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Abstract
Let N be a positive integer, and α = α1

α2
∈ Q\{0, N} with gcd(α1, α2) = 1. N is called an

α-Korselt number, equivalently α is said an N -Korselt base, if α2p − α1 divides α2N − α1
for every prime divisor p of N . The set of N -Korselt bases in Q is denoted by Q-KS(N)
and called the set of rational Korselt bases of N .
In this paper rational Korselt bases are deeply studied, where we give in details their
belonging sets and their forms in some cases. This allows us to deduce that for each
integer n ≥ 3, there exist infinitely many squarefree composite numbers N with n prime
factors and empty rational Korselt sets.
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1. Introduction
As known, for α ∈ Z \ {0}, an integer N ∈ N \ {0, 1, α} is an α-Korselt number if

p − α divides N − α for all prime divisors p of N . Korselt numbres are considred by
Bouallègue-Echi-Pinch [1] as a natural generalization of Carmichael numbers which are
simply characterized by the Korselt criterion as follows.

Korselt’s criterion 1.1 ([8]). A squarefree composite integer N > 1 is a Carmichael
number if and only if p − 1 divides N − 1 for all prime factors p of N .

Carmichael numbers are exactly the 1-Korselt squarefree composite numbers. Since α-
Korselt numbers for α ∈ Z (or simply Korselt numbers) were introduced, they have been
the subject of intensive study, one may find more details in [1,2,6,7]. Motivated by these
facts, Ghanmi [3] introduced the notion of Q-Korselt numbers as extension of Korselt
numbers to Q by setting the following definitions.

Definition 1.2. Let N ∈ N \ {0, 1}, α = α1
α2

∈ Q \ {0} with gcd(α1, α2) = 1. Then

(1) N is said to be an α-Korselt number (Kα-number), if N ̸= α and α2p − α1 divides
α2N − α1 for every prime divisor p of N .

(2) By the Q-Korselt set of the number N (or the Korselt set of N over Q), we mean
the set Q-KS(N) of all β ∈ Q \ {0, N} such that N is a Kβ-number.
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(3) The cardinality of Q-KS(N) will be called the Q-Korselt weight of N ; we denote
it by Q-KW(N).

Further, in [4] the author state the notion of Korselt bases as follows.

Definition 1.3. Let N ∈ N \ {0, 1}, α ∈ Q and B be a subset of N. Then
(1) α is called an N -Korselt base (KN -base), if N is a Kα-number.
(2) By the B-Korselt set of the base α (or the Korselt set of the base α over B), we

mean the set B-KS(B(α)) of all M ∈ B such that α is a KM -base.
(3) The cardinality of B-KS(B(α)) will be called the B-Korselt weight of the base α;

we denote it by B-KW(B(α)).

The set Q-KS(N) is simply called the rational Korselt set of N . In this paper we are
concerned only with squarefree composite numbers.

It’s clear that every nonzero positive integer has finitely many Korselt bases over Q
(see [3, Theorem 2.3]), hence a natural question can be posed about the existence of such
numbers with empty rational Korselt set and how many there are. Obviously, this cannot
happen for N = pq; numbers with two distinct primes factors because q + p − 1 lies
always in Q-KS(N). However, when N has more than three prime factors, the answer
is affirmative. Moreover, we show in this work that for each integer n ≥ 3, there exist
infinitely many squarefree composite numbers N with exactly n prime factors and empty
rational Korselt sets.

We give a brief description of the content of the paper. In Section 2, we provide in
details the belonging set of a rational korselt base of a number N , and in some cases we
give explicitly its general form. Consequently, in Section 3, we deduce that for each integer
n ≥ 3, there exist infinitely many squarefree composite numbers N with n prime factors
and empty rational Korselt sets.

In the rest of this paper, we consider for n ≥ 2 and p1 < p2 < . . . < pn prime numbers,
the number N = p1p2 . . . pn and α = α1

α2
∈ Q, where we assume, without loss of generality,

that α2 > 0, α1 ∈ Z and gcd(α1, α2) = 1. Let gcd(α1, N) = Q, α1 = α
′′
1Q and P = N

Q
. If

Q ̸= 1, we write Q =
m∏

i=1
qi, where qi are prime numbers and qi < qj for each i < j. For

I = {i1, i2, ..., is} ⊆ {1, 2, ..., m}, we set Qi1i2...is = Q∏
i∈I

qi
.

As known, α = α1
α2

∈ Q-KS(N) is equivalent to

α2pi − α1 | α2N − α1; ∀pi | N. (1.1)
This allows us to determine easily, with a simple Maple program, the rational Korselt set
of any given positive integer N . For example:

Q-KS(30) =
{

4, 6,
15
8

,
40
13

,
5
2

,
10
3

,
15
4

,
24
5

}
. (1.2)

Q-KS(105) =
{

6, 9,
126
25

,
35
6

,
90
13

,
21
5

,
35
12

}
. (1.3)

2. Korselt rational base properties
We begin by giving the belonging set of the N -Korselt bases in Q when N is not dividing

α1.

Proposition 2.1. Let α = α1
α2

∈ Q-KS(N) and p, q two prime factors of N . Then the
following properties hold.
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(1) α < N .
(2) If gcd(q, α1) = 1 then −N

q
+ q + 1 ≤ α ≤ N

q
+ q − 1.

(3) Suppose that q divides α1. If gcd(p, α1) = 1 and (N, α) ̸= (pq,
2qp

q + 1
) then

2pq − N

2q − 1
≤ α ≤ 2pq + N

2q + 1
.

Proof.
(1) Suppose N < α. Then 0 < α − N < α − pn, and consequently 0 < |k| = α − N

α − pn
< 1,

contradicting k ∈ Z. Hence,
α < N. (2.1)

(2) Since α2N − α1 = α2p

(
N

p
− 1

)
+ (α2p − α1), α2p − α1 | N

p
− 1 by (1.1). Therefore,

−N

q
+ 1 ≤ α2q − α1 ≤ N

q
− 1, so that,

1 − N

q
≤ 1

α2

(
1 − N

q

)
≤ q − α ≤ 1

α2

(
N

q
− 1

)
≤ N

q
− 1.

Consequently, 2pq − N

2q − 1
≤ α ≤ 2pq + N

2q + 1
.

(3) Let α1 = α
′
1q and N = pqN1. As α2N − α1 = q(α2pN1 − α

′
1) and gcd(α2p − α1, q) = 1,

it follows by (1.1) that α2p − α1 | α2pN1 − α
′
1, hence there exists k ∈ Z \ {0} such that

(α2p − α1)k = α2pN1 − α
′
1. Thus,

α2p(k − N1) = α
′
1(kq − 1). (2.2)

We will prove that |k| ̸= 1.
• Suppose k = 1. Then, by (2.2),

α2p(1 − N1) = α
′
1(q − 1). (2.3)

Consequently, N1 ̸= 1 and α
′
1 < 0. Now, since gcd(α2p, α

′
1) = 1, we get α2p | q − 1 by

(2.3). Hence,
α2p < q. (2.4)

Let r be a prime factor of N1. Replacing the factor p of N by r, we deduce, as in
the beginning of the proof, that there exists a positive integer l such that (α2r − α1) =
α2pN1 − α

′
1

l
. Since r ̸= p, we obtain l ̸= 2. So, α2r − α1 ≤ α2pN1 − α

′
1

2
= α2p − α1

2
and

consequently, α2(r − p) ≤ α1 − α2r. As −α2p < α2(r − p) and α1 − α2r < α1 < −q, it
follows that −α2p < −q, so that, α2p > q, contradicting (2.4).

• Now, suppose k = −1. Then, by (2.3),

α2p(1 + N1) = α
′
1(q + 1). (2.5)

Two subcases are to be considered.
(i) Assume N1 = 1. Then, 2α2p = α

′
1(q + 1) by (2.5), and so α = 2qp

q + 1
which is excluded

by hypothesis.
(ii) If r is a prime divisor of N1, then there exists s ∈ Z \ {0} such that

α2r − α1 = −α2pN1 − α
′
1

s
. (2.6)
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As r ̸= p, we get s ̸= 1. Moreover, we claim that s ≥ 3, indeed if is not true (i.e. s = 2),
then since α2pN1 − α

′
1 > 0 by (2.1) and k = −1,

α2r − α1 = −α2pN1 − α
′
1

2
= α2p − α1

2
. (2.7)

This implies that r = p + α

2
, so that, 2r > α. It follows by (2.5) that α

′
1(q + 1) =

α2p(1+N1) > α2pr > α2
α

2
p = α

′
1
qp

2
, and so q(p−2) < 2. Therefore, as q is prime ( hence

q(p − 2) ̸= 1), q(p − 2) = 0 and so p = 2. But, as 1 = gcd(α1, p) = gcd(α1, 2) hence α1 is
odd, we should have α2p − α1 = 2α2 − α1 is also odd, contradicting (2.7).

Now, because s ≥ 3, (α2r − α1) ≥ −α2pN1 − α
′
1

3
= α2p − α1

3
by (2.6). Therefore,

r ≥ p + 2α

3
, and so 3r > 2α. Hence, by (2.5), α

′
1(q +1) = α2p(1+N1) > α2pr > α2

2α

3
p =

α
′
1
2qp

3
, and so q(2p − 3) < 3. This forces q = p = 2 as p and q are prime, which is not

possible.
So, we conclude that |k| ̸= 1, hence −N − α

2q
≤ p − α ≤ N − α

2q
. Thus, 2pq − N

2q − 1
≤ α ≤

2pq + N

2q + 1
. �

Remark 2.2.
(1) The optimal bounds for the inequalities in Proposition 2.1(1) are given by letting q be
the largest prime divisor of N with gcd(q, α1) = 1.

(2) For (N, α) = (pq,
2qp

q + 1
), the inequalities in Proposition 2.1(2) do not hold. For

example when p = 2, q = 5 we have N = 2×5 is a 10
3

-Korselt number, however, 2qp + N

2q + 1
=

30
11

< α = 10
3

.

Now, to prove the next result (Proposition 2.6), we need to state the three following
lemmas, whenever gcd(α1, N) = Q = N . For each 1 ≤ i ≤ n, set ri = α2 − Qiα

′′
1 . If

Q = N (i.e. P = 1) then as gcd(ri, Qi) = 1 and qiri = α2qi − α1 | α2N − α1 = Q(α2 − α
′′
1)

by (1.1), it follows that ri | α2 − α
′′
1 , and so there exists mi ∈ Z such that

miri = α2 − α
′′
1 . (2.8)

If mi < 0, we set m
′
i = −mi.

Lemma 2.3. Let α = α1
α2

∈ Q-KS(N). If N divides α1 then the following assertions hold.

(1) α2 > α
′′
1 > 0.

(2) Qij | mi − mj for all 1 ≤ i ̸= j ≤ n.
(3) (ri)1≤i≤n is increasing and (mi)i is decreasing on each of sets J = {1 ≤ i ≤

n; mi < 0} and K = {1 ≤ i ≤ n; mi > 0}.

Proof. Assume that α1 = α
′′
1N (i.e. Q = N).

(1) If we suppose α
′′
1 < 0, then 0 < α2 − α

′′
1 < α2 − Qiα

′′
1 = ri | α2 − α

′′
1 which is not

possible. So, α
′′
1 > 0.

Now, because α
′′
1N

α2
= α < N by (2.1), α2 − α

′′
1 > 0.

(2) Since miri = α2 − α
′′
1 by (2.8), it yields that

α2

α
′′
1

= Qi + Qi − 1
mi − 1

. (2.9)
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So, for all 1 ≤ i ̸= j ≤ n

Qij(qj − qi) = Qi − Qj = Qj − 1
mj − 1

− Qi − 1
mi − 1

, (2.10)

hence,
Qi − Qj = Qj − Qi

mj − 1
+ (Qi − 1) mi − mj

(mj − 1)(mi − 1)
. (2.11)

As Qij | Qi − Qj and gcd(Qij , Qi − 1) = 1, it follows that
Qij | mi − mj .

(3) Since (Qi)i is decreasing, (ri)i is increasing as α
′′
1 > 0. Hence, if i, j ∈ K with i < j,

then rj > ri > 0, and so 0 < mj = α2 − α
′′
1

rj
< mi = α2 − α

′′
1

ri
. Hence, (mi)i∈K is

decreasing. Similarly, if i, j ∈ J with i < j, then ri < rj < 0, hence mj = α2 − α
′′
1

rj
<

mi = α2 − α
′′
1

ri
< 0. Thus (mi)i∈J is decreasing. �

Now, in addition to that N divides α1, we suppose in the next two Lemmas that n ≥ 3.
This yields to the existence of 1 ≤ k < l < s ≤ n such that qkqlqs | Q = N .

Lemma 2.4. Let α = α1
α2

∈ Q-KS(N). Suppose that N divides α1 and n ≥ 3. Then

(1) If ml > m
′
k > ms > 0, then we have the following.

(i) ql = ms + m
′
k and so N = qkqlqs.

(ii) ql − 2 = qk ≥ 3
(3) If m

′
l > ms > m

′
k > 0, then we get the following.

(i) ql = ms + m
′
k and so N = qkqlqs.

(ii) m
′
k + 3 ≤ ms.

(iii) qs = ql + 2.
Proof. Let the integers 1 ≤ k < l < s ≤ n be such that qkqlqs | Q = N .

(1) Assume that ml > m
′
k > ms > 0.

(i) By (2.10)

Qkl(ql − qk) <
Ql − 1
m

′
k − 1

+ Qk − 1
m

′
k + 1

= m
′
k(Ql + Qk) + Ql − Qk

(m′
k)2 − 1

.

Multiplying by (m′
k)2 − 1 and dividing by Qkl, it follows that

((m′
k)2 − 1)(ql − qk) < m

′
k(qk + ql) + qk − ql.

Therefore,
ql − qk <

2ql

m
′
k + 1

. (2.12)

As ql | Qks and Qks | ms + m
′
k by Lemma 2.3 (2), we should have ql = Qks = ms + m

′
k.

Indeed, if is not the case, we get ql ≤ ms + m
′
k

2
< m

′
k, hence ql−qk <

2ql

m
′
k + 1

< 2 by (2.12)

and so ql = 3, qk = 2 and N = 6qs. Moreover, as 2(qs −3) = Ql −Qs <
Qs − 1
ms − 1

= 6
ms − 1

,

necessarily qs = 5 and so N = 30. So, α = 30
α2

∈ Q-KS(30) with gcd(α2, 30) = 1. This is

not true by (1.2). Thus, ql = ms + m
′
k and N = qkqlqs.

(ii) As ql = Qks = ms + m
′
k ≤ 2m

′
k, (2.12) implies that ql − qk < 4. Hence ql = qk + 2

with qk ̸= 2 since ql is prime.
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(3) Now, suppose that m
′
l > ms > m

′
k > 0.

(i) By (2.10)

Qls(qs − ql) <
Qs − 1
ms − 1

+ Ql − 1
ms + 1

= ms(Qs + Ql) + Qs − Ql

m2
s − 1

.

Multiplying by m2
s − 1 and dividing by Qls, we get

(m2
s − 1)(qs − ql) < ms(ql + qs) + ql − qs.

Hence,

qs − ql <
2ql

ms − 1
. (2.13)

As ql | Qks and Qks | ms +m
′
k by Lemma 2.3 (2) , we claim that ql = ms +m

′
k. Indeed,

if is not the case, then ql ≤ ms + m
′
k

2
≤ ms − 1, therefore, 2 ≤ qs − ql <

2ql

ms − 1
≤ 2 by

(2.13), which is not true. So, ql = ms + m
′
k and N = qkqlqs.

(ii) Now, let us show that the case m
′
k = ms − 1 does not hold. Suppose the contrary,

then ql = ms + m
′
k = 2ms − 1 by 3(i). This implies by (2.10) that

Qkl(ql − qk) = Qk − 1
m

′
k + 1

− Ql − 1
m

′
l + 1

<
Qk − 1
m

′
k + 1

.

Therefore, ql − qk <
ql

m
′
k + 1

= 2ms − 1
ms

< 2, which forces ql = 3 , qk = 2, ms = 2 and

N = 6qs. Hence, α2

α
′′
1

= Qs + Qs − 1
ms − 1

= 6 + 5 = 11, by (2.9), and so α2 = 11 and α
′′
1 = 1.

This implies by (2.8) that m
′
l(2ql − 11) = 10, hence m

′
l is even and as m

′
l > ms = 2,

we should have m
′
l ≥ 4. Therefore, 2ql − 11 ≤ 10

4
which yields to ql = 5 and N = 30,

which is not true by (1.2). Thus, m
′
k < ms − 1. Now, since ql = ms + m

′
k is prime, then

m
′
k ̸= ms − 2. Consequently, m

′
k + 3 ≤ ms.

(iii) As ql = ms + m
′
k < 2ms − 2, then qs = ql + 2 by (2.13). �

Lemma 2.5. Let α = α1
α2

∈ Q-KS(N) such that N divides α1 and n ≥ 3. Then

(1) α
′′
1 = 1.

(2) If ml > m
′
k > ms > 0, then there exists βls ∈ Z such that ms | ml and ml | βlsrs.

(3) If m
′
l > ms > m

′
k > 0, then there exists βkl ∈ Z such that m

′
k | m

′
l and m

′
l | βklrk.

Proof. (1) For i ̸= j, miri = mjrj = α2 − α
′′
1 by (2.8). Hence,

(α2 − α
′′
1)
(

1
mj

− 1
mi

)
= rj − ri,

which implies that

(α2 − α
′′
1)
(

mi − mj

mimj

)
= α

′′
1(Qi − Qj).

By setting mi − mj = βijQij , it follows that

(α2 − α
′′
1)βij = α

′′
1mimj(qj − qi). (2.14)

Now, since ql = Qks = ms − mk by Lemma 2.4, then βsk = 1 and so α2 − α
′′
1 =

α
′′
1msm

′
k(qs − qk) by (2.14). Hence, α

′′
1 = 1 as gcd(α′′

1 , α2) = 1.



Numbers with empty rational Korselt sets 89

(2) Assume that ml > m
′
k > ms > 0. First, since βsk = 1, we have

α2 − 1 = msm
′
k(qs − qk). (2.15)

and (2.14) becomes
(α2 − 1)βij = mimj(qj − qi). (2.16)

As ql − 2 = qk by Lemma 2.4, we get by (2.16)

(α2 − 1)βkl = 2m
′
kml. (2.17)

Therefore, βklms
qs − qk

2
= ml by (2.15), and so ms | ml.

Now, since (α2 − 1)βls = msml(qs − ql) by (2.16) and α2 − 1 = msrs, it follows that
rsβls = ml(qs − ql) which means that ml | βlsrs.

(3) Now, suppose that m
′
l > ms > m

′
k > 0. As qs = ql+2 by Lemma 2.4, then (α2−1)βsl =

2m
′
lms by (2.16). Therefore, βslm

′
k

qs − qk

2
= m

′
l by (2.15), and so m

′
k | m

′
l. Similarly,

since α2 − 1 = mkrk, (α2 − 1)βkl = m
′
km

′
l(ql − qk) by (2.16). Hence, rkβkl = m

′
l(qk − ql)

and so m
′
l | βklrk. �

Proposition 2.6. Let α = α1
α2

∈ Q-KS(N) and n (resp., n1) be the number of prime
factors of N (resp., P ). Then

(1) 0 ≤ n1 ≤ n.
(2) If n ≥ 3 then 1 ≤ n1 ≤ n.

Proof.
(1) Straightforward.
(2) Suppose N = Q = gcd(α1, N) (i.e. n1 = 0) and n ≥ 3. Depending on m

′
i and the signs

of the integers ri for i ∈ {k, l, s}, we consider the following cases.
(a) Suppose that 0 < rk < rl < rs. Then, Qls | ml − ms by Lemma 2.3(2) and so

Qls ≤ ml−1. Hence, qs < Qkl(ql−qk) <
Ql − 1
ml − 1

<
Ql

Qls
= qs by (2.10), which is impossible.

(b) If rk < rl < rs < 0 ( i.e. m
′
s > m

′
l > m

′
k > 0), then by(2.10)

Ql − Qs = Ql − 1
m

′
l + 1

− Qs − 1
m′

s + 1
<

Ql − 1
m

′
l + 1

.

As Qkl < m
′
l +1 by Lemma 2.3 (2) , it follows that qk < Qls(qs −ql) <

Ql − 1
m

′
l + 1

<
Ql

Qkl
= qk,

which is not true.
(c) Now, assume that rk < 0 < rl < rs ( i.e. ml > ms > 0 and m

′
k > 0). Then the following

subcases are to be discussed.
(i) If m

′
k > ml > ms > 0, then by (2.11)

Qkl(ql − qk) <
Ql − 1
ml − 1

+ Qk − 1
ml + 1

= ml(Ql + Qk) + Ql − Qk

m2
l − 1

.

Multiplying by m2
l − 1 and dividing by Qkl, we obtain

(m2
l − 1)(ql − qk) < ml(qk + ql) + qk − ql.

As Qls ≤ ml − 1 by Lemma 2.3 (2) , it follows that ql − qk <
2qk

Qls
. Therefore, qk(ql − qk) ≤

Qls(ql − qk) < 2qk, which forces ql = 3, qk = 2 and so N = 6qs. Hence, 2(qs − 3) =
Ql − Qs <

Qs − 1
ms − 1

= 6
ms − 1

by (2.10), which yields to qs = 5 and so N = 30. Impossible
by (1.2).



90 N. Ghanmi

(ii) Assume that ml > m
′
k > ms > 0. Since ms | ml and ml | βlsrs = βls(α2 − 1) +

βls(1 − Qs) by Lemma 2.5 and ml | α2 − 1 by (2.17), it follows that ml | βls(Qs − 1) =
(βlsqk + ms)ql − msql − βls. Therefore ml | msql + βls, as ml = βlsqk + ms. Since ms | ml,
it follows that ms | βls and we can write

ml

ms
| ql + βls

ms
= qk + 2 + βls

ms
.

As ml

ms
= 1 + βls

ms
qk, it follows that

1 + βls

ms
qk | qk + 2 + βls

ms
. (2.18)

Hence, 1 + βls

ms
qk ≤ qk + 2 + βls

ms
, and so

(
βls

ms
− 1

)
(qk − 1) ≤ 2. This implies as qk ≥ 3,

that (qk = 3 and βls

ms
= 2) or βls

ms
= 1.

• If βls

ms
= 1 then 1 + qk = 1 + βls

ms
qk | qk + 2 + βls

ms
= qk + 3 by (2.18), hence qk = 1.

Impossible.
• If qk = 3 and βls

ms
= 2, then ql = qk +2 = 5. But, since by (2.10) 3(qs −5) = Ql −Qs <

Qs − 1
ms − 1

= 14
ms − 1

, it follows that qs = 7 and so N = 105 which is not true by (1.3).

(iii) If ml > ms > m
′
k > 0, then as Qks ≤ 2ms by Lemma 2.3 (2) , we get 2qk <

Ql − Qs <
2Qs

Qks
= 2qk by (2.10), which is impossible.

(d) If rk < rl < 0 < rs ( i.e. m
′
l > m

′
k > 0 and ms > 0), then the following subcases are to

be discussed.
(i) Suppose that ms > m

′
l > m

′
k > 0. Then by (2.10)

Qls(qs − ql) <
Qs − Ql

ms − 1
+ Ql

(m′
l + ms − 1)

m
′
l(ms − 1)

< Ql
(m′

l + ms − 1)
m

′
l(ms − 1)

<
2Ql

m
′
l

.

As Qkl < m
′
l by Lemma 2.3 (2) , it follows that 2qk ≤ Qls(qs − ql) <

2Ql

Qkl
= 2qk, which is

impossible.
(ii) Assume that m

′
l > ms > m

′
k > 0. As m

′
k | m

′
l and m

′
l | βklrk = βkl(α2 − 1) +

βkl(1 − Qk) by Lemma 2.5 and m
′
l | α2 − 1 by (2.17), it follows that m

′
l | βkl(Qk − 1) =

(βklqs + m
′
k)ql − m

′
kql − βkl. Hence, as m

′
l = βklqs + m

′
k, we get m

′
l | m

′
kql + βkl. Since

m
′
k | m

′
l, it follows that m

′
k | βkl and we can write

m
′
l

m
′
k

| ql + βkl

m
′
k

= qs − 2 + βkl

m
′
k

. (2.19)

Since m
′
l

m
′
k

= 1+ βkl

m
′
k

qs, it follows that 1+ βkl

m
′
k

qs ≤ qs −2+ βkl

m
′
k

, and so
(

βkl

m
′
k

− 1
)

(qs −1) ≤

−2. This is impossible since qs ≥ 5 and βkl

m
′
k

≥ 1.

(iii) If m
′
l > m

′
k > ms > 0, then by (2.10)

Qkl(ql − qk) <
Qk − 1
m

′
k + 1

<
Qk

m
′
k

.
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As, ql < 2m
′
k by Lemma 2.3 (2) , it follows that ql − qk <

ql

m
′
k

< 2. Hence, qk = 2, ql = 3

and so N = 6qs. Therefore, by (2.9) we get

Ql − Ql − 1
m

′
l + 1

= Qs + Qs − 1
ms − 1

= 6 + 5
ms − 1

≤ 11.

As m
′
l ≥ 4, it follows that 2qsQkls = Ql <

55
4

, hence qs = 5 and so Qkls = 1. So N = 30,
which is not true by (1.2).

Finally, as all cases lead to an absurdity, we conclude that n1 ≥ 1. �

Example 2.7. By this example, we show that the inequality bound values given in Propo-
sition 2.6 are all attained. Let us conserve the same notation as in Proposition 2.6.
(1) If N = 2 × 3, then N ∈ KS

(
B

(12
5

))
with Q = N and so n1 = 0.

Also, N = 2 × 3 ∈ KS

(
B

(5
2

))
with Q = 1 and so n1 = 2.

(2) For N = 2 × 3 × 5, N ∈ KS

(
B

(5
2

))
with Q = 5 and so n1 = 1.

Let N = 2 × 5 × 11. N ∈ KS

(
B

(13
2

))
with P = N and so n1 = n = 3.

By the next result we provide a generalization of the result giving by Proposition 2.1(2)
whenever gcd(N, α1) > 1.

Proposition 2.8. Suppose that N is an α-Korselt number and gcd(α1, N) = Q > 1. If
P ̸= 1, let p be a prime factor of P and R = P

p
. Then

(1) Suppose that P = 1 (i.e. n = 2 and Q = N) and N = q1q2 with q1 < q2. Then we
have the following.
(a) If q2 > 2q1, then

α ∈
{ 2N

3q1 − 1
,

2N

q2 + 1
,

N

2q1 − 1

}
.

(b) If q2 < 2q1, then

α ∈
{

kN

S
,
(k + 1)N

S

}
,

for some positive integers S where k =
⌊

S

q1

⌋
.

(2) If P ̸= 1, then 2Qp − N

2Q − 1
≤ α ≤ Qp + N

Q + 1
.

(3) Assume that P ̸= 1 and (N, α) ̸=
(

pQ,
2pQ

Q + 1

)
. Then

(a) 2Qp − N

2Q − 1
≤ α ≤ 2Qp + N

2Q + 1
.

(b) Suppose that n1 ≥ 2. If p1 and r1 are respectively the smallest and the largest
prime factors of P , then

2Qr1 − N

2Q − 1
≤ α ≤ 2Qp1 + N

2Q + 1
.

Proof.
(1) First, as P = 1 (i.e. Q = N), we have n = 2 by Proposition 2.6.

(a) See [5, Theorem 3.4].
(b) See [5, Proposition 2.18, Lemmas 2.19 , 2.20].
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(2) As α2N − α1 = Q(α2P − α
′′
1) and gcd(α2p − α1, Q) = 1, then α2p − α1 | α2P − α

′′
1 by

(1.1). Hence, there exists k ∈ Z \ {0} such that (α2p − α1)k = α2P − α
′′
1 . Therefore,

α2p(k − R) = α
′′
1(kQ − 1). (2.20)

Let us prove that k ̸= 1. Suppose k = 1, then (2.20) becomes

α2p(1 − R) = α
′′
1(Q − 1). (2.21)

Consequently, R ̸= 1 and α
′′
1 < 0. As, in addition, gcd(α2p, α

′′
1) = 1, it follows that

α2p | Q − 1, hence
α2p < Q. (2.22)

Let r be a prime factor of R. Replacing p by r, we deduce as in the beginning of the proof,

that there exists a positive integer l such that α2r − α1 = α2pR − α
′′
1

l
. As r ̸= p, then

l ̸= 1 and so α2r − α1 ≤ α2pR − α
′′
1

2
= α2p − α1

2
which yields to α2(r − p) ≤ α1 − α2r.

As, in addition, −α2p < α2(r − p) and α1 − α2r < α1 < −Q, it follows that −α2p < −Q,
that is to say α2p > Q. A contradiction with (2.22). Thus k ̸= 1, and so

−N − α

Q
≤ p − α ≤ N − α

2Q
.

Consequently, 2Qp − N

2Q − 1
≤ α ≤ Qp + N

Q + 1
.

(3) (a) Let us show that k ̸= −1. Suppose k = −1, then (2.20) gives

α2p(1 + R) = α
′′
1(Q + 1). (2.23)

Two cases are to be considered.
• If R = 1 then 2α2p = α

′′
1(Q + 1) by (2.23), and so α = 2Qp

Q + 1
which is excluded by

hypothesis.
• Suppose that R ̸= 1. Let r be a prime divisor of R. Then there exists an integer

s ∈ Z \ {0} such that

α2r − α1 = −α2pR − α
′′
1

s
. (2.24)

As r ̸= p, it’s clear that s ̸= 1. Moreover, we claim that s ≥ 3, indeed if is not true ( i.e.
s = 2), as α < N by (2.1) hence α2pR − α

′′
1 > 0, then

α2r − α1 = −α2pR − α
′′
1

2
= α2p − α1

2
. (2.25)

This implies that r = p + α

2
hence 2r > α. Therefore, by (2.23) we get α

′′
1(Q + 1) =

α2p(1 + R) > α2pr > α2
α

2
p = α

′′
1

Qp

2
, thus Q(p − 2) < 2. This forces p = 2. As

1 = gcd(α1, p) = gcd(α1, 2), then α1 is odd, hence α2p − α1 = 2α2 − α1 is also an odd
integer, contradicting (2.25).

Now, as s ≥ 3, α2r − α1 ≥ −α2pR − α
′′
1

3
= α2p − α1

3
by (2.24). This yields to r ≥

p + 2α

3
, hence 3r > 2α. Therefore, α

′′
1(Q + 1) = α2p(1 + R) > α2pr > α2

2α

3
p = α

′′
1

3Qp

3
by (2.23), hence Q(2p − 3) < 3. This forces Q = p = 2, which is not possible. So, we
conclude that k ̸= −1 and as k ̸= 1, it follows that

−N − α

2Q
≤ p − α ≤ N − α

2Q
,
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which is equivalent to
2Qp − N

2Q − 1
≤ α ≤ 2Qp + N

2Q + 1
.

(b) Straightforward from (a). �

Remark 2.9.
(1) The optimal bounds for the inequalities in Proposition 2.8(2),(3-a) are given by letting
q be the largest prime divisor of N such that gcd(q, α1) = 1.

(2) The case when (N, α) = (pQ,
2pQ

Q + 1
) does not verify the inequalities in Proposition

2.8(3); for instance N = 2 × 3 × 5 is a 15
4

-Korselt number (Q = 15, p = 2), however
2Qp + N

2Q + 1
= 90

31
< α = 15

4
.

3. Numbers with empty rational Korselt set
The main result of this work is the following theorem.

Theorem 3.1. Let n ≥ 2 be an integer and p1 < p2 < . . . < pn be fixed distinct prime
numbers. Then, there exists an integer q0 such that, for each prime number q > q0,
N = p1p2 . . . pnq has an empty Korselt set.

Proof. Let N1 = p1p2 . . . pn, q be a prime number such that q > pn and N = N1q. Let
α = α1

α2
∈ Q-KS(N), Q = gcd(α1, N) and N = PQ. Then, we consider two cases:

Case 1. Suppose that q does not divide Q. Then, by Proposition 2.1(1), we have

q + 1 − N

q
≤ α ≤ N

q
+ q − 1,

hence
1 − N1 = 1 − N

q
≤ α − q ≤ N

q
− 1 = N1 − 1.

So,
α2(1 − N1) ≤ α2q − α1 ≤ α2(N1 − 1). (3.1)

Now, by (1.1)
α2pj − α1 | α2N − α1 + (α2pj − α1)(N1 − 1),

therefore,
α2pj − α1 | (α2q − α1)N1 + α2pj(N1 − 1).

This implies that
α1 − α2pj ≤ |α2q − α1|N1 + α2pj(N1 − 1),

and so

α2q ≤ (α2q − α1) + |α2q − α1|N1 + α2pjN1 ≤ |α2q − α1|(N1 + 1) + α2pjN1.

Therefore, by (3.1)
α2q ≤ α2(N1 − 1)(N1 + 1) + α2pjN1,

hence,
q ≤ 2N2

1 − 1. (3.2)
Case 2. Suppose that q divides Q. First, since N has more than three prime factors,

Q ̸= N by Proposition 2.6. Let pj be such that gcd(pj , α1) = 1 and α1 = α
′′
1Q; by

Proposition 2.8, we have
2Qpj − N

2Q − 1
≤ α ≤ Qpj + N

Q + 1
.
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This gives
2pj − P

2Q − 1
≤ α

′′
1

α2
≤ pj + P

Q + 1
. (3.3)

It follows that if q (hence Q) approaches infinity then α
′′
1

α2
tends to 0, and so α2 ap-

proaches infinity, since α
′′
1 ̸= 0. Therefore α2 − α

′′
1

Q

q
= α2(1 − α

′′
1

α2

Q

q
) tends to infinity.

However, since α2q − α1 = q(α2 − α
′′
1

Q

q
) and α2N − α1 = α2q

(
N

q
− 1

)
+ (α2q − α1),

α2 − α
′′
1

Q

q
divides N

q
− 1 by (1.1), which is impossible. This leads to the existence of

an integer q0 > 2N2
1 − 1 such that for all q > q0 the inequalities (3.2) and (3.3) do not

hold. So, we conclude that for each prime number q > q0, N = N1q has an empty Korselt
set. �

Now, the next result follows immediately.

Theorem 3.2. For each integer n ≥ 3, there exist infinitely many squarefree composite
numbers N with n prime factors and empty rational Korselt set.

Remark 3.3. For each two distinct prime numbers p and q, N = pq has a non empty
rational Korselt set since q + p − 1 ∈ Q-KS(N).
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