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Abstract − In this paper, a two-dimensional conformable fractional wave equation
describing a circular membrane undergoing axisymmetric vibrations is formulated. It
was found that the analytical solutions of the fractional wave equation using the con-
formable fractional formulation can be easily and efficiently obtained using separation
of variables and double Laplace transform methods. These solutions are compared
with the approximate solution obtained using the differential transform method for
certain cases.
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1. Introduction

The fractional formulation of differential equations is an extension of the fractional calculus that was
first introduced in 1695 when L’Hôpital and Leibniz discussed the extension of the integer order deriva-
tive to the derivative of order 1/2. Both Euler and Lacroix studied the fractional order derivative and
defined the fractional derivative using the expression for the nth derivative of the power function [1].
Several physical and mechanical systems can be modeled more accurately using fractional derivative
formulations due to the fact that many systems contain internal damping, which implies that it is
impossible to derive equations describing the physical behavior of a non-conservative system using the
classical energy based approach. The fractional derivative formulations can be successfully obtained
in non-conservative systems by minimizing certain functionals with fractional derivative terms using
some techniques from calculus of variations [2]. Several fractional formulations for derivatives and
integrals such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and Grünwald-Letnikov have been
introduced with applications in science and engineering (refer to [1–6]).

While the classical definitions of fractional derivatives such as Riemann-Liouville and Caputo try to
satisfy the fundamental properties of standard derivatives such as the derivatives of constant, product
rule, quotient rule, and chain rule. None of the definitions are successful in their attempts other than
the shared linear property between all the definitions of fractional derivatives [7]. Khalil et al. [8] put
forward a new definition of fractional derivative named conformable fractional derivative as follows:

Definition 1.1. For 0 < β ≤ 1, given a function f : [0,∞)→ < such that for all t > 0 and β ∈ (0, 1),
the βth order conformable fractional derivative (CFD) of f , denoted by Gβ(f)(t), can be written as:

Gβ(f)(t) = f (β)(t) = lim
ε→0

f(t+ εt1−β)− f(t)

ε
. (1)
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If f is β-differentiable in some (0, b), b > 0, and the limit of f (β)(t) exists as t approaches 0+, then by
CFD definition:

f (β)(0) = lim
t→0+

f (β)(t). (2)

The CFD definition is an extension of the classical derivative that happens naturally and satisfies
the properties of standard derivative. The conformable derivative of constant, the product rule, the
quotient rule, and the chain rule all satisfy the standard formula of standard limit-based derivative [9].
Various conformable fractional forms have been introduced to many mathematical notions such as
Norther’s symmetry theorem and Action Principle for particles under frictional forces and have been
shown to be much simpler than the ones with classical fractional derivative formulations such as
Riemann-Liouville and Caputo [9]. For more applications of conformable fractional derivative, see
also [10,11]. Gβ satisfies all the standard derivative properties in the following theorem [7,8]:

Theorem 1.2. Assume that 0 < β ≤ 1, and f , h be β-differentiable at a point t, then:

(i) Gβ(mf + wh) = mGβ(f) + wGβ(h), for all m,w ∈ <.

(ii) Gβ(ts) = sts−β, for all s ∈ <.

(iii) Gβ(fh) = fGβ(h) + hGβ(f).

(iv) Gβ(fh) =
hGβ(f)−fGβ(h)

h2
.

(v) Gβ(λ) = 0, for all constant functions f(t) = λ.

(vi) If f is a differentiable function, then Gβ(f)(t) = t1−β dfdt .

For more mathematical examples about each property in theorem 1, we refer to [7, 12]. Çenesiz
and Kurt [10] discussed the possibility of applying the CFD definition for solving the two-dimensional
and three-dimensional time fractional wave equation in rectangular domain. As a result, Çenesiz and
Kurt [10] showed how the conformable fractional derivatives can easily and efficiently transform frac-
tional differential equations into classical usual differential equations without the need for complicated
methods to find the analytical solutions for partial fractional differential equations of higher dimen-
sional systems. On the other hand, Tasbozanet et al. [11] discussed how to find the analytical traveling
wave solutions in the sense of the conformable derivatives for nonlinear partial differential equations
such as Nizhnik-Novikov-Veselov and Klein-Gordon equations by introducing a method consisting of a
series of exponential functions, known as exp-function method, to study nonlinear evolution equations.

Recently, numerical and analytical solution methods to the conformable fractional differential equa-
tions are attracting attention from all over the world. Yavuz discussed in [13] some novel methods
such as Adomian decomposition method and modified homotopy perturbation method for solving
the initial boundary value problems in the sense of conformable fractional differentiation. Yavuz
and Yaşkıran applied in [14] comfortable derivatives in modeling neuronal dynamics using methods of
modified homotopy perturbation and reduced differential transform to solve the conformable fractional
cable equation (CFCE). In addition, CFCE has also been solved in [15] using Adomian decomposition
method and variational iteration method. In [16], conformable derivative has been successfully ap-
plied to solve the Black-Scholes equation of the European call option pricing models using Adomian
decomposition method and modified homotopy perturbation method.

The CFD is a type of the local fractional derivative (LFD) [17]. The LFD has been successfully
applied in modeling several applications in engineering such as the entropy (function of state) analysis
of thermodynamic systems and the control theory of dynamic systems [18]. A new mathematical
branch, known as fractal calculus, have been recently introduced in modeling various mathematical
and engineering phenomena in hierarchical structures or porous media such as fractal kinetics [19],
heat conduction in fractal medium [19], and the porous hairs of polar bear [20]. Research studies
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showed that there is a relation between the fractional order and the fractional dimension [19]. Several
definitions of fractal derivatives have been proposed by researchers such as Chen’s fractal derivative
and Ji-Huan He’s fractal derivative (HFD) [20]. However, some fractional derivatives lacks the physical
and geometrical interpretation, therefore, the fractal calculus is very helpful in providing a physical
interpretation for many fractional models in fractal media [19]. Both LFD and HFD have been
applied extensively in science and engineering due to their accurate mathematical properties, physical
insights, and geometrical interpretations [18–20]. The fractal derivative with fractal dimensions can
be applied in modeling engineering problems and describing their discontinuous media [21] such as
the applications of multi-scale fabrics and wool fibers by modeling their water permeation [20]. LFD
and HFD have been defined in [18,20] on a fractal space as follows:

Definition 1.3. For a fractal dimension, β, where 0 < β ≤ 1, given a set of non-differentiable
functions with fractal dimension, say Cβ(a, b) such that for Φ(x) ∈ Cβ(a, b), the βth order local

fractional derivative (LFD) of Φ(x) at x = x0, denoted by D
(β)
x Φ(x0), can be written as:

D(β)
x Φ(x0) = Φ(β)(x0) =

dβΦ(x)

dxβ
|x=x0 = lim

x→x0

4β(Φ(x)− Φ(x0))

(x− x0)β
, (3)

where 4β(Φ(x)− Φ(x0)) ∼= Γ(1 + β)4(Φ(x)− Φ(x0)).

Definition 1.4. Using figure 1 in [21], the fractal geometry describes the distance between two
points, say xa and xb, in a discontinuous media i.e. porous medium such that M is supposed to be the
smallest measure (thickness) in the given fractal media where any discontinuity less than this measure
is neglected. Given a fractal dimension, say β, and constant, say ξ, the Ji-Huan He’s fractal derivative
(HFD) can be written [20,21] as follows:

DΦ(t)

Dxβ
= lim

∆x→M

Φ(xa)− Φ(xb)

ξMβ
= Γ(1 + β) lim

∆x→M

Φ(xa)− Φ(xb)

(xa − xb)β
, (4)

where ∆x = xa − xb; and ∆x tends only to M and it does not tend to 0. By using the fractal
gradient [19], ξMβ = Mβ

Γ(1+β) such that ξMβ is extremely small, but ξMβ > M . For more applications

using HFD in applied science and engineering, we refer to [19,20,22,27].

In addition, He’s fractional derivative (HFcD) has been applied for modeling several scientific
phenomena (see [20, 23]). The physical and geometrical interpretations of the HFcD were discussed
in [19,27]. The following is the definition of HFcD [20,23]:

Definition 1.5. Assume β to be the fractional dimension of the fractal medium, the He’s fractional
derivative (HFcD), denoted by ∂β

∂tβ
, can be written as::

∂βΨ

∂tβ
=

1

Γ(m− β)

dm

dtm

∫ t

t0

(ξ − t)m−β−1[Ψ0(ξ)−Ψ(ξ)]dξ, (5)

where for a fractional-order problem in fractal media, the continuum partner of problem with the same
initial and boundary conditions of the fractal partner has the same solution which is Ψ0(x, t) [20].

The conformable fractional derivative (CFD) is basically a generalized fractal derivative or q-
derivative [24]. The q-derivative is very important in quantum calculus where the derivative is
expressed using Leibniz’s notation and the spacetime is discontinuous in quantum scales [27] (see
also [25]). The generalized q-derivative (fractal derivative) using CFD definition 1 can be written [24]
as follows:

Definition 1.6. Using definition 1, given a function Ψ : [0,∞) → < such that for all t > 0 and
β ∈ (0, 1), and by assuming q = 1 + εt−β where q tends to 1 and ε tends to 0, the generalized
q-derivative (fractal derivative), denoted by Gβ(Ψ)(t), is written as:

Gβ(Ψ)(t) = Ψ(β)
q (t) = lim

q→1

Ψ(qt)−Ψ(t)

qtβ − tβ
= lim

q→1

Ψ(qt)−Ψ(t)

(q − 1)tβ
. (6)

This generalized q-derivative coincides with definition 11 of q-derivative in [27].
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Weberszpil and Chen in [26] showed that using the method of change of variables in part (vi)
of theorem 1 to transform t to 1 + x

l0
, the CFD is simply a Hausdorff derivative (HD) which is

valid for differential functions. HD is a kind of fractal derivatives [28] that has been applied in various
engineering phenomena to describe the physical behaviors and complex mechanics [29]. HD extends the
modeling approach used in the classical continuum mechanics to fractal materials using the Hausdorff
calculus [28]. Some examples of HD applications in science and engineering are anomalous diffusion,
non-Guassian distribution, creep and relaxation in fractal media, and viscosity [28,29].

CFD is simply a usual Newton derivative multiplied by the term t1−β [17]. The term t1−β in the
definition 1 is basically a type of fractional conformable function (FCF) (see definition 5 in [17]) [17].
CFD combines the properties of usual derivative with the properties of fractional derivatives [30].
Therefore, CFD can be applied to extend and generalize theorems from the classical calculus such as
integration by parts, mean value theorem, power series expansion, and Rolle’s theorem [30]. From
definition 1, the function is differentiable in the sense of conformable derivatives which implies that the
Taylor power series expansion (TPSE) exists for CFD, while the other forms of fractional derivatives
where functions are not differentiable, TPSE do not exist, when there are infinitely differentiable
functions at some points [30]. As a result, several researchers got motivated to explore the CFD and
apply it in modeling phenomena in applied science and engineering [30].

The CFD can be physically interpreted as a modified standard limit-based derivative in magnitude
and direction [31]. Therefore, CFD is a special case of the well-known directional derivative (DD).
The directional derivative is a kind of Gâteaux derivative (GD). Zhao and Luo proposed in [17] a new
generalized form of CFD named the general conformable fractional derivative (GRCFD) by extending
and generalizing the definition of Gâteaux derivative (see definition 2 in [17]) into Extended Gâteaux
derivative (see definition 3 in [17]) and Linear Extended Gâteaux derivative (see definition 4 in [17])
together with the definition of CFD. The physical and geometrical interpretations of CFD were also
discussed in [17] using GRCFD as a special case of CFD. Using definitions 2, 3, 4, and 5 and using
<+ as a space in [17] and definition 1 in this paper, GRCFD can be defined [17] as follows:

Definition 1.7. For 0 < β ≤ 1, given a fractional conformable function, say Ω(m,β), the general
conformable fractional derivative (GRCFD) can be written as:

Dβ
ΩGm = lim

ε→0

G(m+ εΩ(m,β))−G(m)

ε
. (7)

For the definition of GRCFD of arbitrary order, we refer to definition 7 in [17]. Since CFD is
a modified version of Newton derivative, then the geometrical and physical meaning of CFD can be
interpreted [17] as the slope of tangent where the value of the given function in the definition of
Gâteaux derivative in [17] changes as m (independent variable) changes ε, and the magnitude and
direction of the velocity of particle are obtained from the ratio limit of the changes in function value.
In addition, the Extended Gâteaux derivative can be interpreted [17] as a special case of velocity
of particle where the magnitude and direction of this velocity depends only on Ω(m, ε, β), while the
physical meaning of the Linear Extended Gâteaux derivative is just a modified version of usual velocity
(as a multiple of usual velocity of particle) in magnitude and direction where this derivative can be
geometrically represented [17] as the gradient of a given function, G , projected onto Ω(m,β) (we also
refer to [32] for new proposed multiplicative (geometric) forms of conformable fractional derivatives
and integrals).

In addition, Guzmán et al. [33] proposed a new definition of local fractional derivative known as the
non-conformable fractional derivative (NCFD) which is also extended naturally from the usual deriva-
tive of a function in a point. NCFD can be defined as [33]: Given a function ψ : [0,+∞) → <. The

NCFD, denoted by N -derivative of ψ of order β can be written as: Nβ
1 ψ(t) = limε→0

ψ(t+εet
−β

)−ψ(t)
ε ,

for all t > 0 and β ∈ (0, 1). If the function ψ is β-differentiable in some (0, b), and limt→0+ N
(β)
1 ψ(t)

exists, then we have: N
(β)
1 ψ(0) = limt→0+ N

(β)
1 ψ(t). By comparing both CFD and NCFD, the angle of

the tangent line to the curve in NCFD is not conserved, while in CFD is conserved [33]. For more new
results about NCFD definition, we refer to [34]. Recently, several research studies with applications
have been done using the definition NCFD such as the oscillatory character of liénard’s system [36]
(see also [35]), Laplace transform [37], and Hermite-Hadamard inequality [38].

Circular vibrating membrane problem (CVMP) has been applied in several applications in engi-
neering such as industrial dynamic filtration modules and vibratory shear enhanced process (VSEP)
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for wastewater treatment systems [39, 40]. CVMP has been also used extensively in investigating the
transverse vibration using a vibrating membrane in a linearly transverse direction and analyzing the
modes of transverse vibratory motion [41]. CVMP studies the vibration of membranes (vibration
equation) which has many practical applications in industry and bioengineering [42]. Studying the
two-dimensional analysis of wave mechanics and propagation in CVMP is very important in building
the components of microphones, speakers, and some medical and industrial instruments [42].

In this paper, we formulate the two-dimensional time fractional wave partial differential equation
in the sense of conformable fractional derivative for a circular membrane undergoing axisymmetric
vibrations, and we solve it using the methods of separation of variables, double Laplace transform,
and reduced differential transform. We compare and discuss all obtained approximate solutions using
those methods and the error between analytical and approximate solutions.

In Section 2, the conformable fractional wave partial differential equation is solved using the
methods of separation of variables, double Laplace transform, and reduced differential transform. In
Section 3, we discuss the error between analytical and approximate solutions from section 2, and we
compare all results with the classical analytical solution from [43, 44]. In Section 4, the conclusion of
this study is presented.

2. Conformable fractional wave equation

In this section, we investigate the conformable fractional mixed initial- boundary value problem of a
circular membrane [44] of radius R and constant density ρo where the initial vibration conditions are
radially symmetric or axisymmetric. Under such conditions, polar coordinates (r, θ) can be introduced
such that m(x, y, t) = M(r, t) where the displacement is independent of θ, and the initial displacement
and velocity functions can be written as q(r) and n(r), respectively. The laplacian in polar coordinates
can be written as:

∇2 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
. (8)

Since the initial vibration conditions are axisymmetric, they are dependent only on the radial distance
r from the center of the circle. Hence, q(r) and p(r) do not depend on θ, and instead they depend

only on r, and from equation (3), the term ∂2

∂θ2
= 0. Consequently, the governing system of equations

for a circular membrane undergoing axisymmetric vibrations can be mathematically modeled by the
following two-dimensional wave partial differential equation equation in the sense of CFD:

∂2βM

∂t2β
= c2

o

(
∂2M

∂r2
+

1

r

∂M

∂r

)
. (9)

0 < r < R; t > 0; 0 < β ≤ 1; and c2
o=(τo/ρo) where τo is the assumed to be the constant value of

the elastic membrane stretch-resisting restorative force per unit length or surface tension. Equation
(9) is subjected to the following boundary and initial conditions:

M(R, t) = 0; and M(r, t) bounded as r → 0 for t > 0. (10)

M(r, 0) = q(r); and
∂βM

∂tβ
(r, 0) = p(r); for 0 < r < R and 0 < β ≤ 1. (11)

The problem is divided into two main parts; analytical solution part and approximate solution part:

2.1. The analytical solution by the separation of variables method

By using the separation of variables method, we let M(r, t) = V (r)G(t) to be the solution form of
the governing conformable fractional wave partial differential equation and boundary conditions. The
following is obtained from substituting the assumed solution form in equation (9):

d2βG(t)

dt2β
V (r) = c2

o

(
d2V (r)

dr2
G(t) +

1

r

dV (r)

dr
G(t)

)
. (12)
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Dividing both sides of equation (12) by c2
o, left hand side term of equation (12) by G(t), and the two

terms of the right hand side of equation (12) by V (r), we obtain:

d2βG(t)

dt2β
1

G(t)c2
o

= c2
o

(
d2V (r)

dr2

1

V (r)
+

1

r

dV (r)

dr

1

V (r)

)
≡ −λ2. (13)

where λ is the separation constant. As a result, the following two equations are obtained:

d2βG(t)

dt2β
+ c2

oG(t)λ2 = 0. (14)

d2V (r)

dr2
+

1

r

dV (r)

dr
+ λ2V (r) = 0. (15)

From equation (14), it is necessary to introduce the sequential CFD from [45] as follows:

Definition 2.1. For 0 < β < 1, and n ∈ Z+, given a function f : [0,∞) → <, the nth order of
sequential CFD can be generally written as:
(n)Gβf(t)=GβGβGβ...Gβf(t). Let’s consider the f : [0,∞)→ < to be a second continuously differen-
tiable function [45] and β ∈ (0, 0.5], then the 2nd order of sequential CFD is written as:

(2)Gβf(t) = GβGβf(t) =

{
(1− β)t1−2βf (1)(t) + t2−2βf (2)(t) if t > 0

0 if t = 0
(16)

By using the sequential CFD definition and property (vi) from theorem (1), equation (14) can be
re-written as:

(1− β)t1−2βG(1)(t) + t2−2βG(2)(t) + c2
oG(t)λ2 = 0. (17)

Multiplying both sides equation (15) by r2 to make calculations simple, we obtain:

r2d
2V (r)

dr2
+ r

dV (r)

dr
+ r2λ2V (r) = 0. (18)

Let’s now introduce the change of variables [44]: s = λr for V (r) = ψ(s) such that for dV (r)
dr , it is

transformed into the following:

dV (r)

dr
=
dψ(s)

dr
(s) =

dψ(s)

ds

ds

dr
(s) = λ

dψ(s)

ds
. (19)

Similarly, for d2V (r)
dr2

, it is transformed into the following:

d2V (r)

dr2
=

d

dr

(
λ
dψ(s)

ds
(s)

)
= λ2d

2ψ

ds2
(s). (20)

Substituting r = ( sλ) and results from (19) and (20) in equation (18), we obtain the following equation:

s2d
2ψ(s)

ds2
+ s

dψ(s)

ds
+ s2ψ(s) = 0; for 0 < s < λR. (21)

From the boundary condition in (10), ψ(s) in equation (21) is also bounded as s→ 0, and ψ(λR) = 0.
By using the results from the eigenvalue problem involving the Bessel function of the first kind of
order zero in [43, 44], we have: V (R) = 0 → Jo(λR) = 0 where λR is the root of Bessel function
Jo, and V (r) = Jo(λr). Hence, it can be concluded that for n ∈ Z+, λn = ξn

R , and Vn(r) = Jo(
ξnr
R )

is the corresponding solution to equation (10) where Jo has infinitely many positive zeros such that
ξ1 < ξ2 < ξ3 < ... < ξn where ξn is the nth positive zero of the Bessel function Jo.

For equation (17), the WolframAlpha computational intelligence solver is used to obtain the fol-
lowing solution:

Gn(t) = Encos

(
coλnt

β

β

)
+Knsin

(
coλnt

β

β

)
; for n ∈ Z+. (22)
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By substituting λn = ξn
R in equation (22), the solution can be re-written as:

Gn(t) = Encos

(
coξnt

β

βR

)
+Knsin

(
coξnt

β

βR

)
; for n ∈ Z+. (23)

By using the superposition principle, the general solution for the conformable fractional mixed initial-
boundary value can be written as a linear combination of both Vn(r) and Gn(t):

M(r, t) =
∞∑
n=1

Mn(r, t) =
∞∑
n=1

Vn(r)Gn(t) =
∞∑
n=1

Jo

(
ξnr

R

)
×
[
Encos

(
coξnt

β

βR

)
+Knsin

(
coξnt

β

βR

)]
; for n ∈ Z+.

(24)

To find the coefficients, En and Kn, from equation (24) so the general solution satisfies the initial
conditions in (11), the first condition M(r, 0) = q(r) is substituted in equation (24) as follows:

M(r, 0) = q(r) =
∞∑
n=1

Mn(r, 0) =
∞∑
n=1

Vn(r)Gn(0) =
∞∑
n=1

Jo

(
ξnr

R

)
×
[
Encos

(
coξn(0)β

βR

)
+Knsin

(
coξn(0)β

βR

)]
=
∞∑
n=1

Jo

(
ξnr

R

)
× [Encos (0) +Knsin (0)] =

∞∑
n=1

Jo

(
ξnr

R

)
En; for n ∈ Z+.

(25)

For the second initial condition, ∂M
∂t (r, 0) = p(r), in (11), we first find ∂βM

∂tβ
(r, t) from equation (24)

using the two examples from [7] where Gβ(sin( t
β

β )) = cos( t
β

β ) and Gβ(cos( t
β

β )) = −sin( t
β

β ), and our

previous conclusion λn = ξn
R as follows:

∂βM

∂tβ
(r, t) = p(r) =

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
×
[
−Ensin

(
coξnt

β

βR

)
+Kncos

(
coξnt

β

βR

)]
;

for n ∈ Z+.

(26)

We now substitute ∂M
∂t (r, 0) = p(r) in equation (26) as follows:

∂βM

∂tβ
(r, 0) = p(r) =

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
×
[
−Ensin

(
coξn0β

βR

)
+Kncos

(
coξn0β

βR

)]
=

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
[−Ensin (0) +Kncos (0)]

=
∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
Kn; for n ∈ Z+.

(27)

Using the orthogonality property of Bessel function J0( ξnrR ) and representing the normalization con-
stant in terms of J1(ξn), we obtain the following:

En =

〈
q(r), J0

(
ξnr

R

)〉
r∥∥∥∥J0

(
ξnr

R

)∥∥∥∥2

r

=
2

R2J2
1 (ξn)

∫ R

0
rq(r)J0

(
ξnr

R

)
dr; for n ∈ Z+. (28)
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Kn =

(
R

coξn

) 〈p(r), J0

(
ξnr

R

)〉
r∥∥∥∥J0

(
ξnr

R

)∥∥∥∥2

r

=
2

RcoξnJ2
1 (ξn)

∫ R

0
rp(r)J0

(
ξnr

R

)
dr;

for n ∈ Z+.

(29)

By substituting the results from (28) and (29) in equation (24), the most general solution for the
conformable fractional mixed initial-boundary value problem emerging from the separation of variables
method can be written as follows:

M(r, t) =
∞∑
n=1

[(
2

R2J2
1 (ξn)

∫ R

0
q(r)J0

(
ξnr

R

)
r dr

)
cos

(
coξnt

β

βR

)]
J0

(
ξnr

R

)

+

∞∑
n=1

[(
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

)
sin

(
coξnt

β

βR

)]
J0

(
ξnr

R

)
;

for n ∈ Z+.

(30)

2.2. The analytical solution by the conformable fractional double Laplace transform
method

The classical Laplace transform method for a function of single variable has been used extensively
in solving ordinary differential equations and partial differential equations. Double Laplace transform
and other multiple Laplace transformations were introduced by Estrin and Higgins in [46] to solve
partial differential equations. Double Laplace transform (DLT) has been rarely introduced or not
at all for certain cases in the literature for solving partial differential equations [47]. Introducing
double Laplace transform to solve the fractional differential equations is an open math problem [48].
Eltayeb and Kılıçman in [49] used the DLT and Sumudu transform methods to solve non-fractional
one-dimensional wave equation with variable coefficients (see also [50, 51]). There are some recent
research studies on solving fractional differential equations such as heat and telegraph equations in
the sense of Caputo derivatives [48,52].

To define the conformable fractional double Laplace transform, let’s first define the conformable
fractional integral (CFI) [31] as follows:

Definition 2.2. For 0 < β ≤ 1, given a function f : [0,∞)→ < such that for all t ≥ 0, the βth order
conformable fractional integral (CFI) of f from 0 to t can be written as:

Iβ(f)(t) =

∫ t

0
f(ψ)dβψ =

∫ t

0
f(ψ)ψβ−1dψ. (31)

If β = 1, then Iβ(f)(t) = Iβ=1(tβ−1f)(t) which is the classical improper Riemann integral of a
function f(t). For 0 < β ≤ 1, given a continuous function f on (0,∞), then Gβ(f)(t) [Iβ(f)(t)] = f(t).

Let’s now define the conformable fractional double Laplace transform (CFDLT) as follows:

Definition 2.3. For 0 < β ≤ 1, given a function M(r, t) : [0,∞)→ < such that for all r, t > 0, the βth
order conformable fractional double Laplace transform (CFDLT) of M(r, t), denoted by `rtβ [M(r, t)],
starting from 0 can be written as:

`rtβ [M(r, t)] = `rβ`
t
β[M(r, t)] = M

¯
rt
β (sa, sb) =

∫ ∞
0

e
−sa r

β

β

∫ ∞
0

e
−sb t

β

β M(r, t) dβt dβr

=

∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t) dβr dβt

=

∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t)rβ−1tβ−1 dr dt,

(32)
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where sa, sb ∈ C. The above definition is true provided that the above integral exists. Previously,
it is assumed that M(r, t) = V (r)G(t). By using definition (9), the CFDLT can be written [52]:

`rtβ [V (r)G(t)] = `rβ`
t
β[V (r)G(t)] = V

¯β
(sa)G

¯ β
(sb) = `rβ[V (r)]`tβ[G(t)]. (33)

Let’s show the CFDLT of the second-order conformable fractional partial derivative (CFPD) with
respect to t [53] as follows:

`rtβ

[
∂2β

∂t2β
M(r, t)

]
=

∫ ∞
0

∫ ∞
0

e
−sa r

β

β e
−sb t

β

β
∂2βM

∂t2β
(r, t) dβr dβt

=

∫ ∞
0

e
−sa r

β

β

∫ ∞
0

{
e
−sb t

β

β
∂2βM

∂t2β
(r, t) dβt

}
dβr.

(34)

To find the above inner integral, let’s use the theorem 3.1 of conformable fractional integration by
parts and lemma 2.8 in [2] in addition to definition (7) to obtain the following:

`rtβ

[
∂2β

∂t2β
M(r, t)

]
=

∫ ∞
0

e
−sa r

β

β

{
e
−sb t

β

β M(r, t)|∞t=0 −
∫ ∞

0

(
∂2β

∂t2β
e
−sb t

β

β

)
M(r, t) dβt

}
dβr

=

∫ ∞
0

e
−sa r

β

β M(r, 0)rβ−1dr

+

∫ ∞
0

∫ ∞
0

s2
b

e−sb t
β

β

tβ−1
− sb

e
−sb t

β

β

tβ
(1− β)

 e−sb tββ e−sa rββ rβ−1 dt dr

= s2β
b M

¯
rt
β (sa, sb)− s2β−1

b M
¯
rt
β (sa, 0)− s2β−2

b (M
¯
rt
β )t(sa, 0).

(35)

As a result, The CFDLT of the first-order conformable fractional partial derivative (CFPD) with
respect to t can be similarly written as:

`rtβ

[
∂β

∂tβ
M(r, t)

]
= sβbM

¯
rt
β (sa, sb)− sβ−1

b M
¯
rt
β (sa, 0). (36)

The CFDLT of the first-order conformable fractional partial derivative (CFPD) with respect to t can
be also generally written as:

`rtβ

[
∂β

∂tβ
M(r, t)

]
= sβbM

¯
rt
β (sa, sb)−

ζ−1∑
γ=0

sβ−1−γ
b `r

[
∂γM(r, 0)

∂tγ

]
. (37)

The double Laplace transform in (37) coincides with the general form of the double Laplace transform
of the partial fractional derivatives in the sense of Caputo derivatives in [48,52]. The complex double
integral formula in [47, 52] can be used to write the inverse conformable fractional double Laplace
transform, denoted by (`rtβ )−1[M

¯
rt
β (sa, sb)], as follows:

Definition 2.4. For 0 < β ≤ 1, given an analytic function M
¯
rt
β (sa, sb) for all sa, sb ∈ C such that both

sa and sb are defined [52] by Re{sa ≥ %} and Re{sb ≥ ς}, where %, ς ∈ <, the inverse conformable
fractional double Laplace transform (ICFDLT) can be written as follows:

(`rtβ )−1[M
¯
rt
β (sa, sb)] = (`rβ)−1`tβ)−1[M

¯
rt
β (sa, sb)] =

M(r, t) =
1

2πi

∫ %+i∞

%−i∞
esardsa

1

2πi

∫ ς+i∞

ς−i∞
esbtM

¯
rt
β (sa, sb)dsb

=
−1

4π2

∫ %+i∞

%−i∞

∫ ς+i∞

ς−i∞
esaresbtM

¯
rt
β (sa, sb) dsa dsb.

(38)

Let’s prove the existence and uniqueness of CFDLT in the following theorem:
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Theorem 2.5. For 0 < β ≤ 1, given a continuous exponential-order function M(r, t) : [0,∞) → <
such that for some %, ς ∈ < and sa, sb ∈ C where Re{sa > %} and Re{sb > ς}, then there exists a
conformable fractional double Laplace transform of M(r, t), denoted by M

¯
rt
β (sa, sb), for both sa and

sb.

Proof. Since M(r, t) is a continuous exponential-order function M(r, t) : [0,∞) → < such that for
some %, ς ∈ < and sa, sb ∈ C on the interval [0,∞) = {r, t|0 ≤ r, t < ∞}, then ∃L ∈ Z+ such that
∀sa > Sa and sb > Sb [47, 48] as follows:

|M(r, t)| ≤ Le%
rβ

β
+ς t

β

β , (39)

Examine: sup
r,t>0

∣∣∣∣∣ M(r, t)

e
ω r

β

β
+µ t

β

β

∣∣∣∣∣ < 0, then we have the following:

lim
(r,t)→∞

e
−ω r

β

β
−µ t

β

β |M(r, t)| = Le−(ω−%)r
rβ

β
e−(µ−ς)r

tβ

β
= 0; ∀ω > %; µ > ς

Similarly,|M
¯
rt
β (sa, sb)| =

∣∣∣∣∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t) dβr dβt

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t)rβ−1tβ−1 dr dt

∣∣∣∣
≤ L

∫ ∞
0

∫ ∞
0

e
−((sa−%) r

β

β
+(sb−ς) t

β

β
)
M(r, t)rβ−1tβ−1 dr dt

=

∫ ∞
0

e
−(sa−%) r

β

β rβ−1 dr

∫ ∞
0

e
−(sb−ς) t

β

β tβ−1 dt

=
L

(sa − %)(sb − ς)
; ∀Re{sa > %}, Re{sb > ς}.

(40)

Since the lim(sa,sb)→∞ |M¯
rt
β (sa, sb)| = lim(sa,sb)→∞M

¯
rt
β (sa, sb) = 0 [47], then the conformable fractional

double Laplace transform (CFLT) of M(r, t) exists and can be written as (32) ∀ sa > %, sb > ς.

Numerical Experiment 1:

By using the above definitions and theorems of the CFDLT, let’s solve the mixed initial-boundary
value problem (equation (9)) subject to the following boundary and initial conditions:

M(R, t) = 0; and M(r, t) bounded as r → 0 for t > 0. (41)

M(r, 0) = 0; and
∂βM

∂tβ
(r, 0) = cos

(
r

β

)
+ sin

(
r

β

)
; for 0 ≤ r < R and 0 < β ≤ 1. (42)

Let’s apply the CFDLT method to equation (9), the following is obtained:

s2β
b M

¯
rt
β (sa, sb)− s2β−1

b M
¯
rt
β (sa, 0)− s2β−2

b (M
¯
rt
β )t(sa, 0)

= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(43)

Similarly, let’s apply the conformable fractional single Laplace transform of the initial conditions in
(42):

M
¯
rt
β (sa, 0) = 0; and (M

¯
rt
β )t(sa, 0) =

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


. (44)
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By substituting the initial conditions of (44) in equation (43), we obtain:

s2β
b M

¯
rt
β (sa, sb)− s2β−1

b (0)− s2β−2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(45)

Let’s simplify (45) to obtain the following:

s2β
b M

¯
rt
β (sa, sb)−

s2β
b

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(46)

By taking s2β
b as a common factor on the left side of (46) and dividing both sides by c2

o, we obtain the
following:

s2β
b

c2
o

M
¯
rt
β (sa, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2





=

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(47)

Assume that M
¯
rt
β∗(sa, sb) = M

¯
rt
β (sa, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (48)

By applying the assumption in (48) on (47) and combine the left-hand side term with the right-hand
side terms together, the following is obtained:

∂2M
¯
rt
β∗(sa, sb)

∂r2
+

1

r

∂M
¯
rt
β∗(sa, sb)

∂r
−
s2β
b

c2
o

M
¯
rt
β∗(sa, sb) = 0. (49)

Multiplying all terms in (49) on both sides by r2, we obtain:

r2
∂2M

¯
rt
β∗(sa, sb)

∂r2
+ r

∂M
¯
rt
β∗(sa, sb)

∂r
−
s2β
b

c2
o

r2M
¯
rt
β∗(sa, sb) = 0. (50)

The WolframAlpha computational intelligence solver is used to obtain the following solution of (50):

M
¯
rt
β∗(sa, sb) = ψ J0

(
isβb r

co

)
+ ϕY0

(
−isβb r
co

)
;

where J0

(
isβb r

co

)
and Y0

(
−isβb r
co

)
.

are the zeroth order Bessel functions of 1st and 2nd kind, respectively.

(51)

From the boundary conditions in (42), M(R, t) = 0 and M(r, t) remains bounded as r → 0 for t > 0
which means that M

¯
rt
β (R, sb) has a finite value. As a result, M

¯
rt
β∗(R, sb) has a finite value, and from
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the physical point of view for wave equation solution in [43], ϕ is set to be zero so that the whole

term, Y0

(
−isβb r
co

)
, is terminated. The solution of (51) becomes as follows:

M
¯
rt
β∗(sa, sb) = ψ J0

(
isβb r

co

)
;

where J0

(
isβb r

co

)
is the zeroth order Bessel functions of 1st kind.

(52)

Similarly, since M(R, t) = 0 from (42), then M
¯
rt
β (R, sb) = 0. let’s substitute M

¯
rt
β (R, sb) = 0 and (52)

in equation (48) to obtain the following:

M
¯
rt
β∗(R, sb) = ψ J0

(
isβbR

co

)
= M

¯
rt
β (R, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (53)

M
¯
rt
β∗(R, sb) = ψ J0

(
isβbR

co

)
= − 1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (54)

As a result, ψ can be written as follows:

ψ =



− 1
s2b


 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




J0

(
isβbR

co

)



= −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


.

(55)

By substituting (55) in equation (52), the following is obtained:

M
¯
rt
β∗(sa, sb) = −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


J0

(
isβb r

co

)
. (56)
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By substituting (56) in equation (48), we obtain the following:

M
¯
rt
β (sa, sb) = −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


J0

(
isβb r

co

)

+

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




s2
b

.

(57)

After simplifications, we obtain:

M
¯
rt
β (sa, sb) =

J0

(
isβbR

co

)
− J0

(
isβb r

co

)

s2
bJ0

(
isβbR

co

)

 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2


 . (58)

By using the residue theorem of the complex inversion formula and the solution in [54] with a few
mathematical simplifications, it is easy to obtain the ICFDLT of equation (58) which is the following
approximate analytical solution for equation (9) subject to the boundary and initial conditions in (41)
and (42), respectively, using the method of CFDLT:

M(r, t) =
∞∑
ξ=1

iJ0

(
λξ
r

R

){
cos

(
−λξ

cot
β

Rβ

)
+ i sin

(
−λξ

cot
β

Rβ

)}
λ2
ξ

(co
R

)
J1(λξ)

;

where
i R sβbξ
co

= λξ;
i r sβbξ
co

= λξ

( r
R

)
[54]; and 0 < β ≤ 1.

(59)

Figures (1), (2), and (3) show the numerical simulation of the approximate analytical solution (59)
for β = 1; 0.75; 0.50, respectively.

2.3. The approximate analytical solution by the conformable reduced differential
transform method

To show the efficiency of CFD, let’s obtain an approximate analytical solution to the two-dimensional
conformable fractional wave equation. A fractional differential equation (FDE) approximate method
is the conformable fractional differential transform method (CFDTM) in the sense of CFD [55]. The
differential transform method (DTM) was introduced by Zhou [57] for solving ordinary differential
equations by formulating Taylor series [55, 57]. With the introduction of fractional differential equa-
tions (FDEs), the fractional differential transform method (FDTM) was developed by Arikoglu and
Ozkol in [56] to solve FDEs by formulating power series. Similarly, CFDTM can be used to solve CFD
by formulating conformable fractional power series, and can be defined as [55]:

Definition 2.6. For some 0 < β ≤ 1, given a function f(t) is infinitely β-differentiable function.
Then, the conformable fractional differential transform of f(t) can be written as:

Fβ(k) =
1

βkk!

[(
Gtoβ f

)(k)
(t)

]
t=to

, (60)
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Fig. 1. Approximate Analytical Solution in (59) for β = 1

where (Gtoβ f)(k)(t) is the kth number of CFD application’s times, and the conformable fractional
differential transform of initial conditions for integer order derivatives can be also written as [55]:

Fβ(k) =


1

(βk)!

[(
dβkf(t)

dtβk

)]
t=to

for k=0,1,...,

(
n

β
− 1

)
if βk ∈ Z+

0 if βk 6∈ Z+

(61)

Definition 2.7. Suppose that Fβ(k) is the conformable fractional differential transform for f(t) such
that the inverse conformable fractional differential transform of Fβ(k) can be written as [55]:

f(t) =

∞∑
k=0

Fβ(k)(t− to)βk =

∞∑
k=0

1

βkk!

[(
Gtoβ f

)(k)
(t)

]
t=to

(t− to)βk. (62)

Recently, Acan et al. [58] introduced the reduced differential transform method (RDTM) for solving
partial differential equation, and Acan and Baleanu [59] developed a new definition for the conformable
reduced differential transform method (CRDTM) as follows:

Definition 2.8. For some 0 < β ≤ 1, given a function m(x, t) is analytic continuously β-differentiable
function with respect to time t and space x. Then, the conformable reduced differential transform of
m(x, t) can be written as:

Mβ
k (x) =

1

βkk!

[(
tG

(k)
β m

)]
t=to

, (63)

where tGβ
(k)m = ((tGβ)(tGβ)...(tGβ))m(x, t), and the conformable reduced differential transform of
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Fig. 2. Approximate Analytical Solution in (59) for β = 0.75

initial conditions for integer order derivatives can be also written as [58,59]:

Fβ(k) =


1

(βk)!

[(
∂βk

∂tβk
m(x, t)

)]
t=to

for k=0,1,...,

(
n

β
− 1

)
if βk ∈ Z+

0 if βk 6∈ Z+

(64)

For (61) and (64), n is the order of conformable differential operator for ordinary differential
equation and partial differential equation, respectively.

Definition 2.9. Suppose that Mβ
k (x) is the conformable reduced differential transform for m(x, t)

such that the inverse conformable reduced differential transform of Mβ
k (x) can be written as [58,59]:

m(x, t) =

∞∑
k=0

Mβ
k (x)(t− to)βk =

∞∑
k=0

1

βkk!

[(
tG

(k)
β m

)]
t=to

(t− to)βk. (65)

For theorems and basic operations about both DTM and CRDTM, we refer to [55,59].

Numerical Experiment 2:

By using the basic operations of CRDTM in [59], CRDTM is applied to solve the mixed initial-
boundary value problem (see equation (9)) as follows:

β(k + 1)(k + 2)Mβ
k+2(r) =

 ∂2

∂r2
Mβ
k (r) +

k∑
j=0

Mβ
k−j(r)

∂

∂r
Mβ
j (r)

 ;

c2
o is assumed to be equal 1 for simplicity

(66)
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Fig. 3. Approximate Analytical Solution in (59) for β = 0.50

Hence, the recurrence relation of equation (66) can be written as follows:

Mβ
k+2(r) =

[
∂2

∂r2
Mβ
k (r) +

∑k
j=0M

β
k−j(r)

∂
∂rM

β
j (r)

β(k + 1)(k + 2)

]
, (67)

where Mβ
k (r) is the conformable reduced differential function. For the initial conditions in (11), we

assume that q(r) = cos

(
r

β

)
+ sin

(
r

β

)
and p(r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
. By applying CRDTM to

the assumed initial conditions, we obtain the following:

Mβ
0 (r) = cos

(
r

β

)
+ sin

(
r

β

)
.

Mβ
1 (r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
.

(68)
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By substituting (68) in equation (67), the following Mβ
k (r) values are obtained as follows:

Mβ
2 (r) =

−cos
(
r

β

)
− sin

(
r

β

)
2!β2

,

Mβ
3 (r) =

−2cos

(
r

β

)
− 2sin

(
r

β

)
3!β3

,

Mβ
4 (r) =

cos

(
r

β

)
+ sin

(
r

β

)
4!β4

,

Mβ
5 (r) =

2cos

(
r

β

)
+ 2sin

(
r

β

)
5!β5

,

Mβ
6 (r) =

−cos
(
r

β

)
− sin

(
r

β

)
6!β6

.

(69)

Consequently, the set of values {Mβ
k (r)}nk=0 provides the following approximate solution:

m̃w(r, t) =

w∑
k=0

Mβ
k (r)tβk

=



∑w
k=0

(−1)
3k
2

k!βk

[
cos

(
rtβk

β

)
+ sin

(
rtβk

β

)]
; if k is even

2

[
cos

(
rtβk

β

)
+ sin

(
rtβk

β

)]

+
∑w

k=3
(−1)

2k
3 +(k−(k−3))

k!βk

[
2cos

(
rtβk

β

)
+ 2sin

(
rtβk

β

)]
; if k is odd

(70)

3. Comparison of results and Discussion

Consequently, after trying to solve this particular two-dimensional wave equation using the classical
definitions of fractional derivatives such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and
Grünwald-Letnikov, the analytical solution is very complicated to obtain or even may impossible
to obtain due to the fact that the classical fractional derivatives are nonlocal differential operators
represented using convolution integrals with a weakly singular kernels [60]. To show a simple example
of how complicated to obtain analytical solution using classical fractional derivatives for this particular
problem, we refer to the general solution obtained in [61] for the time fractional wave equation for a
vibrating string. We also refer to a method used in solving classical fractional differential equations
(FDEs) in [62], but it cannot find analytical solutions to some examples and cases of FDEs. As
a result, the conformable fractional derivatives (CFD) are local operator and can be implemented
successfully and easily in various case studies arising from science and engineering in comparison to
classical fractional derivatives. CFD can also be used very efficiently in constructing mathematical
models for complex problems in physics and engineering.

Due to the difficulty of analytical solutions using classical fractional derivatives, several research
studies have developed approximate methods to approximate analytical solutions for the fractional dif-
ferential equations in the calculus of variations. Approximate methods for FDEs have been introduced
successfully in [63–66].

To discuss the error between the analytical and approximate solutions from using all three methods
in sections 2.1, 2.2, and 2.3, let’s do a numerical test for various values of β and t with various initial
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conditions from the suggested numerical experiments in this paper and using example 2 in section 4.2
of [43] to discuss the accuracy, reliability, and applicability of the three proposed methods in sections
2. All numerical data of the obtained approximate solutions in table 1, 3, and 3 have been calculated
and approximated for the first three terms using an online computer software, known as Keisan Online
Calculator service, developed by CASIO COMPUTER CO., LTD.

Numerical Example 1:

By using the mixed initial-boundary value problem in (9) and (10), and example 2 in section 4.2
of [43], the initial conditions in (11) can be written as:

M(r, 0) = q(r) = 1− r2; and
∂βM

∂tβ
(r, 0) = p(r) = 0; for 0 < r < R and 0 < β ≤ 1,

R = co = 1.

(71)

The above example represents a circular membrane with axisymmetric initial shape [43]. By using
the conformable separation of variables method (CSVM) in section 2.1, the approximate analytical
solution can be written as:

Mapproximate(r, t) =
∞∑
n=1

[
8

ξ3
nJ1(ξn)

cos

(
ξnt

β

β

)
J0(ξnr)

]
. (72)

Similarly, the analytical solution in [43] using the separation of variables method (SVM) can be also
written as:

Manalytical(r, t) =
∞∑
n=1

[
8

ξ3
nJ1(ξn)

cos (ξnt) J0(ξnr)

]
. (73)

Table 1 shows the numerical data for both analytical and approximate analytical solutions from using
CSVM and SVM for different values of r, t, and β. The absolute error between the analytical and
approximate analytical solutions, written as Error = |Mapproximate(r, t) −Manalytical(r, t)|, has also
been recorded in table 1. From Table 1, it is obvious that at various values of r and t, when β values
are getting close to 1, absolute error values become very small. At β = 1, the obtained approximate
analytical solution from CSVM becomes equivalent to the analytical solution from SVM. Figure 4
shows the approximate solutions for different values of t and β at a fixed r = 0.5. From Figure 4, at
β = 0.75 the obtained approximate solution by CSVM are closer to the analytical solution using the
SVM for integer-order derivatives. Therefore, the behavior of membrane’s displacement with respect
to time at various β values at a fixed value of membrane radii [42] in Figure 4 can be described as the
value of β increases in the conformable formulation (CSVM), the approximate solution from CSVM
becomes closer to the analytical solution using the integer-order SVM, and the absolute error value
between analytical and approximate solutions becomes small.
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Table 1. Comparison of the Analytical and Approximate Solutions from using SVM and CSVM

(r, t) SVM β CSVM Error

(0.1,0.1) 1.0003
0.25 0.9963 4E-3
0.75 1.0002 1E-4
1 1.0003 0

(0.3,0.3) 0.9051
0.25 0.9005 4.6E-3
0.75 0.9050 1E-4
1 0.9051 0

(0.5,0.5) 0.7496
0.25 0.7432 6.4E-3
0.75 0.7494 2E-4
1 0.7496 0

(0.7,0.7) 0.5152
0.25 0.5056 9.6E-3
0.75 0.5148 4E-4
1 0.5152 0

(0.9,0.9) 0.1803
0.25 0.1752 5.1E-3
0.75 0.1800 3E-4
1 0.1803 0

Numerical Example 2:

By using the numerical experiment 1 in section 2.2, the approximate solution in (59) can be written
with only the real part which satisfies the mixed initial-boundary value problem in (9), (10), and (11)
as follows: [54]

M(r, t) =

∞∑
ξ=1

J0

(
λξ
r

R

)
sin

(
λξ
cot

β

Rβ

)
λ2
ξ

(co
R

)
J1(λξ)

;

where 0 < β ≤ 1.

(74)

The above equation (74) represents the approximate solution with a real part only using the con-
formable double Laplace transform method (DLTM). Let’s also assume R = co = 1. So, equation (74)
can be simplified as follows:

M(r, t) =
∞∑
ξ=1

J0 (λξr) sin

(
λξ
tβ

β

)
λ2
ξJ1(λξ)

;

where 0 < β ≤ 1.

(75)

To compare the above approximate solution with approximate analytical solution, let’s use the pro-
posed mixed initial-boundary value problem in (41) and (42) to find the approximate analytical so-
lution in the sense of conformable derivative. Since M(r, 0) = q(r) = 0, then En = 0 in (28). Kn in
(29) can be found as follows:

Kn =
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

=
2

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(76)

By using integration by parts for (76) and the identity (11) in [43], we have the following: u =

cos

(
r

β

)
+ sin

(
r

β

)
; du =

(
−sin

(
r

β

)
+ cos

(
r

β

))
dr; dv = J0 (ξnr) r dr; and v = 1

ξn
J1 (ξn). Let
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(
−sin

(
r

β

)
+ cos

(
r

β

))
= ω; we have the following:

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn)−
∫ 1

0

J1 (ξn)

ξn
ω dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +

∫ 1

0

(
−cos

(
r

β

)
+ sin

(
r

β

))
ξn

J1 (ξn) dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn


−sin

(
r

β

)
1
β

−
cos

(
r

β

)
1
β



r=1

r=0

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn

[
−βsin

(
1

β

)
− βcos

(
1

β

)
+

1

β

]

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn

[
−β
(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]

=

cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)
ξn

J1 (ξn) .

(77)

By substituting (77) in (76), we obtain Kn as follows:

2

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
2

ξnJ2
1 (ξn)

cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)
ξn

J1 (ξn)

=
2

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(78)

To obtain the approximate analytical solution using CSVM, let’s substitute (78) in (30) as follows:

M(r, t) =
∞∑
n=1

2

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
sin

(
ξnt

β

β

)
J0 (ξnr)

]
;

for n ∈ Z+ and co = R = 1.

(79)

Table 2 shows the numerical data for approximate solutions from using CSVM and DLTM for different
values of r, t and β. The absolute error between approximate solutions using CSVM and DLTM has
been recorded in table 2. At r = t = 0.9 and β = 0.50, both approximate solutions using CSVM and
DLTM in Table 2 are equivalent to each other with no absolute error between them. When β = 0.75 or
β = 1 for r = t = 0.1; 0.3; 0.5; 0.7; 0.9, the absolute error values become very small. Figure 5 shows the
approximate solutions for different values of t and β at a fixed r = 0.5. Between t = 0.1 and t = 0.2 at
a fixed value (r = 0.5) of membrane radii in figure 5, the behavior of membrane’s displacement with
respect to time shows that the numerical values of approximate solution DLTM and CSVM at various
β values are very close to each other and the absolute error values between them small. In table 2,
it is also clear that numerical value of approximate solutions using CSVM at β = 1 and DLTM at
β = 0.50 are close to each other and the error between them is very small. When the time is very
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small i.e. t = 0.1, both approximate solutions from using CSVM and DLTM are very close to each
other in value and the absolute error values between them become smaller than other numerical values
of the same approximate solutions at larger time periods.

Table 2. Comparison of the Analytical and Approximate Solutions from using CSVM and DLTM

(r, t) β CSVM DLTM Error

(0.1,0.1)
0.50 0.0017 0.0071 5.4E-3
0.75 6.275E-4 0.0027 2.073E-3
1 2.643E-4 0.0011 8.357E-4

(0.3,0.3)
0.50 0.0190 0.0083 0.0107
0.75 0.0093 0.0041 5.2E-3
1 0.0052 0.0023 2.9E-3

(0.5,0.5)
0.50 0.0356 0.0117 0.0239
0.75 0.0198 0.0066 0.0132
1 0.0125 0.0041 8.4E-3

(0.7,0.7)
0.50 0.0291 0.0178 0.0113
0.75 0.0176 0.0109 6.7E-3
1 0.0121 0.0075 4.6E-3

(0.9,0.9)
0.50 0.0098 0.0098 0
0.75 0.0063 0.0064 1E-4
1 0.0046 0.0047 1E-4

Numerical Example 3:

To compare the approximate solutions from using CSVM and conformable reduced differential trans-
form method (CRDTM), let’s use the approximate solution in (70) from the numerical experiment 2 in
section 2.3. Similarly, we need to find the approximate analytical solution in the sense of conformable
derivative using CSVM for the mixed initial-boundary value problem in the numerical experiment 2 as

we did in numerical example 2.We choose R = co = 1 in this example. Since q(r) = cos

(
r

β

)
+sin

(
r

β

)
and p(r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
, then let’s find En in (28) and Kn in (29) as follows:

En =
2

R2J2
1 (ξn)

∫ R

0
rq(r)J0

(
ξnr

R

)
dr

=
2

J2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(80)

Kn =
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

=
4

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(81)

From the result in (77), En and Kn can be written as follows:

En =
2

J2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
2

ξnJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(82)

Kn =
4

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
4

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(83)
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Fig. 4. Comparison of Analytical and Approximate Solutions in (73) and (72) for different values of
β at a fixed r = 0.5

By substituting both (82) and (83) in (30), we obtain the following approximate analytical solution
using CSVM:

M(r, t) =
∞∑
n=1

2

ξnJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
cos

(
ξnt

β

β

)
J0 (ξnr)

]
+
∞∑
n=1

4

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
sin

(
ξnt

β

β

)
J0 (ξnr)

]
;

for n ∈ Z+ and co = R = 1.

(84)

The numerical data for approximate solutions from using CSVM and CRDTM have been recorded
in Table 3 for various values of r, t and β. Table 2 shows also the absolute error between approximate
solutions using CSVM and CRDTM. The absolute error value is the smallest at r = t = 0.7 and β = 1
in Table 3 which implies that both approximate solutions using CSVM and CRDTM are very close
in numerical value to each other. From Table 3, it is very clear that at β = 0.85 and β = 1 at various
values of r and t, most of the absolute error values between approximate solutions from using CSVM
and CRDTM are smaller than absolute error values at β = 0.75. Figure 6 shows the approximate
solutions for different values of t and β at a fixed value (r = 0.5) of membrane radii. The behavior of
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Fig. 5. Comparison of Approximate Solutions in (75) and (79) for different values of β at a fixed
r = 0.5

membrane’s displacement with respect to time in figure 6 shows that using CSVM at β = 1 is closer in
numerical value to the numerical values using CRDTM at β = 0.75; 0.85; 1. Using CSVM at β = 0.75
and β = 1, the numerical values of approximate solutions are close to each other, but both solutions
farther in value comparing to the approximate solution using CSVM at β = 1.
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Table 3. Comparison of the Analytical and Approximate Solutions from using CSVM and CRDTM

(r, t) β CSVM CRDTM Error

(0.1,0.1)
0.75 1.2840 0.3207 0.9633
0.85 1.2806 0.7651 0.5155
1 1.2828 1.1667 0.1161

(0.3,0.3)
0.75 0.8764 0.3232 0.5532
0.85 0.8719 0.7677 0.1042
1 0.8672 1.1689 0.3017

(0.5,0.5)
0.75 0.9710 0.3292 0.6418
0.85 0.9647 0.7734 0.1913
1 1.4054 1.1739 0.2315

(0.7,0.7)
0.75 1.2609 0.3380 0.9229
0.85 1.2533 0.7819 0.4714
1 1.2445 1.1817 0.0628

(0.9,0.9)
0.75 0.6170 0.3495 0.2675
0.85 0.6135 0.7931 0.1796
1 0.6092 1.1922 0.5830

Fig. 6. Comparison of Approximate Solutions in (84) and (70) for different values of β at a fixed
r = 0.5

By comparing the analytical and approximate solutions in (30), (59) and (70), with the classical
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non fractional standard analytical solution in [43,44], we obtain the same analytical solution provided
by [43, 44] by substituting β = 1 in equations (30), (59) and (70) since 0 < β ≤ 1. Figures (7), (8),
and (9) show the comparison of analytical and approximate solutions in (30) and (70) graphically for
various values of β = 1; 0.75; 0.25.

Fig. 7. Comparison of Solutions in (30) and (70) for β = 1

Fig. 8. Comparison of Solutions in (30) and (70) for β = 0.75

Thus, the CFD formulation is a simple fractional definition to obtain analytical solutions for frac-
tional partial differential equations in comparison to the complicated classical fractional formulations
that require various theorems, generalizations, or mathematical extensions to obtain analytical solu-
tion or even in some cases can not be obtained at all without introducing numerical and approximate
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Fig. 9. Comparison of Solutions in (30) and (70) for β = 0.25

methods. The analytical solutions provided in this paper can be extended to solve higher order
fractional PDEs more efficiently than nonlocal classical fractional derivatives formulations.

4. Conclusion

Fractional differential equations have been undergoing major developments due to the importance of
understanding the physical and dynamical behavior of problems arising from physics and engineering
applications. This article sheds the light on the importance of the conformable fractional derivatives
(CFD) and the fact that the CFD can provide efficient analytical and approximate analytical solutions
for the two-dimensional fractional wave equation using novel methods such as conformable separation
of variables, conformable double Laplace transform, and conformable reduced differential transform
methods. We believe that the conformable fractional formulation can be applied effectively in modeling
various PDEs problems.
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