = (t+ 2r)/2 (15)

By Equation (11), (12), (13), (14) and (15), we have that for t is even,

IS(Ct,r) = min{(t+ 2r)/2, (t+ 2r − 2)/2, t/2} = t/2

By Case 1 and Case 2 ,

IS(Ct,r) = dt/2e
This completes the proof. �

2.3. Graph operations.

2.3.1. Union.

Theorem 2.6. Let G1, G2, ..., Gn be disjoint graphs. If G =
⋃n

i=1Gi , then

IS(G) = min
i

IS(Gi) +
∑
j 6=i

β(Gj)
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Proof. Denote the order of Gi by ni. Hence |V (G)| =
n∑

i=1
ni Label the vertices of G as

v1, v2, ..., vn1 , vn1+1, ..., vn1+n2 , vn1+n2+1, ..., v∑
i
ni

such that V (Gi) =

v(i−1∑
t=1

nt

)
+1

, ..., v i∑
t=1

nt

.

Then, we have that IS(G) = min

{
ISG(v1), ISG(v2), ..., ISG

(
v∑

i
ni

)}
. It is clear that,

for any vertex vj of G where

(
i−1∑
t=1
nt

)
+ 1 ≤ j ≤

i∑
t=1
nt and 1 ≤ i ≤ n, ISG(vj) =

ISGi(vj) +
∑
k 6=i

β(Gk). Thus,

IS(G) = min
{
ISG1(v1) +

∑
k 6=1

β(Gk), ..., ISG1(vn1) +
∑
k 6=1

β(Gk), ..., ISGn

v(n−1∑
t=1

nt

)
+1

+

∑
k 6=n

β(Gk), ..., ISGn

v n∑
t=1

nt

+
∑
k 6=n

β(Gk)
}

IS(G) = min

IS(G1) +
∑
k 6=1

β(Gk), ..., IS(Gn) +
∑
k 6=n

β(Gk)


IS(G) = min

i

IS(Gi) +
∑
k 6=i

β(Gk)


�

2.3.2. Join.

Definition 2.2. Let G1 and G2 be two disjoint graphs. The join of G1 and G2 with
disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the graph G =
G1 + G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2) ∪
{(u, v) : u ∈ V (G1), v ∈ V (G2)}.

Theorem 2.7. Let G1 and G2 be two disjoint graphs,then

IS(G1 +G2) = min {IS(G1), IS(G2)}

Proof. Denote the order of G1 and G2 by n and m, respectively. Label the vertices
of V (G1 + G2) as v1, v2, ..., vn , u1, u2, ..., um such that V (G1) = {v1, v2, ..., vn} and
V (G2) = {u1, u2, ..., um}. Then

IS(G1 +G2) = min {ISG1+G2(v1), ..., ISG1+G2(vn), ..., ISG1+G2(u1), ..., ISG1+G2(um)}
= min {ISG1(v1), ISG1(v2), ..., ISG1(vn), ISG2(u1), ISG2(u2), ..., ISG2(um)}

= min

{
min
i
{ISG1(vi) : 1 ≤ i ≤ n} ,min

j
{ISG2(uj) : 1 ≤ j ≤ m}

}
= min {IS(G1), IS(G2)} .

�
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