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ON TRANS-SASAKIAN MANIFOLD EQUIPPED WITH

m-PROJECTIVE CURVATURE TENSOR

J. P. JAISWAL 1, A. S. YADAV2, §

Abstract. The work towards of the attending paper is to interpret the trans-Sasakian
manifold equipped with m-projective curvature tensor and its various geometric proper-
ties. First, we observe that m-projectively flat trans-Sasakian manifold is Einstein. In
order, we discussed m-projectively conservative and φ-m-projectively flat trans-Sasakian
manifold. Following, we found the sufficient condition for quasi m-projectively flat trans-
Sasakian manifold to be m-projectively flat. In the end, the m-projectively and φ-m-
projectively symmetric trans-Sasakian manifolds are analyzed.
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1. Introduction

Oubina [8] initiated a new class of almost contract manifold, called trans-Sasakian
manifold, which is of type (0, 0), (α, 0) and (0, β) are respectively, familiar as the cosym-
plectic, α-Sasakian and β-Kenmotsu manifold, α, β are the scalar smooth functions. In
fact if α = 0, β = 1 and α = 1, β = 0, then a trans-Sasakian manifold will enhance a
Kenmotsu and Sasakian manifold, respectively.

In 1971, Pokhariyal and Mishra[9] established a new curvature known as m-projectively
curvature tensor on Riemannian manifold. Followed that many researcher such as Ojha
[6, 7], Singh [12], Choubey and Ojha [3] studied properties of m-projective curvature in
different manifolds. We say that a Riemannian manifold is flat if its curvature vanishes
at each point. Following this sense Ojha [7] and Zengin [15] consider the m-projective
flat in the Sasakian and LP-Sasakian manifold, respectively. The idea of local symmetry
of a Riemannian manifold studied by Cartan [2] and mild version of local symmetry,
Takahashi [13] introduced the notion of φ-symmetry on a Sasakian manifold. In this series,
we investigate some results about flatness, symmetry and space time with m-projective
curvature in trans-Sasakian structure.

The paper classified as follows: In part 2, we put some basic formulae and definition
of trans-Sasakian manifold. In the next part, we confer about m-projectively flat trans-
Sasakian manifold and mentioned a sufficient condition for such a manifold to be Einstein.
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Then, we found the condition such that the m-projective conservative trans-Sasakian man-
ifold is of constant curvature. Successive that, we find the condition for φ-m-projectively
flat trans-Sasakian manifold to be η-Einstein and quasi m-projectively flat is of constant
curvature. In the last, we examine the m-projective and φ-m-projective symmetric trans-
Sasakian manifolds.

2. Preliminaries

In this section, we mention some basic formulae and definitions, which will be used
later.

Let Mm be an m = (2n+ 1) dimensional almost contact metric manifold [1], consisting
of a (1, 1) tensor field φ, a characteristic vector field ξ, a 1-form η and a Riemannian metric
g. Then

φ2X = −X + η(X)ξ, η(ξ) = 1, η(φX) = 0, φξ = 0, (1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2)

g(ξ, ξ) = 1, φ ◦ ξ = 0, η ◦ φ = 0, (3)

for any X, Y in TM . From (1) and (2), it can be easily seen that

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X). (4)

For an almost contact metric structure (φ, ξ, η, g) on M , we put

Φ(X,Y ) = g(X,φY ). (5)

Let M2n+1 be almost contact manifold and consider the structure (M × R, J , G)
belongs to the class W4 of the Hermitian manifolds, we denote a vector field on M × R
by (X, f d

dt), where X is tangent to M, t is the co-ordinates of R and f as C∞ function on
M ×R. Define an almost complex structure [4]

J
(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

for any vector field X on M ×R and G is Hermitian metric on the product M ×R.This
may be expressed by the condition

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), (6)

where ∇ is a Levi-civita connection and α, β are some smooth functions on M2n+1 and
we say that trans-Sasakian structure is type (α, β). From the above, it is follows that

(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ), (7)

(∇Xξ) = −αφX + β(X − η(X)ξ). (8)

On a trans-Sasakian manifold M2n+1 with structure (φ, ξ, η, g), the following relations
hold [11]

R(X,Y, ξ) = (α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ]

+(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y, (9)

R(ξ,X, ξ) = (α2 − β2 − ξβ)[η(X)ξ −X], (10)

2αβ + ξα = 0, (11)

η(R(X,Y, ξ)) = η(R(ξ, Y, ξ)) = 0, (12)

R(ξ, Y, Z) = (α2 − β2)[g(Z, Y )ξ − η(Z)Y ] + 2αβ[g(φZ, Y )ξ + η(Z)φY ] + (Zα)φY

+g(φZ, Y )gradα+ (Zβ)[Y − η(Y )ξ]− g(φZ, φY )gradβ, (13)

S(X, ξ) = [2n(α2 − β2)− ξβ]η(X)− (2n− 1)Xβ − (φX)α, (14)
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S(ξ, ξ) = 2n(α2 − β2 − ξβ), (15)

S(φX, φY ) = S(X,Y )− 2n(α2 − β2 − ξβ)η(X)η(Y ), (16)

Qξ = (2n(α2 − β2)− ξβ)ξ − (2n− 1)gradβ + φ(gradα), (17)

S(X,Y ) = g(QX,Y ), (18)

where R is the curvature tensor, S is the Ricci tensor, r is scalar curvature and Q being the
symmetric endomorphism of the tangent space at each point corresponding to Ricci-tensor
S. Now, we assume that

φ(gradα) = (2n− 1)gradβ, (19)

then [11]

S(X, ξ) = 2n(α2 − β2)η(X), (20)

S(φX, φY ) = S(X,Y )− 2n(α2 − β2)η(X)η(Y ), (21)

Qξ = 2n(α2 − β2)ξ, (22)

(∇WS)(Y, ξ) = 2n(α2 − β2)[−αg(Y, φW ) + βg(Y,W )]

+αS(Y, φW )− βS(Y,W ). (23)

Now we are going to mention the following definition, which will be considered in the later
results:

Definition 2.1. [4] A trans-Sasakian manifold M2n+1 is said to be η-Einstein, if the Ricci
tensor S satisfies the relation

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (24)

for all X and Z ∈ TM , where a and b are smooth functions on M2n+1.

In particular, if b = 0 then it reduce to the Einstein manifold.

3. m-projectively flat Trans-Sasakian Manifold

Definition 3.1. [10] A trans-Sasakian manifold M2n+1 is said to be m-projectively flat,
if the m-projective curvature tensor M satisfies the relation

M(X,Y, Z) = 0, for all X, Y and Z, (25)

where m-projective curvature tensor M is given by [9]

M(X,Y, Z) = R(X,Y, Z)− 1

4n

[
S(Y,Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY

]
. (26)

Theorem 3.1. An m-projectively flat trans-Sasakian manifold M2n+1 is an Einstein man-
ifold.

Proof. Let M2n+1 be m-projectively flat trans-Sasakian manifold, then the equation (26)
becomes

R(X,Y, Z) =
1

4n

[
S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY

]
. (27)
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Proceeds the inner product in above equation both side with respect to U , then we obtain

g(R(X,Y, Z), U) =
1

4n

[
S(Y,Z)g(X,U)− S(X,Z)g(Y, U)

+g(Y, Z)S(X,U)− g(X,Z)S(Y,U)

]
. (28)

Taking the contraction over X and U , we get

S(Y,Z) =
r

(2n+ 1)
g(Y, Z). (29)

�

Theorem 3.2. An m-projectively flat trans-Sasakian manifold M2n+1 is of constant cur-
vature.

Proof. Let M2n+1 be m-projectively flat trans-Sasakian manifold. Then by existence of
the relation (27) and after using the equations (29), we can find

R(X,Y, Z) =
r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ]. (30)

�

By virtue of the Theorem (3.1) and Theorem (3.2), we state the following corollary:

Corollary 3.1. An m-projectively flat trans-Sasakian manifold M2n+1, is of constant
curvature iff it is Einstein.

4. m-projective conservative Trans- Sasakian Manifold

Definition 4.1. [5] A trans-Sasakian manifold M2n+1 is said to be m-projective conser-
vative, if the m-projective curvature tensor M satisfies the relation

div(M(X,Y, Z)) = 0, for all X, Y and Z, (31)

where div denotes the divergence.

Theorem 4.1. An Einstein trans-Sasakian manifold M2n+1 with constant scalar curva-
ture is m-projective conservative iff it is conservative.

Proof. We assume that M2n+1 be Einstein M -projective trans-Sasakian manifold then by
virtue of relation (26), we obtain

M(X,Y, Z) = R(X,Y, Z)− 1

4n
[g(Y,Z)X − g(X,Z)Y ]. (32)

By taking covariant derivative both side with respect to W in above equation, we obtain

(∇W )M(X,Y, Z) = (∇W )R(X,Y, Z). (33)

Contracting the above relation with W , we can find

div(M(X,Y, Z)) = div(R(X,Y, Z)). (34)

If manifold is m-projective conservative, then

div(R(X,Y, Z)) = 0. (35)

Then the converse part is trivial. �
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5. φ-m-projectively flat Trans- Sasakian Manifold

Definition 5.1. [11] A trans-Sasakian manifold M2n+1 is said to be φ-m-projectively flat,
if the m-projective curvature tensor M satisfies the relation

φ2(M(φX, φY, φZ)) = 0, for all X, Y and Z. (36)

Theorem 5.1. A φ-m-projectively flat trans-Sasakian manifold M2n+1 is an η-Einstein
manifold.

Proof. Let us we assume that M2n+1 be φ-M -projectively flat trans-Sasakian manifold.
Then by virtue of the relations (36) and (1), we have

M(φX, φY, φZ) = η(M(φX, φY, φZ))ξ, (37)

which implies

g(M(φX, φY, φZ), φU) = η(M(φX, φY, φZ))g(ξ, φU). (38)

By the relation (1), the above equation becomes

g(M(φX, φY, φZ), φU) = 0. (39)

Now, by virtue of the relation (26), we obtain

g(R(φX, φY, φZ), φU) =
1

4n
[S(φY, φZ)g(φX, φU)− S(φX, φZ)g(φY, φU)

+g(φY, φZ)S(φX, φU)− g(φX, φZ)S(φY, φU)]. (40)

Let {e1, e2, ........, e2n, ξ} be a local orthonormal basis of vector field in M2n+1 by using
the fact that {φe1, φe2, ........, φe2n, ξ} is also a orthonormal basis, if we put X=U=ei in
above relation and taking summation with respect to i, then we have

2n∑
i=1

g(R(φei, φY, φZ), φei)

=
1

4n

[ 2n∑
i=1

S(φY, φZ)g(φei, φei)−
2n∑
i=1

S(φei, φZ)g(φY, φei)

+

2n∑
i=1

g(φY, φZ)S(φei, φei)−
2n∑
i=1

g(φei, φZ)S(φY, φei)

]
. (41)

Now, we find that

2n∑
i=1

g(R(φei, φY, φZ), φei) = S(φY, φZ)− (α2 − β2 − ξβ)g(φY, φZ),

2n∑
i=1

g(φei, φei) = 2n, (42)

2n∑
i=1

S(φei, φZ)g(φY, φei) = S(φY, φZ), (43)

2n∑
i=1

S(φei, φei) = r − 2n(α2 − β2 − ξβ), (44)
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(2n+ 2)S(φY, φZ) = [r + 2n(α2 − β2 − ξβ)]g(φY, φZ). (45)

Using the relations (42)-(45), the equation (41) becomes

S(Y, Z) =
1

(2n+ 2)

[
r + 2n(α2 − β2 − ξβ)

]
g(Y, Z)

+
1

(2n+ 2)

[
2n(2n− 1)(α2 − β2 − ξβ)

]
η(Y )η(Z). (46)

Hence the manifold is η-Einstein. �

6. Quasi m-projectively flat Trans-Sasakian Manifold

Definition 6.1. [10] A trans-Sasakian manifold M2n+1 is said to be quasi m-projectively
flat, if the m-projective curvature tensor M satisfies the relation

g(M(X,Y, Z), φU) = 0, for all X, Y Z and U. (47)

Theorem 6.1. A quasi m-projectively flat trans-Sasakian manifold M2n+1 satisfying
φ(gradα) = (2n− 1)gradβ is m-projectively flat if it is of constant curvature .

Proof. Let M2n+1 be a quasi m-projectively flat trans-Sasakian manifold. Then by the
relations (47) and (26), we obtain

g(R(X,Y, Z), φU) =
1

4n
[S(Y, Z)g(X,φU)− S(X,Z)g(Y, φU)

+g(Y, Z)S(X,φU)− g(X,Z)S(Y, φU)]. (48)

Putting X = φX in the above relation, we get

g(R(φX, Y, Z), φU) =
1

4n
[S(Y, Z)g(φX, φU)− S(φX,Z)g(Y, φU)

+g(Y, Z)S(φX, φU)− g(φX,Z)S(Y, φU)]. (49)

After putting X=U=ei in above relation and taking summation with respect to i, we
attain

2n∑
i=1

g(R(φei, Y, Z), φei)

=
1

4n

[ 2n∑
i=1

S(Y, Z)g(φei, φei)−
2n∑
i=1

S(φei, Z)g(Y, φei)

+

2n∑
i=1

g(Y, Z)S(φei, φei)−
2n∑
i=1

g(φei, Z)S(Y, φei)

]
. (50)

If M2n+1 satisfies φ(gradα) = (2n− 1)gradβ, we have the following relation

2n∑
i=1

g(R(φei, Y, Z), φei) = S(Y,Z)− (α2 − β2)g(φY, φZ), (51)

2n∑
i=1

S(φei, Z)g(Y, φei) = S(Y, Z)− 2n(α2 − β2)η(Y )η(Z), (52)

2n∑
i=1

S(φei, φei) = r − 2n(α2 − β2). (53)
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After using the relations (42), (51), (52) and (53) in the equation (50), we obtain

S(Y, Z) =

[
r + 2n(α2 − β2)

(2n+ 2)

]
g(Y, Z). (54)

By virtue of the equation (26) and using the above relation, we can get

M(X,Y, Z) = R(X,Y, Z)

−
[
r + 2n(α2 − β2)

(n+ 1)

]
[g(Y, Z)X − g(X,Z)Y ]. (55)

Which shows the statement. �

7. m-projectively symmetric Trans-Sasakian Manifold

Definition 7.1. [4] A trans-Sasakian manifold M2n+1 is said to be m-projectively sym-
metric, if the m-projective curvature tensor M satisfies the relation

(∇WM)(X,Y, Z) = 0, for all X, Y Z and W. (56)

Theorem 7.1. A m-projectively symmetric trans-Sasakian M2n+1 manifold is Ricci-
recurrent.

Proof. Let M2n+1 is a m-projectively symmetric trans-Sasakian manifold. Then by the
equations (56) and (26), we find

g((∇WR)(X,Y, Z), U) =
1

4n
[(∇WS)(Y, Z)g(X,U)− (∇WS(X,Z)g(Y,U)

+(∇WS)(X,U)g(Y, Z)− (∇WS)(Y, U)g(X,Z)]. (57)

Taking contraction over X and U , we secure

(∇WS)(Y,Z) =
1

4n
[(2n+ 1)(∇WS)(Y,Z)− (∇WS(Y,Z)

+dr(W )g(Y, Z)− (∇WS)(Y,Z)], (58)

which implies

(∇WS)(Y,Z) =
dr(W )

(2n+ 1)
g(Y, Z). (59)

Hence the manifold is Ricci-recurrent. �

Suppose the scalar curvature r is constant then we mention the corollary:

Corollary 7.1. An m-projective symmetric trans-Sasakian manifold M2n+1 with constant
scalar curvature is Einstein.

8. φ-m-projectively symmetric Trans-Sasakian Manifold

Definition 8.1. [4] A trans-Sasakian manifold M2n+1 is said to be φ − m-projectively
symmetric, if the m-projective curvature tensor M satisfies the relation

φ2(∇WM)(X,Y, Z) = 0, for all X, Y Z and W. (60)

Theorem 8.1. A φ − m-projectively symmetric trans-Sasakian M2n+1 manifold is an
Einstein.
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Proof. Let us consider M2n+1 is a φ−m-projectively symmetric trans-Sasakian manifold.
Then by the equations (60) and (1), we get

g((∇WM)(X,Y, Z), U) = η((∇WM)(X,Y, Z))g(ξ, U). (61)

The existence of the relation (26), the above equation becomes

g((∇WR)(X,Y, Z), U)− 1

4n

[
(∇WS)(Y,Z)g(X,U)− (∇WS)(X,Z)g(Y,U)

+(∇WS)(X,U)g(Y,Z)− (∇WS)(Y,U)g(X,Z)

]
= g((∇WR)(X,Y, Z), ξ)g(ξ, U)− 1

4n

[
(∇WS)(Y,Z)g(X, ξ)− (∇WS)(X,Z)g(Y, ξ)

+(∇WS)(X, ξ)g(Y,Z)− (∇WS)(Y, ξ)g(X,Z)

]
g(ξ, U). (62)

After contraction over X and Z, we secure

(∇WS)(Y,U)− (∇WS)(Y, ξ)η(U) =
dr(W )

(6n− 1)
[−g(Y,U) + g(Y, ξ)η(U)]. (63)

Putting Y = ξ, we get

(∇WS)(ξ, U) = 0. (64)

By virtue of the relation (23) and above equation, we have

2n(α2 − β2)[−αg(U, φW ) + βg(U,W )] + αS(U, φW )− βS(U,W ) = 0. (65)

We put U=φU andW=φW , respectively in the above relation and then using equations
(1), (4), (18), (19) and (22), we find that

S(U,W ) = 2n(α2 − β2)g(U,W )

and

S(φU,W ) = 2n(α2 − β2)g(φU,W ). (66)

�
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