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ON ARITHMETIC-GEOMETRIC INDEX (GA)

AND EDGE GA INDEX

V.AYTAÇ1, T.TURACI2, §

Abstract. Let G(V (G), E(G)) be a simple connected graph and dG(u) be the degree
of the vertex u. Topological indices are numerical parameters of a graph which are
invariant under graph isomorphisms. Recently, people are studying various topological
measures such as the arithmetic-geometric index and the edge version of arithmetic-
geometric index of a graph G. Topological index based on the ratios of geometrical and
arithmetical means of end vertex degrees of edges. In this paper, exact values for the
arithmetic-geometric index and the edge version of arithmetic-geometric index of wheel
related graphs namely gear, helm, sunflower and friendship graph are obtained.
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1. Introduction

Graph theoretical applications in chemistry underwent a dramatic revival lately. Molecules
and molecular compounds are often represented by graphs, which are identified by their
vertices and edges where vertices are atom types and edges are bonds. Graph theory has
successfully provided chemists with a variety of very useful tools, namely, the topological
index. Topological indices of molecular graph are one of the oldest and most widely used
descriptors in QSPR/QSAR research. Topological indices are numerical parameters of a
graph which are invariant under graph isomorphisms. Recently, people are studying var-
ious topological measures, like the wiener index [18], the braching index [11], the randic
connectivity index [5, 8], the zagreb indices [4, 10], the edge eccentric connectivity index
[15], and so on. For a graph G, with vertex set V (G) and edge set E(G), Vukicevic and
Furtula defined a new topological index the arithmetic-geometric index of a graph G [16],
denoted by GA(G) and defined by

GA = GA(G) =
∑

uv∈E(G)

2
√
dG(u)dG(v)

dG(u) + dG(v)
,

where uv is an edge of the graph G connecting the vertices u and v, also dG(u) stands for
the degree of the vertex u, and where the summation goes over all edges of G. Needless
to say that GA(G) is one more vertex-degree-based graph invariant [3, 16].
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The edge version of arithmetic-geometric index based on the end vertex degree of edges
in a line graph G as follows:

GAe = GAe(G) =
∑

ef∈E(L(G))

2
√
dG(e)dG(f)

dG(e) + dG(f)
,

where dG(e) denotes the degree of the edge e in G [9, 12]. The line graph L(G) of a graph
G is a graph such that each vertex of L(G) represents an edge of G, and any two vertices
of L(G) are adjacent if and only if their edges are incident, meaning they share a common
end vertex, in graph G [1, 2, 17].
Now, some notation and terminology is introduced. We consider only simple finite undi-
rected graphs without loops and multiple edges. Let G(V (G), E(G)) be a simple con-
nected graph with vertex and edge sets V (G) and E(G), where V (G) = {v1, v2, ..., vn},
|V (G)| = n, and |E(G)| = m. For a vertex u of a graph G, the open neighborhood
of u is N(u) = {v ∈ V (G)|(u, v) ∈ E(G)}. We define analogously for any S ⊆ V (G)
the open neighborhood N(S) = ∪u∈SN(u). The degree of a vertex u of G is denoted by
dG(u) = |N(u)|. The covering and independence number, the maximum and the minimum
degree of a graph G are denoted by α(G), β(G), ∆(G), and δ(G), respectively [1, 2, 17].
A notation is used in order to make the proof of the given theorems understandable. Let
u and v be any two vertices of the graph G. If these two vertices are adjacent in the graph
G, then the edge between these two vertices is denoted by euv in the graph G.
In this paper, we focus our attention to these topological indices: the arithmetic-geometric
index and edge version of arithmetic-geometric index. This paper organized as follows. In
Section 2, known results for the arithmetic-geometric index and edge version of arithmetic-
geometric index are given. In Section 3, definitions of wheel and related graphs namely
gear, helm, sunflower and friendship graph are given and exact values for the arithmetic-
geometric index of those graphs are determined. In Section 4, we give exact values for the
edge version of arithmetic-geometric index of wheel and related graphs. Finally, conclud-
ing remarks of this paper are given in Section 5.

2. Basic results

In this section well known basic results are given with regard to the arithmetic-geometric
index and edge version of arithmetic-geometric index.

Theorem 2.1. [16] Let G be a simple connected graph with n vertices, then

2(n− 1)3/2

n
≤ GA(G) ≤

(
n

2

)
.

Lower bound is achieved if and only if G ∼= K1,n−1 and upper bound is achieved if and
only if G ∼= Kn.

Theorem 2.2. [16] Let T be a tree with n > 2 vertices, then

2(n− 1)3/2

n
≤ GA(T ) ≤ 4

√
2

3
+ n− 3.

Lower bound is achieved if and only if T ∼= K1,n−1 and upper bound is achieved if and only
if T ∼= Pn.

Theorem 2.3. [3] Let G be a simple connected graph of m edges with the maximum vertex
degree ∆(G) and minimum vertex degree δ(G). Then,

GA(G) ≥
2m
√

∆(G)δ(G)

∆(G) + δ(G)
.
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Theorem 2.4. [3] Let G be a simple connected graph on n vertices with a connected G ,
then the Nordhaus-Gaddum-type result for GA index of G is

GA(G) +GA(G) ≤
(
n

2

)
with equality holding if and only if G is isomorphic to a regular graph.

Theorem 2.5. [9] The GA and GAe of
(a) the complete graph Kn with n vertices is GA(Kn) = GAe(Kn) = n(n− 1)2/2;

(b) the star graph K1,n−1 with n vertices is GA(Kn−1) = GAe(K1,n−1) =
(
n−1

2

)
;

(c) the path graph Pn with n vertices is GA(Pn−1) = GAe(Pn) = 4
√

2/3 + (n− 4);
(d) the cycle graph Cn with n vertices is GA(Cn) = GAe(Cn) = n.

Theorem 2.6. [9] Let G be a simple connected graph with n vertices, then

0 ≤ GAe(G) ≤ n(n− 1)2/2.

Lower bound is achieved if and only if G is an empty graph and upper bound is achieved
if and only if G ∼= Kn.

Theorem 2.7. [9] Let G be a simple connected graph with n vertices, then

(n− 4) + 4
√

2/3 ≤ GAe(G) ≤ n(n− 1)2/2.

Lower bound is achieved if and only if G ∼= Pn and upper bound is achieved if and only if
G ∼= Kn.

Theorem 2.8. [9] Let G be a simple connected graph on n vertices with a connected G,
then the Nordhaus-Gaddum-type result for GAe(G) index of G is

(3(n2 − n− 4) + 8
√

2)/6 ≤ GAe(G) +GAe(G) ≤ (n− 2)(n− 1)n(n+ 1)/8.

3. Arithmetic-Geometric index of wheel related graphs

Definition 3.1. [6, 7, 13] The wheel Wn with n (n ≥ 3) spokes is a graph that contains
an n-cycle and one additional central vertex vc that is adjacent to all vertices of the cycle.
The central vertex vc of the wheel Wn has a vertex degree of n. Wheel graph has (n + 1)
vertices and 2n edges.

Theorem 3.1. Let Wn be a wheel graph of order n+ 1. Then, GA(Wn) = 2n
√

3n
n+3 + n.

Proof. Let the vertex and edge sets of Wn be V (Wn) = V1 ∪ V2 and E(Wn) = E1 ∪ E2,
respectively; where:
V1: The set contains the center vertex vc whose degree n of the graph Wn.
V2: The set contains vertices of V (Wn) \ {vc}, and we show that these vertices with vi,
where i = 1, n.
Similarly, E1 = {evcvi ∈ E(Wn)|vc ∈ V1, vi ∈ V2} and E2 = {evivj ∈ E(Wn)|vi, vj ∈ V2}.
We have two cases depending on the edges of graph Wn.

Case1. Let evcvi be any edge of E1. Since the structure of graph Wn, we have dWn(vc) = n

and dWn(vi) = 3, where i = 1, n. Thus, we get 2
√

3n
n+3 for every edge evcvi . Due to |E1| = n,

n(2
√

3n
n+3 ) = 2n

√
3n

n+3 is obtained for edges of E1.
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Case2. Let evivj ∈ E2. It is clear that dWn(vi) = dWn(vj) = 3. Thus, we get 2
√

3.3
3+3

for every edge evivj . Since there are n edges in E2, n(2
√

3.3
3+3 ) = n is obtained for every

edges in E2.

By summing up the Cases 1 and 2, it is clear that GA(Wn) = 2n
√

3n
n+3 + n.

The proof is completed. �

Theorem 3.2. Let W2n be a wheel graph of order 2n+ 1. Then, GA(W2n) = 4n
√

6n
2n+3 + 2n.

Proof. By the Theorem 3.1, it is clear. �

Definition 3.2. [6, 7, 13] The gear graph is a wheel graph with a vertex added between each
pair adjacent graph vertices of the outer cycle. Gear graph Gn includes an even cycle C2n.
The vertices of C2n in Gn are of two kinds: vertices of degree two and three, respectively.
The vertices of degree two will be referred to as minor vertices and vertices of degree three
to as major vertices. Let the central vertex of gear graph Gn be vc. The central vertex vc
has a vertex degree of n. Gear graph Gn has (2n+ 1) vertices and 3n edges.

Theorem 3.3. Let Gn be a gear graph of order 2n+ 1. Then, GA(Gn) = 2n
√

3n
n+3 + 4n

√
6

5 .

Proof. We partition the vertices of graph Gn into three subsets V1, V2 and V3, as follows:
V1 = {vc ∈ V (Gn)|dGn(vc) = n}, V2 = {vi ∈ V (Gn)|dGn(vi) = 3, i = 1, n} and
V3 = {vi ∈ V (Gn)|dGn(vi) = 2, i = n+ 1, 2n}.
Similarly, we partition the edges of graph Gn into two subsets E1 and E2, as follows:
E1 = {evcvi ∈ E(Gn)|vc ∈ V1, vi ∈ V2} and E2 = {evivj ∈ E(Gn)|vi ∈ V2, vj ∈ V3}.
We have two cases depending on the edges of Gn.

Case1. This case is very similar to the Case 1 of the proof of Theorem 3.1. As a re-

sult, we have 2n
√

3n
n+3 for all edges of E1.

Case2. Let evivj be any edge of the set E2. For vi ∈ V2, vj ∈ V3 and |E2| = 2n, the

value of the arithmetic-geometric index 2n(2
√

3.2
3+2 ) = 4n

√
6

5 is obtained for all edges of E2.

By summing up the Cases 1 and 2, it is clear that GA(Gn) = 2n
√

3n
n+3 + 4n

√
6

5 .
Thus, the proof is completed. �

Definition 3.3. [6, 7, 14] is collection of n triangles with a common vertex. Friendship
graph can also be obtained from a wheel W2n with cycle C2n by deleting alternate edges
of the cycle. Another way of obtaining friendship graph is addition of K1 and n copies
of K2. Let the central vertex of a friendship graph fn be vc. The central vertex vc has a
vertex degree of 2n. Friendship graph fn has (2n+ 1) vertices and 3n edges.

Theorem 3.4. Let fn be a friendship graph of order 2n+ 1. Then, GA(fn) = 4n
√
n

n+1 + n.

Proof. Let the vertex and edge sets of fn be V (fn) = V1 ∪ V2 and E(fn) = E1 ∪ E2 ,
respectively; where:
V1 = {vc ∈ V (fn)|dfn(vc) = 2n} and V2 = {vi ∈ V (fn)|dfn(vi) = 2, i = 1, 2n},
E1 = {evcvi ∈ E(fn)|vc ∈ V1, vi ∈ V2} and E2 = {evivj ∈ E(fn)|vi, vj ∈ V2}.
We have two cases for the all edges of the graph fn.

Case1. Let evcvi be any edge of E1. For vc ∈ V1, vi ∈ V2 and |E1| = 2n, the value

of the arithmetic-geometric index 2n(2
√

2n.2
2n+2 ) = 4n

√
n

n+1 is obtained.
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Case2. Let evivj be any edge of E2. Due to dfn(vi) = dfn(vj) = 2 and |E2| = n, we

obtain n(2
√

2.2
2+2 ) = n for all edges of E2.

By summing up the Case 1 and 2, it is clear that GA(fn) = 4n
√
n

n+1 + n.
Thus, the proof is completed. �

Definition 3.4. [6, 7, 13] Helm Hn is a graph of order 2n+ 1 obtained from a wheel Wn

with cycle Cn having a pendant edge attached to each vertex of the cycle. Helm Hn consists
of the vertex set V (Hn) = {vi|0 ≤ i ≤ n − 1} ∪ {ai|0 ≤ i ≤ n − 1} ∪ {vc} and edge set
E(Hn) = {evivi+1 |0 ≤ i ≤ n− 1}∪{eviai |0 ≤ i ≤ n− 1}∪{evivc |0 ≤ i ≤ n− 1}, where i+ 1
is taken modulo n. Let vc be the central vertex of Hn. The central vertex vc has a vertex
degree with n. The vertices of Hn \ {vc} are of two kinds: vertices of degree four and one,
respectively. The vertices of degree one will be referred to as minor vertices and vertices
of degree four to as major vertices . Helm graph has (2n+ 1) vertices and 3n edges.

Theorem 3.5. Let Hn be a helm graph of order 2n+ 1. Then, GA(Hn) = 4n
√
n

n+4 + 9n
5 .

Proof. We partition the vertices of the graph Hn into three subsets V1, V2 and V3, as
follows:
V1 = {vc ∈ V (Hn)|dHn(vc) = n}, V2 = {vi ∈ V (Hn)|dHn(vi) = 4, i = 1, n} and
V3 = {vi ∈ V (Hn)|dHn(vi) = 1, i = n+ 1, 2n}.
Similarly, we partition the edges of graph Hn into three subsets E1, E2 and E3 as follows:
E1 = {evcvi ∈ E(Hn)|vc ∈ V1, vi ∈ V2}, E2 = {evivj ∈ E(Hn)|vi, vj ∈ V2} and
E3 = {evivj ∈ E(Hn)|vi ∈ V2, vj ∈ V3}.
Then the proof proceeds in the following three cases:

Case1. This case is very similar to the Case 1 of the proof of Theorem 3.1. Then,

clearly dHn(vi) = 4, where i = 1, n in Hn. Thus, n(2
√

4.n
n+4 ) = 4n

√
n

n+4 .

Case2. This case is very similar to the Case 2 of the proof of Theorem 3.4. Then,

n(2
√

4.4
4+4 ) = n is obtained for all edges of E2.

Case3.Let evivj be any edge of E3. Due to dHn(vi) = 4 and dHn(vj) = 1, we obtain

n(2
√

4.1
4+1 ) = 4n

5 for all edges of E3.

By summing up the Cases 1, 2 and 3, it is clear that GA(Hn) = 4n
√
n

n+4 +n+ 4n
5 = 4n

√
n

n+4 + 9n
5 .

Thus, the proof is completed. �

Definition 3.5. [6, 7, 13] Sunflower graph SFn consists of a wheel with central vertex vc
and an n-cycle v0, v1, v2, ..., vn−1 and additional n vertices w0, w1, w2, ..., wn−1 where wi is
joined by edges to evivi+1 for i = {0, 1, ..., n − 1} where i + 1 is taken modulo n. Let vc
be the central vertex of SFn. The central vertex vc has a vertex degree of n. The vertices
of SFn \ {vc} are of two kinds: vertices of degree five and two, respectively. The vertices
of degree two will be referred to as minor vertices and vertices of degree five to as major
vertices. Sunflower graph has (2n+ 1) vertices and 4n edges.

Theorem 3.6. Let SFn be a sunflower graph of order 2n+ 1. Then,

GA(SFn) =
2n
√

5n

n+ 5
+

7n+ 4n
√

10

7
.

Proof. Let the vertex and edge sets of SFn be V (SFn) = V1 ∪ V2 ∪ V3 and E(SFn) =
E1 ∪ E2 ∪ E3, respectively; where:
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V1 = {vc ∈ V (SFn)|dSFn(vc) = n}, V2 = {vi ∈ V (SFn)|dSFn(vi) = 5, i = 1, n} and
V3 = {vi ∈ V (SFn)|dSFn(vi) = 2, i = n+ 1, 2n}.
Similarly, we partition the edges of graph SFn into three subsets E1, E2 and E3 as follows:
E1 = {evcvi ∈ E(SFn)|vc ∈ V1, vi ∈ V2}, E2 = {evivj ∈ E(SFn)|vi, vj ∈ V2} and
E3 = {evivj ∈ E(SFn)|vi ∈ V2, vj ∈ V3}.
We have three cases depending on the edges of SFn. The proof is similar to above men-

tioned theorems. When we calculated these three cases, we obtain 2n
√

5n
n+5 , n and 4n

√
10

7 for
all edges of the sets E1, E2 and E3, respectively.

By summing these values, we have GA(SFn) = 2n
√

5n
n+5 + 7n+4n

√
10

7 .
Thus, the proof is completed. �

4. The edge GA of wheels and related graphs

Theorem 4.1. Let Wn be a wheel graph of order n+ 1. Then,

GAe(Wn) =
n2 + n

2
+

8n
√
n+ 1

n+ 5
.

Proof. Since the structure of L(Wn), we have |V (L(Wn))| = 2n and |E(L(Wn))| = n2+5n
2 .

Let the vertex set of the graph L(Wn) be V (L(Wn)) = V1 ∪ V2, where:
V1 = {vi ∈ V (L(Wn))|dL(Wn)(vi) = n+ 1, i = 1, n} and

V2 = {vi ∈ V (L(Wn))|dL(Wn)(vi) = 4, i = n+ 1, 2n}.
Similarly, let the edge set of the graph L(Wn) be E(L(Wn)) = E1 ∪ E2 ∪ E3, where:
E1 = {evivj ∈ E(L(Wn))|vi, vj ∈ V1}, E2 = {evivj ∈ E(L(Wn))|vi ∈ V1, vj ∈ V2} and
E3 = {evivj ∈ E(L(Wn))|vi, vj ∈ V2}.
It is not difficult to see that |E1| = n(n−1)

2 , |E2| = 2n and |E3| = n. Thus, we have three
cases for computing the GAe(Wn).

Case 1. Let evivj ∈ E1. It is easy to see that dL(Wn)(vi) = dL(Wn)(vj) = n + 1. By

the definition of the edge GA , we have (
2
√

(n+1)(n+1)

2(n+1) ) for every edges of the set E1. Thus,

we get n(n−1)
2 (

2
√

(n+1)(n+1)

2(n+1) ) = n(n−1)
2 for this case.

Case 2. Let evivj ∈ E2. Due to dL(Wn)(vi) = n+ 1 and dL(Wn)(vj) = 4, then we arrive the

result
2
√

4(n+1)

n+5 that for every edges of the set E2. Thus, we get 2n(
2
√

4(n+1)

n+5 ) =
8n
√

4(n+1)

n+5 .

Case 3. Let evivj ∈ E3. It is easy to see that dL(Wn)(vi) = dL(Wn)(vj) = 4. By the

definition of the edge GA , we have (2
√

4.4
4+4 ) = 1 for every edges of the set E3. Thus, we

get n(2
√

4.4
4+4 ) = n for this case.

By summing up the Cases 1, 2 and 3, it is clear that GAe(Wn) = n2+n
2 + 8n

√
n+1

n+5 .
Thus, the proof is completed. �

Theorem 4.2. Let W2n be a wheel graph of order 2n+ 1. Then,

GAe(W2n) = 2n2 + n+
16n
√

2n+ 1

2n+ 5
.

Proof. By the Theorem 4.1, it is clear. �
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Theorem 4.3. Let Gn be a gear graph of order 2n+ 1. Then,

GAe(Gn) =
n2 + 3n

2
+

4n
√

3n+ 3

n+ 4
.

Proof. Let the vertex and edge set of the graph L(Gn) be V (L(Gn)) = V1 ∪ V2 and
E(L(Gn)) = E1∪E2∪E3 , respectively. It is clear that |V (L(Gn))| = 2n and |E(L(Gn))| =
n2+7n

2 . Furthermore, V1 = {vi ∈ V (L(Gn))|dL(Gn)(vi) = n + 1, i = 1, n} and V2 = {vi ∈
V (L(Gn))|dL(Gn)(vi) = 3, i = n+ 1, 3n}.
Moreover, the sets E1, E2 and E3 are the same sets of the Theorem 4.1. We have three
cases depending on the edges of graph L(Gn). The proof is very similar to the proof

of Theorem 4.1. Thus when computing GAe(Gn), we receive the three values: n(n−1)
2 ,

4n
√

3n+3
n+4 and n for all edges of the sets E1, E2 and E3, respectively.

By summing up the Cases 1, 2 and 3, it is clear that GAe(Gn) = n2+3n
2 + 4n

√
3n+3

n+4 .
Thus, the proof is completed. �

Theorem 4.4. Let fn be a friendship graph of order 2n+ 1. Then,

GAe(fn) = 2n2 − n+
8n
√
n

n+ 1
.

Proof. It is clear that |V (L(fn))| = 3n and |E(L(fn))| = 2n2 +n. Let V (L(fn)) = V1 ∪V2

and E(L(fn)) = E1 ∪ E2, then we have as follows:
V1 = {vi ∈ V (L(fn))|dL(fn)(vi) = 2n, i = 1, 2n},
V2 = {vi ∈ V (L(fn))|dL(fn)(vi) = 2, i = 2n+ 1, 3n},
E1 = {evivj ∈ E(L(fn))|vi, vj ∈ V1} and
E2 = {evivj ∈ E(L(fn))|vi ∈ V1, vj ∈ V2}.
The edges of the graph fn in two cases should be examined.

Case 1. Let evivj be any edge of the set E1. By the definition of the edge GA, we
have the following value GAe for every edges of the set E1:

GAe = (2n2 − n)(
2
√

2n.2n

2n+ 2n
) = 2n2 − n.

Case 2. Let evivj be any edge of the set E2. Due to dL(fn)(vi) = 2n and dL(fn)(vj) = 2,
we get the following value GAe for every edges of the set E2:

GAe = (2n)(
2
√

2n.2

2n+ 2
) =

8n
√
n

2n+ 2
.

By summing up the Cases 1 and 2, it is clear that GAe(fn) = 2n2 − n+ 8n
√
n

n+1 .
Thus, the proof is completed. �

Theorem 4.5. Let Hn be a helm graph of order 2n+ 1. Then,

GAe(Hn) =
n2 + n

2
+

4n
√

2

3
+

4n
√

6n+ 12

n+ 8
+

2n
√

3n+ 6

n+ 5
.

Proof. Since the structure of the graph L(Hn), we have |V (L(Hn))| = 3n and |E(L(Hn))| =
n2+11

2 . Furthermore, we have three types of vertices depending on degrees. They can be
showed as follows:
V1 = {vi ∈ V (L(Hn))|dL(Hn)(vi) = n+ 2, i = 1, n},
V2 = {vi ∈ V (L(Hn))|dL(Hn)(vi) = 6, i = n+ 1, 2n} and
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V3 = {vi ∈ V (L(Hn))|dL(Hn)(vi) = 3, i = 2n+ 1, 3n}.
Similarly, we have five types for edges of L(Hn) as follows:
E1 = {evivj ∈ E(L(Hn))|vi, vj ∈ V1}, E2 = {evivj ∈ E(L(Hn))|vi ∈ V1, vj ∈ V2},
E3 = {evivj ∈ E(L(Hn))|vi, vj ∈ V2}, E4 = {evivj ∈ E(L(Hn))|vi ∈ V2, vj ∈ V3} and
E5 = {evivj ∈ E(L(Hn))|vi ∈ V1, vj ∈ V3}.
It is easy to see that |E1| = n(n−1)

2 , |E2| = |E4| = 2n and |E3| = |E5| = n. Thus, we
have five cases for computing the GAe(Hn). When we calculated the these five cases, we

obtained n(n−1)
2 , 4n

√
6n+12
n+8 , n, 4n

√
2

3 and 2n
√

3n+6
n+5 for all edges of the sets E1, E2, E3, E4

and E5, respectively.
By summing up the these values, we receive

GAe(Hn) =
n2 + n

2
+

4n
√

2

3
+

4n
√

6n+ 12

n+ 8
+

2n
√

3n+ 6

n+ 5
.

Thus, the proof is completed. �

Theorem 4.6. Let SFn be a sunflower graph of order 2n+ 1. Then,

GAe(SFn) =
n2 + 5n

2
+

4
√

2n+ 6

n+ 11
+

16n
√

10

13
+

12n
√

5n+ 15

n+ 8
.

Proof. The graph SFn has 4n-vertices and ((n2 +21n)/2)-edges. We partition the vertices
of graph L(SFn) into three subsets V1, V2 and V3 as follows:
V1 = {vi ∈ V (L(SFn))|dL(SFn)(vi) = n+ 3, i = 1, n},
V2 = {vi ∈ V (L(SFn))|dL(SFn)(vi) = 8, i = n+ 1, 2n} and

V3 = {vi ∈ V (L(SFn))|dL(SFn)(vi) = 5, i = 2n+ 1, 4n}.
Similarly, we partition the edges of graph L(SFn) into six subsets E1, E2, E3, E4, E5 and
E6, as follows:
E1 = {evivj ∈ E(L(SFn))|vi, vj ∈ V1}, E2 = {evivj ∈ E(L(SFn))|vi ∈ V1, vj ∈ V2},
E3 = {evivj ∈ E(L(SFn))|vi, vj ∈ V2}, E4 = {evivj ∈ E(L(SFn))|vi ∈ V2, vj ∈ V3},
E5 = {evivj ∈ E(L(SFn))|vi, vj ∈ V3} and E6 = {evivj ∈ E(L(SFn))|vi ∈ V1, vj ∈ V3}.
Clearly, |E1| = n(n−1)

2 , |E2| = |E5| = |E6| = 2n, |E3| = n and |E4| = 4n. The edges of
graph L(SFn) in six cases should be examined. Remaining of the this proof is similar to
Theorem 4.5.
By summing up the these values, we get

GAe(SFn) =
n2 + 5n

2
+

4
√

2n+ 6

n+ 11
+

16n
√

10

13
+

12n
√

5n+ 15

n+ 8
.

Thus, the proof is completed. �

5. Conclusion

The graphics of values of GA and edge GA values of the graphs considered in the paper
are given in the following Figure 1.

When evaluating GA values for the considered graphs, it can be easily seen that the
number of vertices of each graph is same but the number of edges of W2n, SFn and the
number of edges of fn, Gn and Hn are same. Hence, making a comparison for the GA
values of graphs in two groups is more accurate. Accordingly, we can say that due to the
GA value, the architecture of SFn is better than W2n. Similarly, Gn is better than that
of fn and Hn.

If a similar interpretation is handled for the edge GA value, it is seen that the number of
edges and vertices differs for graphs L(G) which should be constructed for the definition of
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Figure 1. The values of the GA and edge GA indexes

parameter. Both the parameters considered in the paper are edge based. Therefore, when
making a comparison, the number of edges should be taken into consideration. However,
each constructed graph L(G) has different number of edges. If a graphic based on the
edge GA values of considered graphs is investigated, then it is observed that the results
for the graphs L(W2n) and L(fn), also L(SFn), L(Hn) and L(Gn) are close to each other.
Hence, we can conclude that the graphs L(W2n) and L(SFn) are more stable.
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