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A WEIGHTED GOAL PROGRAMMING APPROACH TO FUZZY
LINEAR REGRESSION WITH QUASI TYPE-2 FUZZY
INPUT-OUTPUT DATA

E.HOSSEINZADEH', HHASSANPOUR!, M.AREFI?, M.AMAN!, §

ABSTRACT. This study attempts to develop a regression model when both input data
and output data are quasi type-2 fuzzy numbers. To estimate the crisp parameters of
the regression model, a linear programming model is proposed based on goal program-
ming. To handle the outlier problem, an omission approach is proposed. This approach
examines the behavior of value changes in the objective function of proposed model
when observations are omitted. In order to illustrate the proposed model, some numer-
ical examples are presented. The applicability of the proposed method is tested on a
real data set on soil science. The predictive performance of the model is examined by
cross-validation.
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type-2 fuzzy number.
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1. INTRODUCTION

Type-2 fuzzy logic is increasingly being advocated as a methodology for reasoning in
situations where high uncertainties are present. Type-2 fuzzy sets were first presented by
Zadeh in 1975 [42]. Mizumoto and Tanaka [27] further explored the logical operations
of type-2 fuzzy sets. In the later 1990s and into the new millennium the definitions of
logical operations for generalized type-2 fuzzy sets were completed [18, 24] and the first
type-2 fuzzy logic textbook [23] published. Currently, the number of reported applications
of interval type-2 fuzzy logic is growing year on year. The concept of type-2 fuzzy sets
(T2FSs) was introduced by Zadeh [42] as an extension of the concept of ordinary fuzzy
sets (henceforth called type-1 fuzzy sets). T2FSs are characterized by fuzzy membership
functions (MF), i.e., the membership grades themselves are fuzzy sets in [0,1]. They
are very useful in circumstances where it is difficult to determine an exact membership
function for a fuzzy set; hence, they are useful for incorporating linguistic uncertainties,
e.g., the words that are used in linguistic knowledge which can mean different things to
different people [22]. As a way of illustration, suppose a number of people are asked
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about the temperature of the room where they are present. All the subjects mention
“ approximately 70° Fahrenheit ”. Nonetheless, if each individual subject is asked to
show the “ approximately 70° Fahrenheit MF 7, different MF's are likely to be presented,
even if the MFs are all of the same kind (e.g., triangular). This implies the statement
that “ Words can mean different things to different people ”[24]. Accordingly, T2FSs
prove helpful in cases where an exact form of an MF cannot be determined. Karnik and
Mendel [18] introduced the centroid and generalized centroid of a type-II fuzzy set and
explained how to calculate them. Furthermore, they showed how to compute the centroid
of interval and Gaussian type-1I fuzzy sets. Karnik and Mendel [25] discussed set theoretic
operations for type-II sets, properties of membership grades of type-1I fuzzy sets, and type-
IT relations and other compositions, and cartesian products under minimum and product
t-norms. Mendel and John [25] defined a new representation theorem of type-1I fuzzy
sets and introduced formulas for the union, intersection, and complement for type-II fuzzy
sets without applying Extension Principle, by using this new representation. Mendel [22]
examined questions such as ”What is a type-II fuzzy set?”, ”the importance of definition
of type-II fuzzy sets”, "How and why are type-II fuzzy sets used in rule-based systems?”.
Mendel [22] described the important advances that have been made during the past five
years both general and interval type-1I fuzzy sets and systems. Recently, Liu and Mendel
[26] have presented the concept of quasi type-2 fuzzy system. This kind of system is a
step forward to a more general kind of type-2 fuzzy system. The idea is developed on the
basis of the alpha-level representation for general type-2 fuzzy sets. Quasi type-2 fuzzy
systems become interesting since they should be more robust to uncertainty than their
interval type-2 counterparts.

Regression analysis is one of the most widely used statistical techniques for determining the
relationship between variables in order to describe or predict some stochastic phenomena.
Research on fuzzy regression analysis began by Celmins [2], Diamond [5], and Tanaka et
al. [37], and was continued by some authors, e.g., Kacprzyk and Fedrizzi [19]; Wang and
Tsaur [38]; Kao and Chyu [17]; D’Urso [6]; Wang et al. [39]; Nasrabadi et al. [30]; Hojati
et al. [14]; Modarres et al. [28]; Guo and Tanaka [7]; Coppi et al. [3]; Yao and Yu [41];
Hassanpour et al. [10, 12, 11, 13]; Ramli et al. [35]; Kelkinnama and Taheri [20]; Kocadagli
[21]. But, based on our best knowledge, there has not been any research on regression
analysis for quasi type-2 fuzzy data. Recently, Rabiei et al. [34] have proposed a Least-
squares approach to regression modeling for interval-valued fuzzy data. Also, Poleshchuk
and Komarov [33] have presented a regression model for interval type-2 fuzzy sets based
on the least squares estimation technique.

The authors [15] have proposed a goal programming approach to calculate the regression
coefficients of fuzzy linear regression model, when the inputs are crisp, but the outputs
and regression coefficients are QT2FNs. In this paper, a similar method is applied to
calculate the coefficients of model when the independent variables (inputs), as well as the
response variable (output), are QT2FNs and regression coefficient are assumed to be crisp
numbers. To accomplish this, we introduce a distance on the space of quasi type-2 fuzzy
numbers and a goal programming method to obtain the coefficients of regression model.
Existing outliers in the data set, causes the result of fuzzy linear regression be incorrect.
Chen [4], to reduce the effect of outliers, considered the minimization model of Tanaka
[36] with n additional constraints. It is important for a data analyst to be able to identify
outliers and assess their effect on various aspects of the analysis. Some methods have been
presented to detect outliers in FLR [4, 32]. However, they have some drawbacks, e.g, they
must pre-assign some values to the parameters without any instructive suggestion to chose
them, and they cannot conduct a formal test for the outliers. To overcome the mentioned



E.HOSSEINZADEH, HHASSANPOUR, M.AREFI, M.(AMAN: A WEIGHTED GOAL... 195

shortcomings, we use an omission approach based on Hung and Yang method [16], which
examines the value change in the objective function when some of the observations are
omitted from the data set in QT2FLR model. Moreover, to define the cutoffs for outliers,
we use the box plot procedure as a visual display tool.

The remainder of the paper is organized as follows: Section 2, contains some preliminaries
of quasi type-2 fuzzy set theory. Also, a distance between quasi type-2 fuzzy numbers is
introduced. In Section 3, our method is explained. In Section 4, an omission approach
for outlier detection is proposed. Also, the effect of outliers in input and output data is
considered. In Section 5, a real world data sets are used to illustrate how the proposed
method is implemented. The predictive performance of the model is examined by cross-
validation in Section 6. Finally, a brief conclusion is given in Section 7.

2. . PRELIMINARIES

In this section, a review of the basic terminology used in this paper is presented[25, 15, §].

2.1. Type-2 fuzzy sets. B
A type-2 fuzzy set(T2FS), denoted by A, in a crisp set X is characterised by a type-2
membership function p ;(z, u), i.e.,

A= {((w,u), pz(z, )|z € X, ue Jy 0,1}, (1)

where 0 < i ;(x,u) <1, u is a primary grade and j ;(,u) is a secondary grade. A T2FS
can be graphically shown in three dimensional space(3D). At each value of x, say 2/, the
two dimensional (2D) plane whose axes are u and p ;(x,u) is called a vertical Slice (VS)
of 4, i.e.,

V(') = pz(a',u) = pi(a) = {(u, for(u)u € Jor} (2)
where fu/(u) : J, — [0,1] is a function that assigns a secondary grade to each primary
grade u for some fixed z. The VS is a type-1 fuzzy set(T1FS) in [0, 1].

The Footprint Of Uncertainty (FOU) is derived from the union of all primary memberships.
The FOU is bounded by two membership functions, a lower one, u ;(x) and an upper one,

t;(x). The FOU can be described in terms of its upper and lower membership functions
which themselves are T1FSs:

FOU(A) = {J,|z € X} = [FOU(A), FOU (A)] (3)

The principal membership function (PrMF) defined as the union of all the primary mem-
berships having secondary grades equal to 1

Pr(A) = {(z,u)lz € X, fo(u) =1} (4)

An interval type-2 fuzzy set (IT2FS) is defined as a T2FS whose all secondary grades

are of unity, i.e., for all z, fz(u) = 1. An IT2FS can be completely determined by its FOU
given by Equation (3).

Let A be a T2FS satisfying the following assumptions: [8]

A1: All the VSs of the T2FS are fuzzy numbers, i.e., Vz , h(A) = sup pi(z) =1

A2: All the VSs of the T2FS are piecewise functions of the same type (e.g., linear).
The first assumption assures that the T2FS contains an FOU and a Pr. This fact is clear
since all the VSs are normal which makes it clear that for all the domain values there is at
least one primary grade with secondary grade at unity. The second property assures that
only a set parameters are needed to define a special kind of T2FS which is directly related
to FOU and Pr. These assumptions allows the kind of T2FS be completely determined



196 TWMS J. APP. ENG. MATH. V.6, N.2, 2016

using its FOU and Pr, just like a T1FS can be completely determined by its core and
support, which based on certain assumptions.

Definition 2.1. [8] A T2FS is called a quasi type-2 fuzzy number (QT2FN) if it is com-
pletely determined by its FOU and Pr. The set of all QT2FNs is denoted by QT2F(R).

The Extension Principle has been used by Zadeh [42] and Mizumoto and Tanaka [27] to
derive the intersection and union of T2FSs. Karnik and Mendel [18] provided an in-depth
investigation on these operations.

Theorem 2.1. [25] (QT2 Extension Principle) Let X = X1 x --- x X, be the Cartesian
product of universes, and Ay,---, A, be QT2FSs in each respective universe. Also let
Y be another universe and B € Y be a QT2FS such that B = f(fll, ,fln), where
f: X — Y is a monotone mapping. Then application of Extension Principle to QT2FSs
(QT2 Extension Principle) leads to the following:

B(y) = sup inf([ll(xl), e Ap(y))
(@1, ,@n)Ef 1 (y)

where Yy = f(xla T axn)'
Definition 2.2. [9] Let A and Bi be two QT2FSs on the universal set X. Then, A is called
a subset of B, denoted by A C B, if

A(x) < B(z) , A(z) < B(x) and A(z) < B(x), VeeX (5)
where A(x) :~FOU(A), Ax) = ]?7“(/1) and Z(x) = }EOU(A)
In addition, A is called equal to B, denoted by A = B, if

A(z) = B(z) , A(x)=B(z) and A(z) = B(z) VaoelX. (6)

0), if A(z) = A(x) =

Definition 2.3. [8] A € QT2F(R) is called a positive QT2FN (A
0), if A(z) = A(z) =

A(x) = 0 whenever x < 0; and A is called a negative QT2FN (A
A(x) = 0 whenever z > 0.

>
<
Definition 2.4. A QT2FN is called triangular if all of the membership functions FOU([X),
FOU(A), Pr(A) and vertical slices are triangular fuzzy numbers.

A triangular QT2FN, say A, is denoted by A = (¢;lh,r150,7512,m2). The parameters used
here are Pr(A) = (c;1,r) and FOU(A) = (¢;1y,r1;1la,r2) in which (¢;ly,r1) = FOU(A)
and (c;ly,5) = FOU(A).
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FIGURE 1. (a) Non-symmetric triangular QT2FN; (b) Symmetric triangular QT2FN
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A triangular QT2FN, say A can be denoted by its left and right spreads as follows:
A = <C7 al?ﬂl;auﬁ;a27ﬁ2>

where o1 = c—1l1, a=c—1, ag=c—Iloand pf1=7r1—¢, B=1—2¢, Bo =19 —C are
the left and right spreads of FOU, Pr and FOU, respectively, and 0 < a3 < a < aj,
0< By < B <P (Figl). Specially, A is called symmetric if o = 1, @ = 8 and ay = 5.
In such a case A is denoted by A = (¢; a1; v ).

An ordinary triangular fuzzy number can be considered as a degenerated QT2FN in which

all of the spreads of FOU(A), FOU(A) and Pr(A) are equal and their secondary member-
ship functions are zero. Also, a real number can be considered as a degenerated QT2FN
whose spreads and secondary membership functions are zero. The following formulas for
addition of two triangular QT2FNs and multiplication of a triangular QT2FN by a scaler
are drawn from extension principle of zadeh [43].

Proposition 2.1. If A = (¢;a1, B1;a, B9, B2) and B = (¢; a4, B1;a!, By, Bb) be in
QT2F(R) and X € R, then

Aj+ Ay = (c+ 500+, B+ B o+, B4 00 + oy, Bo + Bh), (7)
VA, — (Ae; Aag, AB1; A, AB; Aag, A\B2) A>0, ®)
D7) e =AB1, —Aan; —AB, —da; =B, —Aag) A < 0.

Proposition 2.2. Let r and s be two real numbers and A be a quasi type-2 fuzzy number.
Then

(r+s)ACrA+sA. 9)

Proof. According to Definition 2.2, Relation (9) is satisfied if and only if this relation is
satisfied for lower, principal and upper fuzzy numbers which define A. In other words

(r+s)A CrA+sA < (r+s)Ax) < rA(z) + sA(z), (10)

(r+s)A(x) <rA(z) + sA(z),

(r+s)A(z) < rA(z) + sA(x).
However, the right hand side relations are hold for type-1 fuzzy numbers (see [12], Propo-
sition 2.7), and the proof is complete. O

2.2. A distance between quasi type-2 fuzzy numbers.

The observed data in our study are assumed to be QT2FN. So, we try to close the mem-
bership functions of observed and estimated responses from fuzzy linear regression model
by closing their corresponding parameters. Since QT2FNs are completely characterized by
the parameters of their FOU and Pr, closing the parameteres of two QTFNs is enough (in
fact necessary and sufficient) to close their membership functions, which is the purpose of
this paper. To do this, based on the distance defined between two triangular fuzzy numbers
by Hassanpour et al. [11], we propose the following weighted distance between QT2FNs
in which different weights (w;) are used to show different importance of the parameters
[15].

Definition 2.5. Let A = (c;ou, B1; 0, 8500, B2) and B = (50!, B, a!, 850, BY) be in
QT2F(R) and w; > 0 fori=1,---,7. The distance between A and B as follows:
dw(A, B) = wilan — oy | +ws|B1 — Bi] + ws|as — ab| + wa|B2 — Bh| +

ws|a — | +wgle — |+ wr|8 — B (11)
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Among advantages of using d,,, we can refer to its ease in both theory and application.
Furthermore, the special formula of the proposed distance helps us to convert the nonlinear
programming model proposed to calculate the regression coefficients, to a linear one. The
advantages of this conversion are that solving LP problems is very easy, and their exact
solution can be obtained by the Simplex method. However, most of available algorithms
for solving nonlinear programming problems yield approximate solutions. In addition,
depending on the relative importance of the parameters of quasi type-2 fuzzy numbers, we
can assign different values to the weights w; and obtain different solutions. For example,
one can set w; = 1 for all 4, if the parameters of Pr and FOU have the same importance,
and can set ws = wg = w7 = 2, w1 = wy = wy = wy = 1 if the importance of Pr is twice
the importance of FOU.

Proposition 2.3. The function d,, defined in Definition 2.5 is a metric on QT2F(R),
i.e., for each A,B,C € QT2F(R) we have:

1. dy(A, B) >0 and dy,(A, A) = 0.

2. dy(A, B) = dy(B, A).

3. dw(A,C) < dy(A, B) +dyw(B,0).

Proof. Straightforward. O
Proposition 2.4. The metric space (QT2F(R),d,,) is complete.

Proof. (R, L') is a complete metric space, and the metric space (QT2F(R), L') inherits
properties from (R, L'). Therefore (QT2F(R),d,) is a complete metric space too. O

Remark 2.1. In practice, we set ZZ:1 w; = 1, to avoid repeated weights. Furtheremore,
if we set w; =1 V 1, for two crisp numbers, the above distance is reduced to the absolute
difference between them.

Remark 2.2. For two triangular fuzzy numbers, the above distance is reduced to the
wighted sum of absolute difference between their middle point and their spreads (in fact,
it is an extension of the metric introduced in [12] on T1FRs).

3. . THE PROPOSED REGRESSION MODEL

Consider a set of QT2F data {(Z;1,Zi2, -, Tip,¥i)[i = 1,---,n}, in which Z;; (i =
1,---,n, j=1,2,---p) is the value of jth independent variable (Z;) and g; (¢ = 1,--- ,n)
is the corresponding value of dependent variable ¢ in the ith case. The purpose of quasi
type-2 fuzzy linear regression (QT2FLR) is to fit a fuzzy linear model to the given fuzzy
data. This model can be considered as follows:

Y =ap+a121 + a9+ + apip. (12)

In model (12), the coefficients ag,ai,- - ,a, are assumed to be crisp numbers. These
parameters must be calculated such that the estimated responses Y;,

}NQ:ao—l—alfcﬂ—i—agiig—l—-w—i—ap:%ip 1=1,---,n, (13)
be close to the corresponding fuzzy observed responses ¢; (i = 1,---,n), as much as
possible.
In this paper, given inputs Z;; = (ciij;aliﬁ,ﬁl%; Qz.5, Bays 0275, P23;), 1= 1, ,m, j =
1,---,p, are supposed to be positive non-symmetric QT2FNs, by a simple translation of all
data, if necessary. Also, suppose that the observed responses are non-symmetric QT2FNs
Yi = (Cgis Qg Pugis Qg Byis 2255 Bagi), 1=1,---,n.

To calculate the coefficients of model (12), we need to multiply the QT2FN &£; by the
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Y’a a”) ---

FIGURE 2. Approximation of Y; by Yj(a’,a”) as a prediction of 7

scaler a;. This multiplication depends on the sign of the scaler, as seen in (8). Therefore,
for different states of the signs of regression coefficients, different models (LP models,
least-squares models, ...) must be formulated and solved to estimate the coefficients. To
avoid this, we propose a goal programming model to estimate the regression coefficients
which is independent of the sign of them.

Note that a real number a has infinite representations in the form of a = a’ — a”, where
a’ and a” are nonnegative real numbers. This matter leads to the following lemma.

Lemma 3.1. Let a; € R, j = 0,---,p and Ti; = (ca,;; 00, Pia,; Oa,ys By 2z, oz ), =
Lwoyn, j=1,---,p bein QT2F(R). Set aj = a};—a for j =1,---,p where a;, a7 > 0.
Then for each choice of a; and aj we have:

14 p 4

\/ // / " "

Y g aO + g a - a Cl’”a g a alz” +a ﬂlm” ) E (ajﬂli‘ij +aja1x” 5 § a aa:” + a; 51:”)
j=1 j=1 j=1 j=1

p p p
> (diBs, +afaz, )i Y (dhons,, +aBaz,,), Y (a)Bas,, + afanz,)) (14)
j=1 j=1 j=1

where Y; is given by (13).
Proof. By using Proposition 2.2 and Equations (7) and (8) we have:

Yi=ao+ 30 a;2i = ao + Y51 (0 — af)Tij C ag + 30 (a7 — af7y)
= ag + Y0 (ai{cays gy, Brays Qg Biygs Q21 B2iy;)
—aj(Cz,;5 ;s Brag; Qangs Bigs 02145, Boiiy )
=ag+ Z ((a cz”,a]au”,a ,lezj,ajax”,a ,Bz”,ajozgxm,a Bo;;) +
(—afca,;;ai Bz, ajonz,;; ) Be,, a) s, df By, af 02z, )
= {ap + Z (a —a )c;cij;zj 1(“ Qg T a”ﬂu”) Zj 1(a ﬂu;ij + a’{au;ij);
L (dag,; +all B, ), 201 (i Bey; + alfag,; ) D08 (a)aos,; + df Bazy;),
b1 (d}Boz,; + a] Oézszij»
and the proof is completed. O

Let us denote the right hand side of relation (14) by Y;(a’,a”) where a’ and a” are non-
negative p-dimensional vectors with jth element a;. and a;’ , respectively. Clearly, for each
choice of a’ and a”, Yj(a’,a”) is a triangular QT2FN, and we consider it as an approxima-
tion for ¥; (Fig 2). Indeed, there are many approximations for Y;, among which, we try
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to choose the best approximation. We have to find Y; as close as possible to y;. Instead,
first we approximate Y; to its supersets Yj(a’,a”) for different choices of a’ and a”, as seen
in Lemma 3.1. Then, we try to find appropriate values of a’ and a” so that Y;(a’,a”) be
close to g; as much as possible. To this end, we attempt to close the membership function
of each approximated response ffi(a’ ,a"”) to that of corresponding observed response ¥;
as much as possible. Therefore, we introduce the following mathematical programming
problem, which finds the best choices of a’ and a” for the coefficients of model (13):

min Z dw (Y/Z (alv a”)a gz)
i=1 (15)
st. ap €R, a;»,a;-’zo j=1,2,--,p,

where d was introduced in Definition 2.5. The model (15) can be converted to a GP model
by choosing appropriate deviation variables. To this end, set

Y;‘(al7 a//) = <Cf/i(a/’a//); alﬁ(a’,a”)’ 61§;(a/7a//); af/i(a/7a//) y ,B}”/i(a/7a//); aQﬁ(a’,a”) y /BZﬁ(a’,a”)>
for i =1---n and define:
1
Nik = i{lkfg(af,aﬂ) — ky,| = (kifi(aga”) — ky:)} (16)
1
pit = 5k @any = el + (kg oy = K} (17)
fOI' k = C,(q, 517 o, Bv a9, /62- In faCtv Nk and Dik (k S {C, aq, 517 «, 57 a9, 52}) are the

negative and positive deviations between the parameters of the ith estimated and observed
response, respectively. It can be easily seen that

) Y5 T Yyaral) A1¥;(a’a") < oag,, (18)
Mier =19 0 Ly >
1Y;(a’,a’) 19:»
i = 1 OV T 01 g S N, (a2 (19)
(205 ~ ~
0 a1y, > al}@(a/,a”)’

for i = 1---n. Similar relations are hold true for other deviation variables. By using the

above deviation variables, the model (15) converts to the following GP model:

(WGP) :min z =7 (w1(Nic + pic) + w2(Nia; + Piay) +w3(nig, +pig,) + wa(nia + Pia)
+ ws(nig + pig) + we(nig, + pig,) + w1 (Niay + Pias))

p

s.t. Z(agaljﬁ + a;—lﬁljij) + Ny — Pia; = Q1; 1=1,---.n (20)
j=1
p
> (@B, + dfonz,) +nig, — pigy, = Big i=1-,n (21)
j=1
P
Z(a;aiij + dBz,;) + Nia — Pia = Qg i=1,---,n (22)

j=1
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p

Z(a;ﬂjij + a;./ozgcij) +nig — pig = By, i=1,---,n (23)
j=1

p

> (djazs,; + afBaz,;) + Nias — Dias = g,  i=1,-++,n (24)
j=1

p

j=1
nzk‘pzkzo Zzlv y 1, kzcvalvﬂhavﬁ?aQaﬁQ (26>
nzk,pzkzo ,L:]-a > 1, k:CaalaﬁlaaaB’QQ’BQ (27)
CLOER, a;aa;’/zo7 ]Zlaap (28)

It is clear that if g, = B, for all 4, we can set az,; = Bz, for each i and j. Accordingly,
the constraints (22) and (23) will be equivalent, and one of them (in fact n constraints)
can be removed. Similarly, if aug, = iy, (qog, = Bog;) for all i, we can set a1z, = Bz,
(1z,; = P1z,;) for each i and j. Therefore, the constraints (20) and (21) ((24) and (25))
will be be equivalent, and the constraints (21) ((25)) can be removed, then we obtain a
smaller model. In addition, one can remove the constraints (26) and solve the obtained LP
model by the Simplex method [1]. Another feature of WGP is that, it does not produce
negative spreads for QT2FNs. This fact has been shown in the following proposition.

Proposition 3.1. The estimated responses from WGP have non-negative spreads.

Proof. The estimated responses from WGP are:

Yi(@',a") = (e5, ar,am)i 01v; a0y D1y ey OF (a0 BV a0y Qo7 () Pa¥ (ar )
We have to show that kY(a/ ary = 0 for k € {a1, b1, q, B, a9, B2}. According to the proof
of Lemma (3.1) we have:

- — p ! - "o - _ P ! Q. "o
Oély*i(a/’all) - ijl(ajalx” + a_]Bl‘ZZ]) 5 51}2(&',&”) - ]:1 (ajﬂlxlj + aj alxij)
5 _ P o "a. B _ P I Q. "o
Oy (aary = 2g=1(@503; +@7Bz;) 5 By ary = 25=1(505,; + afazy;)
~ _ p / B "a. B _ P In . "o
OZQYi(a’,a”) == ijl(a‘joﬂxu + aj 521‘2']') ) BZYi(a’,a”) == Zj:l ((IjBinj + Clj Othij)
: : / "
which are all non-negative. Because aj, aj, g, ﬁliij, Qs B;;;Z.j y Q27 and 52% are all
non-negative. ]
Although the estimated responses Y;, i = 1, - - - , n have been approximated by Y;(a’,a"),
t=1,---,n, the following theorem shows that WGP yields the exact regression coefficients

and estimated responses if the given quasi type-2 fuzzy input-output data satisfy in a quasi
type-2 fuzzy linear model.

Theorem 3.1. Suppose that the observed quasi type-2 fuzzy input-output data satisfy in
the quasi type-2 fuzzy linear model
Y = Qo + Q171 + AT + - - + App.
Then:
(i) The optimal solution of WGP contains ag, - - ,Gp.
(ii) The estimated responses from WGP and the observed responses are exactly the same

(i.e., ffi(a’, a’) =y;).
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Proof. (i). Set ag = ay,
a. = aj ?f a; 2 0 and a/ =

0 if C_LjZO
J 0 if C_Lj<0 J

—a; if a; < 0

for j = 17 LD and Nik = Dik = 07 for i = 1727 R (] and k = C,al,ﬁha,ﬁ,aQ,/BQ' FirSt7
we show that these values yield a feasible solution for WGP. Clearly, they satisfy in the
constraints (26)-(28). Without loss of generality, for simplicity, suppose that a; > 0, j =

1,--- ,p. By the assumption we have:
P
ao—i—z a —a )Ciy; + Mic — Pic = Go + Zd Czy; = Cgys (29)
‘7:
P p
> (djonz,, + dfBiz,) + Niay — Piey = Y _ 8500z, = ong,, (30)
=1 =
P
> (dBuz,; + afanz,) +nig, — pig, = > 8;B1z,; = Bug,, (31)
j=1 =
P
Z(GQ%U + a;'/ﬁfij) + Nia — Pia = Z ajog,; = o, (32)
j=1 j=1
P P
> (@B, + dfaz,) + s —pig = Y _ @385, = By, (33)
J=1 '
P
Z(a;aZiij + a;‘,/BQiij) + Niay — Diay = Z a0z, = 09 (34)
=1 =
P P
Y (@B, + afans,;) + nigy — pigy = Y 823, = By (35)
j=1 j=1

The Equations (29)-(35) show that the suggested values satisfy in the constraints (20)-
(25). (i.e., we have a feasible solution for WGP). To show the optimality, note that the
objective function value of WGP for this feasible solution is 0, which is the least possi-
ble value for a non-negative function. Therefore, the suggested values yield the optimal
solution of WGP. Indeed, in the optimal solution we have a}; — a = a;.

(ii). The second part of the theorem immediately follows from (29)-(33). In fact, from
(29)-(33) we have:

cy.(a,a") = ¢z, g (aa") = a,, By (@,a") = Big, oy (@,a") = oy,
By (a,a") = By, gy (aa") =ag,, By (al,a") = Bay,.
and the proof is completed. O

Remark 3.1. The explained method can be applied to QT2FLR with triangular IT2FN
outputs easily. Since, IT2FN completely determined using its FOU, it is enough to modify
the distance introduced in Definition 2.5 for two triangular IT2FN A = (c; a1, P1; g, B2)
and B = (c/; 0, B}; oy, By) as follows:

dw(A, B) = wile — | + walon — af| + ws|B1 — Bi| + walaz — ah| + ws|B2 — BY].  (36)

In which wy,--- ;ws > 0. The WGP model in this case is obtained from WGP by removing
the constraints (22) and (23).
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4. . AN OMISSION APPROACH FOR OUTLIER DETECTION

The existence of outliers in a set of experimental data can cause incorrect interpretation
of the fuzzy linear regression results. To handle the outlier problem, Hung and Yang [16]
proposed an omission approach for Tanaka’s linear programming method. Their approach
has the capability to examine the behavior of value changes in the objective function
of the related optimization models when observations are omitted. In this section, we
use this omission approach for our GP method to detect outliers in input and output
data in QT2FLR models. Some methods have been presented to detect outliers in FLR
[4, 32]. However, there are some drawbacks to the existing methods. In fact, they must
pre-assign some values to parameters and they can not conduct a formal test for the
outliers. To overcome the drawbacks in the existing methods, we use an omission approach
which examine the value change in the objective function’s behaviour when some of the
observations are omitted from the data set in QT2FLR model. Moreover, to define the
cutoffs for outliers, we use the box plot procedure as a visual display tool.

This approach measures the influence of the ith observation on the value of the objective
function in our WGP model when the ith observation is omitted. Based on this idea,
we develop an omission approach for detecting a single outlier in a data set as follows.
The procedure is to first delete the ¢ th observation. We then apply GP approach to the
remaining (n — 1) observations and obtain the minimum value of the objective function

which is denoted by J](\f[). After deleting the ¢ th observation, WGP approach becomes

J](\f[) = min Z?:l,i;ét(wl (nic + pic) + woy (nial + pial) + ws (niﬁl + pzﬂl) + w4(nia + pia)
Fws(nig + pig) + we(nig, + Pigs) + Wr(Niay + Pias)) (37)
s.t. (20) — (28) i #£t.

Let Jys be the minimum value of the objective function obtained from WGP for all
observations. Denote the absolute difference between Jy; and J](\Z) by dy,

_ _ 7 —1....
dt—’JM JM” t—l, n.
The ratio of d; to Jps is called the normalized absolute difference and denoted by 7,
dy
= n (38)

The r; value shows the size of the absolute difference relative to Jy;. A large value of 74
indicates a large impact of the tth observation on the value of the objective function. We
usually assume that there is at most one outlier in a given data set and require that the
label of the outlying observation is unknown. We therefore use

Tmaz = max{r; | 1 <t <n}

to detect a single outlier in a QT2FLR model. But determination of the critical value for
Tmaz 18 difficult. Therefore, we use a box plot method to compare the values of r; to each
other to determine of outliers.

By similar arguments of [3,4,14], we use the interquartile range (IQR), that is the difference
between the first and third quartiles, to define the outlier cutoffs as follows. In a box plot,
inner fences are constructed to the left and right of the box at a distance of 1.5 times the
IQR. Outer fences are constructed in the same way at a distance of 3 times the IQR. It
is well known that the median and the first and third quartiles are insensitive to outlying
data values. Since a box plot itself contains these values, a box plot will automatically
guard against undue inuence of outlying cases. On the other hand, the outliers cutoffs are



204 TWMS J. APP. ENG. MATH. V.6, N.2, 2016

TABLE 1. Observed and predicted quasi type-2 fuzzy valued and their distance (for w=1)

i T, Ui Y; do
1 (2;1.25,1.35,0.5;0.6,0.25,0.35) (4;1.55,1.5;0.8,0.75;0.55, 0.5) (4.83;1.22,1.27;0.50,0.55; 0.26, 0.31) 2.34
2 (3.5;1.59,1.62;0.84,0.87;0.59,0.62) (5.5;1.41,1.55;0.66,0.8;0.41,0.55)  (5.5;1.53,1.55;0.81,0.82;0.57,0.58) 0.51
8 (5.5;1.45,1. 75 0.7,1;0.45,0. 75) (7. 5 1.25,1.75;0.5, 1 0.25,0. 75) (6.38;1.47,1.60;0.75,0.88;0.51,0.64) 2.21
4 (7;1.75,1.42;1,0.67; 0 75,0.42) (6.5;1.47,1.28;0. 72 0 53;0.47,0.28) (7.05;1.59,1.45;0.87,0.72;0.63,0.48) 1.58
5 (8.5;1.45,1. 59 O 7,0.84;0.45; 0.59) (8.5; 1.46,1.39;0.71,0.64; 0.46, 0.39) (7.72;1.43,1.49;0.70,0.77;0.46,0.53) 1.19
6 (10.5;1.56,1.39;0.81,0.64;0.56,0.39) (8;1.42,1.4;0.67,0.65; 0.42,0.4) (8.61;1.45,1.38;0.73,0.65;0.49,0.41) 0.83
7 (11;1.32,1.51;0.57,0.76;0.32,0.51) (10.5;1.52, 1.57;0.77, 0.82; 0.52, 0.57) (8.83;1.31,1.40;0.59, 0.68; 0.35, 0.44) 2.63
8 (12.5; 144 1. 65 0.69, 0.9; 044 0.65 (9.5;1.75,1.72;1,0.97;0.75,0.72) (9.5;1.43,1.53;0.71,0.81;0.47,0.57) 1.56
Mean of distance 1.58

determined by the first and third quartiles. They can dampen the inuence of even a single
wild data value. Therefore, we use a box plot to determine whether r,,,, is an outlier or
not. The data points that lie between the inner and outer fences are denoted by a circle
M 0

o” called mild outliers. The data points that lie beyond the outer fences are denoted by
an asterisk ”«”, called extreme outliers.

4.1. . Cross validation. To further investigation of the performance of the model, we
apply an index based on the cross validation method [40] to examine the predictive ability
of the models. To this end, each time, the ith observation is left out from the data set, while
the remaining observations are used to develop a quasi type-2 fuzzy regression model. Then
the obtained model is used to predict the response value of the ¢ th observation (denoted
by }7(—1‘) (x;)). Finally, to compare the i th observed response g; and the predicted value
}7(,,-) (x;), we calculate the mean of distances d,, (Eq. 2.5) between y; and )7(,Z-) (x;) which
we call it MDC.

Definition 4.1. For QT2F regression model (12), the MDC index is defined by

1 & - N
MDC = - 2 du (Y(—i)(@3), Ti)s (39)
1=
where }7(71') (z;) is the QT2F response predicted by omitting the ith observation or the ith
input-output data.

Definition 4.2. For QT2F regression model (15), the mean of distances between estimated
and observed values is defined by

= > du(i i) (40)
=1

Now, by using the above indices, the relative error of the estimated responses can be
defined as

|MDC — M D*|
M D* '
5. . NUMERICAL RESULTS

RE = (41)

Since examples containing quasi type-2 fuzzy data did not exist in previous works (note
that almost all of the previous studies concenterated on type-1 fuzzy data), we change the
data of examples given in [28, 12] to non-symmetric triangular QT2FNs.

Example 5.1. This example considers 8 non-symmetric quasi type-2 fuzzy input-output
data. The observed inputs and responses are given in Table 1. The regression model ob-
tained by solving LP model related to WGP for the data of Table 1 with wi =wy = -+ =
wr =1 is as follows:

Y = 3.9444 + 0.44447.
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An outlier may be outlying with respect to its spreads, its center, or both. In the
following example, we consider different cases to see the effect of outliers on our results.

Example 5.2. To see the effect of outliers in above example, we consider
(a) the outlier with respect to the center of response variable,
(b) the outlier with respect to the center of independent variable,
(c) the outlier with respect to the spreads of response variables,
(d) the outlier with respect to the spreads and center values.
This data set is derived from Table 1 by changing
(a) cj, from 6.5 to 16, (b) cz, from 5.5 to 17,
(c¢) the data No. 1 from (4;1.55,1.5;0.8,0.75;0.55,0.5) to (4;3.55,3.5;2.8,2.75;2.55, 2.5)
and (d) the data No. 1 to (14;3.55,3.5;2.8,2.75;2.55,2.5).
The results of I and r; obtained by the proposed approach are presented in Table 2.

TABLE 2. The values of Jyy\") and r; for Ezample 2.

a b c d

Ll O] v [ O] v [u®@] v [Ju®@ ] ri |
17.63 | 0.138 || 13.01 | 0.161 || 10.31 | 0.58* || 10.31 | 0.67*
19.64 | 0.04 | 14.25 | 0.08 || 23.60 | 0.043 || 30.08 | 0.062
18.70 | 0.086 || 10.23 | 0.34* || 22.23 | 0.099 || 30.8 | 0.039
10.91 | 0.46* || 13.93 | 0.103 || 22.91 | 0.071 || 29.59 | 0.077
19.87 1 0.028 || 13.79 | 0.111 || 23.38 | 0.052 || 31.54 | 0.016
18.39 | 0.101 || 14.73 | 0.051 || 23.17 | 0.06 || 30.95 | 0.035
184 | 0.1 | 12.19]0.215 | 22.01 | 0.01 | 29.62 | 0.076
17.52 1 0.143 || 13.32 | 0.142 || 22.34 | 0.094 || 30.59 | 0.046

B YD B Lo o =

05 0351 30 06 ; 07
pas | 4 1E 1%
0 03 o0s | 05 1
5 015 |
035 04 | 05
0.3 0.2 0a |
0.25 0.3
02 0.15 03
0.15 01 02 1 02
01
0.05 0.05 011 El 01 ;
0 0 0 0
(@) ©)] () @

FIGURE 3. Box plots of the values of the normalized absolute difference.

The values of median, first and third quartiles of r;, which have been denoted by Me, QQ1,
Qs, respectively, are presented in Table 3. Hence, in part (a) the data point No. 4 is an
extreme outlier, in part (b) the data No. 3 is a mild outlier and in parts (c) and (d) the
data No. 1is an extereme outlier. The obtained regression models are as follows:

Vg =34+0.67 ., Y =2.9524 4 0.5238%
Vi =394+044F , Y5 =5928+0.285i

6. . APPLICATION TO SOIL SCIENCE

In soil science studies, sometimes, problems arise in measurement of physical, chemical
and/or biological soil properties. The problem results from the difficulty, time and cost of
direct measurements. Pedomodels (derived from Greek root of pedo as soil) have become
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TABLE 8. The values of Me, Q1, Qs, IQR and cutoffs for Table 2

| | (¢) | (&) | (¢) | (d) ]

Me 0.1005 0.126 | 0.065 | 0.05]
Q1 0.06 | 0.091 | 0.047 0.037
Qs 0.1/ | 0.185 | 0.096 | 0.076
IQR 0.0/ | 0.094 | 0.049|0.039

Q1 — L5IQR || 0.003 | -0.049 | -0.02 | -0.02
Q1 —3IQR | -0.057| -0.189| -0.1 | -0.08
Qs+ 15IQR|| 0.2 | 0.32 |0.169| 0.134
Qs +3QR | 0.26 | 046 |0.243]0.193

a popular topic in soil science and environmental research. They are predictive functions
of certain soil properties based on other easily or cheaply measured properties [31]. In
this article, two pedomodels including one and two independent variables are studied to
develop the relationships between different chemical and physical soil properties by means
of quasi type-2 fuzzy regression technique. Based on a study in a part of Silakhor plain
(situated in a province located in the west of Iran), a total of 24 core samples were obtained
from 0.0 to 25 — ¢m depth [29].

Table 4. Observed and predicted quasi type-2 fuzzy values of SAR-ESP and their distances (for w = 1)

i SAR (Z;) ESP (7:) Predicted ESP (V;) du

1 (0.78;0.78,0.55;0.39,0.43; 0.01, 0.32) (3.08;3.06,2.92; 1.55,2.37;0.04,1.82) (5.58;5.47, 4.3; 2.95, 3.15; 0.42, 2) 9.06
2 (0.64;0.57,0.24;0.31,0.17;0.06,0.11) (2.86;2.55,2.03;1.40,1.93;0.26,1.83) (4.87;3.81,2.13;2.15,1.44; 0.49, 0.75) 5.94
3 (0.62;0.57,0.22;0.32,0.21;0.07,0.2) (6.25;5.74,3.6;3.23,2.37;0.72,1.14)  (4.77;3.79,2.01;2.22, 1.66; 0.66,1.32) 6.94
4 (0.49;0.38,0.14;0.27,0.1;0.16,0.07) (4.11;3.17,3.81;2.24,2.74;1.32,1.67)  (4.11;2.52,1.3;1.79,0.95;1.07,0.61)  6.67
5 (1.1;0.83,0.52;0.64,0.42;0.45,0.32) (1.04;0.78,1.01;0.6,0.71;0.43,0.42)  (7.21;5.75,4.17;4.45,3.33;3.16,2.5)  25.61
6 (0.61;0.36,0.36;0.31,0.19;0.26,0.02) (2.71;1.62,2.43;1.39,1.58;1.17,0.73)  (4.72;2.64,2.64;2.14, 1.53; 1.64,0.41) 4.83
7 (0.74;0.31,0.25;0.25,0.23;0.2,0.22) (4.45;1.87,1.9;1.54,1.16;1.22,0.43)  (5.38;2.21,1.9;1.85,1.75;1.49,1.59)  3.61
8 (1.15;0.64,1.05;0.53,0.76;0.42, 0.47) (6.92;3.86,4.31;3.2,3.43;2.54,2.55)  (7.47;5.17,7.26;4.15,5.33;3.14,3.4)  9.13
9 (1.08;0.87,0.91;0.59,0.64;0.32,0.38) (7.41;6,1.63;4.09,1.4;2.18,1.17) (7.11;6.44, 6.64; 4.43, 4.68;2.42,2.72) 11.19
10 (0.38;0.37,0.16;0.2,0.12;0.03,0.08) (9.08; 8.74,9.03; 4.68, 8.13;0.63,7.23)  (3.55;2.48,1.41;1.38,0.97;0.27,0.53)  36.91
11 (0.61;0.58,0.24;0.31,0.2;0.04,0.16) (6.56;6.19, 3.45; 3.33, 3.26;0.47, 3.08)  (4.72;3.88,2.15;2.15,1.59;0.43,1.04)  10.36
12 (0.98;0.62,0.25;0.4,0.14;0.18,0.03)  (5.05;3.17, 3.24; 2.06, 2.86; 0.95, 2.48)  (6.6;4.14,2.25;2.64,1.32;1.15,0.39)  7.92
13 (0.71;0.62,0.61;0.59, 0.59; 0.57, 0.58) (5.23;4.55,4.1;4.35,2.27;4.16,0.44)  (5.23;4.55,4.49;4.37,4.37;4.2,4.25)  6.38
14 (0.5;0.44, 0.37;0.35, 0.355; 0.26, 0.34) (5.16;4.59, 2.35; 3.63, 1.66; 2.67,0.98)  (4.16;3.15, 2.8; 2.58, 2.6; 2, 2.41) 6.97
15 (0.77;0.4, 0.59; 0.27, 0.49; 0.14,0.39) (11.1;5.84,10.57;3.9,7.18;1.97,3.79)  (5.53;3.15,4.12;2.23, 3.35; 1.31,2.58)  22.04
16 (0.99;0.7,0.78; 0.44, 0.58;0.19, 0.39)  (4.47;3.16, 0.86; 2, 0.55; 0.85, 0.24) (6.65;5.24, 5.64; 3.43,4.14; 1.62, 2.64)  17.25
17 (3.6;3.42,2.17;2.84,1.72;2.27,1.28) (28.84;27.5,24.56;22.8,23; 18.13, 21.7) (19.9;23.74,17.4; 19.6,13.9; 15.6,10.5) 45.84
18 (0.86;0.57,0.4;0.29, 0.31;0.02,0.22) (9.43;6.28,7.75;3.24,5.06;0.2,2.37)  (5.99;4, 3.13;2.18, 2.26; 0.37, 1.39) 15.33
19 (0.61;0.37,0.47; 0.31, 0.27; 0.26, 0.07) (4.5;2.7,2.31;2.3,1.75; 1.9, 1.2) (4.72;2.83,3.34;2.26, 2.03; 1.69, 0.73)  2.37
20 (0.64;0.4,0.48;0.37,0.38; 0.34,0.28) (9.3;5.79,8.81;5.35,4.56;4.91,0.31)  (4.87;3.03,3.44;2.73,2.78;2.43,2.12) 21.23
21 (0.71;0.65, 0.47; 0.48, 0.425; 0.32, 0.38)(9.48; 8.7, 7.68; 6.5, 4.88; 4.31, 2.09) (5.23;4.57,3.66;3.5,3.19; 2.42,2.72)  19.61
22 (0.61;0.47,0.19; 0.27, 0.15; 0.08, 0.11) (3.65;2.83,1.03; 1.66,1.01;0.49,0.99)  (4.72;3.14,1.71;1.88, 1.24; 0.62,0.77)  2.87
23 (0.63;0.14, 0.19;0.09, 0.19; 0.04, 0.19) (10.14;2.27,9.35;1.49,7.22;0.71,5.09) (4.82;1.08,1.34;0.77,1.28;0.46,1.22) 25.26
24 (1.13;0.99, 0.99; 0.63, 0.57; 0.28,0.16) (3;2.64, 2.45;1.69, 2.28;0.75, 2.12) (7.36;7.28,7.28;4.6,4.29;1.92,1.31)  20.74

Mean of distance 14.34

6.1. . Pedomodel of ESP-SAR.. We first wish to provide a relationship between
exchangeable sodium percentage (ESP), as the dependent variable, and sodium absorption
ratio (SAR), as an independent variable. The exchange sodium percentage, ESP, governs
the source/sink phenomenon for ionic constituents, i.e., sodium, as a contaminant in sodic
soils, is calculated from the ratio of exchangeable sodium, Na,, to cation exchangeable
capacity, CEC. All these soil parameters, measured on soil colloidal surface, are time



E.HOSSEINZADEH, HHASSANPOUR, M.AREFI, M.(AMAN: A WEIGHTED GOAL... 207

consuming and costly. Due to close relationship between the distribution of cations in
the exchange and solution phases, it is preferred to estimate ESP from sodium absorption
ratio, SAR, in soil solution [29]. In this case, ESP is considered as cost and time variable,
therefore the need for less expensive indirect measurement is emphasized. Measurements
of SAR have been related to ESP due to low cost, simplicity, and the possibility of relating
measurements to the quantity and quality parameters. But, due to some impreciseness in
related experimental environment, the observations of response variable (ESP) are given
in fuzzy form. Thus, we may use a fuzzy method for modeling such a data set [29].

Estimation of model parameters. To develop a relationship between ESP (as a depen-
dent variable) and SAR (as an independent variable), using quasi type-2 fuzzy regression,
first, the values of dependent variable y; and independent variables Z;;, were fuzzified by
consulting an expert using asymmetric triangular QT2FN with right and left spreads pro-
portional to g; and Z;;, respectively. The results are given in Table 4. These amounts of
vagueness were based on expert opinion and might be considered as the acceptable levels
of uncertainty.

In this study, for each choice of a} and af, the regression model for the data of table 4 is
as follows:

Y =ag+a1T1 =ao + (a'l — (Llll).i'l (42)

In the above model, non-symmetric QT2FNs Y and #; are cation sodium absorption ratio
(SAR) and exchange sodium percentage (ESP), respectively.
According to the proposed method, the regression model is obtained as

Y =ag+ (a) — a)iy = 1.61 + (6.22 — 1.13)7; =
(1.61 4 5.09¢z,3 6.22a13, + 1.13514,, 6.220815, + 1.1301z,5 6.22az, + 1.13084,,
6.220z, + 1.13az,3 6.22093, + 1.1382z,, 6.2282z, + 1.13a2z,) (43)
The above QT2F regression model can be used to predict the ESP of a new case. For

example, if for a new case, SAR = (1.08;0.87,0.91; 0.59, 0.64; 0.32,0.38) then by Eq. (43),
we predict the ESP as Y = (7.10;6.43,6.64; 4.38,4.64; 2.41,2.72).

6.2. . Pedomodel of CEC-SAND-OM.. The second model provides a relationship
between cation exchange capacity (CEC), as a function of two soil variables namely per-
centage of sand content (SAND) and organic matter content (OM)(Table 5). In the soil,
organic matter can enhance the CEC, while the sand content has negative effect on the
cation exchange capacity [29].

Estimation of model parameters. The regression model for the data of Table 5 is as
follows:

Y = ag + a1T1 + ass (44)

where for each choice of a;- and a;’ ,j=1,2 Eq. (44) is obtained as following
Y =ag + (ay — af)F1 + (ay — a3)@» (45)

In the above model, non-symmetric QT2FNs Y, #; and Z» are cation exchange capacity
(CEC), percentage of sand content (SAND) and organic matter content (OM), respectively.
By solving the linear programming problem related to WGP, the regression model is
obtained as

Y =ag + () — a)&1 + (aby — a)ie = 22.19 4 (0.02 — 0.19)7; + (4.23 — 2.67)io
=22.19 4 (—0.17)&; + (1.56)Z2 (46)
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TABLE 6. Values of the independent variable (Z), the dependent variable (§) and the corresponding predictions of Y by

cross-validation method and the distances between the observed and estimated values(for w = 1)

7 T Yi Y: dw
1 (2;1.25,1.35,0.5;0.6,0.25, 0.35) (4;1.55,1.5;0.8,0.75; 0.55, 0.5) (4.8,1.2,1.25,0.49, 0.54, 0.26, 0.3) 2.42
2 (3.5;1.59,1.62;0.84,0.87;0.59,0.62) (5.5;1.41,1.55;0.66,0.8;0.41, 0.55) (4.78,1.57,1.58,0.83,0.84,0.58,0.6) 1.37
3 (5.5;1.45,1.75;0.7, 1;0.45, 0.75) (7.5;1.25,1.75;0.5, 1;0.25, 0.75) (5.83,1.45,1.61,0.73,0.89,0.49, 0.65) 2.69
4 (7;1.75,1.42;1,0.67;0.75, 0.42) (6.5;1.47,1.28;0.72,0.53;0.47,0.28)  (7.6,1.66,1.46, 0.92, 0.72,0.67, 0.47)  2.28
5 (8.5;1.45,1.59;0.7,0.84;0.45;0.59) (8.5;1.46,1.39;0.71,0.64;0.46,0.39) (7.4,1.45,1.52,0.71,0.79,0.47,0.54) 1.56
6 (10.5;1.56,1.39;0.81,0.64; 0.56, 0.39) (8; 1.42, 1.4; 0.67, 0.65; 0.42, 0.4) (9.7,1.5,1.4,0.76,0.66, 0.52, 0.41) 2.02
7 (11;1.32,1.51;0.57,0.76;0.32,0.51) (10.5;1.52,1.57;0.77,0.82; 0.52,0.57) (8.83,1.29,1.37,0.58,0.67,0.34,0.43) 2.72
8 (12.5;1.44,1.65;0.69,0.9;0.44,0.65 (9.5;1.75,1.72;1,0.97;0.75,0.72) (11.26,1.4,1.55,0.68,0.83,0.45,0.59) 3.14
Mean of distance 2.27

The above QT2F regression model can be used to predict the CEC of a new case. For
example, if for a new case,

SAND = (38;36.2,17.29; 30.04, 12.26; 23.88, 7.24)

OM = (0.84;0.24,0.35; 0.235, 0.29; 0.23, 0.23)
then by Eq. (46), the predicted CEC is

Y = (17.04;6.035,9.33; 4.66, 7.78; 3.42, 6.25).

In order to evaluate the predictive ability of the above models, the MDC is calculated for
each model. For example, the results of example 5.1 are given in Table 6. In this example
the value of MDC was obtained to be 2.27 and the value of M D* is 1.57, which the relative
diffrence between them is equal to 0.3.

e The value of the MDC for the ESP-SAR regression was obtained to be 16.92, which
is very close to the value of M D*, i.e., 14.34. Note that the relative error between
MDC and M D* is RE=0.15.

e The value of the MDC for the CEC-OM-SAND regression was obtained to be 27.9,
which is close to the value of M D*, i.e., 27.21. Note that the relative error between
MDC and M D* is RE=0.02.

It is appeared that predictive ability to the SAND-OM-CEC model is much better than
the ESP-SAR model.

Recently, Rabiei et al. [34] used a distance on the space of interval type-2 fuzzy numbers
(which determinated using its FOU) and proposed a least-squares method (LS) to obtain
coefficients of the proposed model. In soil science examples, if input and output variables
are considered to be interval-valued fuzzy numbers, we use the distance introduced in
(36). In the case of interval type-2 fuzzy input-output data, the regression models and the
relative error between MDC and M D* in two approachs are as follows:

e ESP-SAR regression model: 3
Yop =1.172 4+ 5.742% Yrs = 0.835 4 6.879x
relative error between MDC and M D* for GP model= 0.129
relative error between MDC and M D* for LS model= 0.273

e SAND-OM-CEC regression model:
Yop = 21.96 — 0.16%; + 1.5729  , Yig = 21.97 — 0.23%1 + 2.57%.
relative error between MDC and M D* for GP model= 0.04
relative error between MDC and M D* for LS model= 0.09

Since, the relative error between MDC and M D* for GP model are less than LS model,
the predictive ability of our model is much better than LS model in these examples.
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7. CONCLUSION

This paper proposes a weighted goal programming approach (WGP) to estimate the
coefficients of quasi type-2 fuzzy (QT2F) linear regression model with quasi type-2 fuzzy
input-output data and crisp coefficients. To estimate the regression coefficients, a non-
linear programming problem has been presented and converted to a goal programming
problem and then to a linear programming one. The advantage of this conversion is that
linear programming problems can be solved exactly by available algorithms. Whereas, the
available algorithms for solving nonlinear programming problems often give approximate
solutions.

Since the existence of outliers in the data set causes incorrect results, the results of the
proposed model illustrate that this model is less sensitive to outliers. To handle the outlier
problem, an omission approach has been used to detect outliers. This approach examines
how the values of the objective function of the linear programming problem used to obtain
regression coefficients changes when some of the observations are omitted. The main dis-
advantage in some procedures for detecting outliers is lack of defining cutoffs for outliers.
Also, they must pre-assign some values to some parameters and they cannot conduct a
formal test for detecting outliers. The advantage of our approach is that, it does not need
to select any parameters beforehand. Also, a simple display tool has been conducted by
means of the boxplot procedure as a formal test to define the cutoffs for outliers.

The method was illustrated by some applied examples. The proposed method is quite
general and can be used in many fields of application. The predict ability of the model
evaluated by cross-validation method. In soil science examples, obtained results from
comparison the WGP approach with least square method showed that, the predictive
ability of our WGP model is better than least square model. Applying WGP approach
to type-2 fuzzy linear regression model with type-2 fuzzy input-outputs and type-2 fuzzy
coeflicients is our future research.
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