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HUB-INTEGRITY OF SPLITTING GRAPH AND DUPLICATION OF

GRAPH ELEMENTS

SULTAN SENAN MAHDE1, VEENA MATHAD1, §

Abstract. The hub-integrity of a graph G = (V (G), E(G)) is denoted as HI(G) and
defined by HI(G) = min{|S| + m(G − S), S is a hub set of G}, where m(G − S) is
the order of a maximum component of G − S. In this paper, we discuss hub-integrity
of splitting graph and duplication of an edge by vertex and duplication of vertex by an
edge of some graphs.
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1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph without loops or multiple
edges. For graph theoretic terminology, we refer to Harary [4]. In the remaining portion
of this section we will give brief summary of definitions and information related to the
present work.

To model various systems like chemical, social systems, neural networks or the World
Wide Web (www) and Internet; networks and complex systems are commonly used. With-
out any doubt, a very vital part of networks is the network topology which is the center
of attention of mathematics and biological, computer, and physical sciences. While deal-
ing with networks, the issue of an interconnection network is of great importance. It
may have different architectural structures which need to be analyzed. For this purpose
mathematics usually use graph theory as the most powerful tool. It is known that the
underlying topology of an interconnection network is modeled by a graph G = (V,E),
where V and E stand for the set of processors and the set of communication links in the
network, respectively.

While analyzing complex networks, stability which is a key aspect in designing computer
networks, and vulnerability which can be defined as the measurement of the global power
of its related graph, must be taken into account. If graph theoretical parameters are used
to express the network requirements, the issue of analysis and design of networks become
finding a graph G which satisfies certain pre-specified requirement. It is known that
communication systems are often exposed to failures and attacks. In the literature various
measures are suggested to measure the robustness of network and a variety of graph-
theoretic parameters have been used to derive formula to calculate network reliability.
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In the analysis of the vulnerable communication network, two quantities play a vital
role; namely (i) the number of elements that are not functioning, (ii) the size of the
largest remaining (survived) sub network within which mutual communication can still
occur. In adverse relationship, it is desirable that an opponent’s network be such that the
above referred two quantities can be made simultaneously small. Here the first parameter
provides information about nodes which can be targeted for more disruption while the
later gives the impact of damage after disruption. Based on these quantities, a number of
graph parameters, such as connectivity, toughness, scattering number, integrity, tenacity,
and their edge-analogues, have been proposed for measuring the vulnerability of networks.
To estimate these quantities Barefoot et al. [1] (1987) introduced the concept of integrity
of a graph as a new measure of vulnerability of network.

Definition 1.1. [1] The integrity of a graph G is denoted by I(G) and defined by I(G) =
min{|S| + m(G − S) : S ⊆ V (G)}, where m(G − S) denotes the order of a maximum
component of G− S.

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is a path
where all intermediate vertices are from H. (This includes the degenerate cases where the
path consists of the single edge xy or a single vertex x if x = y, call such an H-path trivial).
A set H ⊆ V (G) is a hub set of G if it has the property that, for any x, y ∈ V (G) −H,
there is an H-path in G between x and y. The smallest size of a hub set in G is called a
hub number of G, and is denoted by h(G) [10].

Sultan et al. [5] have introduced the concept of hub-integrity of a graph as a new
measure of vulnerability which is defined as follows.

Definition 1.2. [5] The hub-integrity of a graph G denoted by HI(G) is defined by,
HI(G) = min{|S| + m(G − S)}, where S is a hub set and m(G − S) is the order of
a maximum component of G− S.

Definition 1.3. [5] A subset S of V (G) is said to be an h-set, if HI(G) = |S|+m(G−S).

Vaidya and Kothari [8] have discussed domination integrity of a graph obtained by
duplication of an edge by vertex and duplication of vertex by an edge in path and cycle.
Also Vaidya and Kothari [9] have discussed domination integrity of splitting graph of path
and cycle. In the present work, we investigate hub-integrity of splitting graphs and a
graph obtained by duplication of an edge by vertex and duplication of vertex by an edge
in some graphs.

Definition 1.4. [9] For a graph G the splitting graph S′(G) of graph G is obtained by
adding a new vertex v′ corresponding to each vertex v of G such that N(v) = N(v′) where
N(v) and N(v′) are the neighborhood sets of v and v′, respectively.

Definition 1.5. [7] Duplication of a vertex vi by a new edge e = v′iv
′′
i in graph G produces

a new graph G′ such that N(v′i) = {v′′i , vi} and N(v′′i ) = {v′i, vi}.
Definition 1.6. [7] Duplication of an edge e = uv by a new vertex w in graph G produces
a new graph G′ such that N(w) = {u, v}.

2. Splitting Graph

Theorem 2.1. For p ≥ 2,

h(S′(Pp)) =

{
2 if p = 2, 3,

p− 2 if p ≥ 4.
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Proof. Let {u1, u2, ..., up} be the vertices of path Pp and {v1, v2, ..., vp} be the new vertices
corresponding to {u1, u2, ..., up} which are added to obtain S′(Pp). As N(v1) = {u2} ,
N(vp) = {up−1}, N(u2) = {u1, u3, v1, v3} and N(up−1) = {up−2, up, vp, vp−2}, we have the
two cases:
Case 1: for p = 2, consider S = {u1, u2} is a hub set for S′(P2), and clearly the set S is
a minimum hub set. Hence h(S′(P2)) = 2.
Case 2: for p = 3, consider S = {u2, v2} is a hub set for S′(P3), and clearly the set S is
a minimum hub set. Hence h(S′(P3)) = 2.
Case 3: for p ≥ 4, Consider S = {u2, ..., up−1} is a hub set for S′(Pp) and |S| = p − 2.
As v1 is adjacent to u2 and vp is adjacent to up−1 and N(vi) = {ui−1, ui+1, 2 ≤ i ≤
p − 1}, so for any vi, vj ∈ V (S′(Pp)) − S, 1 ≤ i, j ≤ p, then there exist S-path between
them. As N(u1) = {u2, v2} and N(up) = {up−1, vp−1} then there exist S-path between
(up, u1), (up, vi) and (u1, vi) where 1 ≤ i ≤ p, now we claim that set S = {u2, u3, ..., up−1}
is a minimum hub set. If some ui, 2 ≤ i ≤ p− 1 is removed from set S then there do not
exist path between u1 and ui+1. Thus S is minimum hub set. Hence h(S′(Pp)) = p−2. �

Theorem 2.2. For p ≥ 2,

HI(S′(Pp)) =

{
3 if p = 2,

p if p ≥ 3.

Proof. Let {u1, u2, ..., up} be the vertices of path Pp and {v1, v2, ..., vp} be the new vertices
corresponding to {u1, u2, ..., up} which are added to obtain S′(Pp).
Case 1: p = 2. From Theorem 2.1, we have h(S′(P2)) = 2 and H = {u1, u2} is a h-
set of S′(P2). Then m(S′(P2) − H) = 1. This implies that HI(S′(P2)) = h(S′(P2)) +
m(S′(P2) −H) = 2 + 1 = 3. Clearly there does not exist any hub set S1 of S′(P2) such
that |S1|+ m(S′(P2)− S1) < h(S′(P2)) + m(S′(P2)−H). Hence, HI(S′(P2)) = 3.
Case 2: p = 3. From Theorem 2.1, we have h(S′(P2)) = 2 and H = {u2, v2} is a h-set of
S′(P3). Then m(S′(P3)−H) = 1. This implies that HI(S′(P2)) = h(S′(P2))+m(S′(P2)−
H) = 2 + 1 = 3. Moreover, for any hub set S of S′(P3) we have, |S| + m(S′(P3) − S) ≥
|H|+ m(S′(P3)−H). Hence HI(S′(P3)) = 3.
Case 3: p ≥ 4. From Theorem 2.1, we have h(S′(Pp)) = p− 2. Let H = {v2, v3, ..., vp−1}
be a h-set of graph S′(Pp). Then m(S′(Pp)−H) = 2. Therefore,

HI(S′(Pp)) ≤ h(S′(Pp)) + m(S′(Pp)−H) = p. (1)

For showing that the number |H|+m(S′(Pp)−H) is minimum. The minimality of both |H|
and m(S′(Pp)−H) is taken into consideration. The minimality of |H| is guaranteed as H
is h-set. It remains to show that if S is any hub set other then H, |S|+m(S′(Pp)−S) ≥ p.
If m(S′(Pp) − S) = 1, then |S| ≥ p > p − 2, consequently |S| + m(S′(Pp) − S) ≥ p. If
m(S′(Pp)− S) ≥ 2, then trivially |S|+ m(S′(Pp)− S) ≥ p. Hence for any hub set S,

|S|+ m(S′(Pp)− S) > p. (2)

From (1) and (2), HI(S′(Pp)) = p. �

Theorem 2.3. For all p ≥ 3,

h(S′(Cp)) =

{
2 if p = 3,

p− 2 if p ≥ 4.

Proof. Let {u1, u2, ..., up} be the vertices of cycle Cp and {v1, v2, ..., vp} be the new vertices
corresponding to {u1, u2, ..., up} which are added to obtain S′(Cp).
Case 1: p = 3. Consider S = {u1, u2}, a hub set of S′(C3) as N(u1) = {u2, u3, v2, v3} and
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N(u2) = {u1, u3, v1, v3}, for any x, y ∈ V (S′(C3)−S), there is an S-path between them in
S′(C3). To show that S is minimum hub set, if u1 is removed from set S, then there is no
S-path between v1 and v2. Thus S is minimum hub set. Hence h(S′(C3)) = 2.
Case 2: p ≥ 4. Consider S = {u1, u2, ..., up−2}, a hub set of S′(Cp) and |S| = p − 2. As
N(u1) = {u2, v2, up, vp} and N(up−2) = {up−3, vp−3, up−1, vp−1}, for any x, y ∈ V (S′(Cp)−
S), there is an S-path between them in S′(Cp).
We claim that set S = {u1, u2, ..., up−2} is the minimum hub set. Since u1 is adjacent to
u2, v2, up, vp , if u1 is removed from set S then there does not exist an S-path between u2
and up. Thus S is the minimum hub set. Hence h(S′(Cp)) = p− 2. �

Theorem 2.4. For all p ≥ 3,

HI(S′(Cp)) =

{
4 if p = 3,

p + 1 if p ≥ 4.

Proof. Let {u1, u2, ..., up} be the vertices of cycle Cp and {v1, v2, ..., vp} be the new vertices
corresponding to {u1, u2, ..., up} which are added to obtain S′(Cp).
We have the two following cases:
Case 1: For p = 3. From Theorem 2.3, we have h(S′(C3)) = 2 and H = {u1, u2} is a
h-set of S′(C3). Then m(S′(C3)−H) = 3. Therefore

HI(S′(C3)) ≤ h(S′(C3)) + m(S′(C3)−H) = 2 + 3 = 5. (3)

If S1 is any hub set of S′(C3) other than H with m(S′(C3) − S1) = 2, then |S1| ≥ 3.
This implies that

|S1|+ m(S′(C3)− S1) ≥ 3 + 2 = 5. (4)

Let S2 = {u1, u2, u3}, a hub set of S′(C3), then m(S′(C3)− S2) = 1. This implies that

|S2|+ m(S′(C3)− S2) = 3 + 1 = 4. (5)

Hence from (3), (4) and (5), HI(S′(Cp)) = 4.
Case 2: p ≥ 4. From Theorem 2.3, we have h(S′(Cp)) = p− 2 and H = {u1, u2, ..., up−2}
is a h-set of S′(Cp). Then m(S′(Cp)−H) = 6. Therefore

HI(S′(Cp)) ≤ h(S′(Cp)) + m(S′(Cp)−H) = p− 2 + 6 = p + 4 (6)

If S1 is any hub set of S′(Cp) other than H with m(S′(Cp) − S1) = 4 or 5, then |S1| >
h(S′(Cp)) = p− 2. This implies that

|S1|+ m(S′(Cp)− S1) > h(S′(Cp)) + 4 = p− 2 + 4 = p + 2. (7)

If S2 is any hub of S′(Cp) set other than H with m(S′(Cp)−S2) = 2 or 3, then |S2| ≥ p−1.
This implies that

|S2|+ m(S′(Cp)− S2) ≥ p− 1 + 2 = p + 1. (8)

Let S3 = {u1, u2, ..., up}, a hub set of S′(Cp) then m(S′(Cp)− S3) = 1. This implies that

|S3|+ m(S′(Cp)− S3) = p + 1. (9)

Hence from (6), (7), (8) and (9), HI(S′(Cp)) = p + 1. �

Theorem 2.5. For all p ≥ 4, h(S′(K1,p−1)) = 2.

Proof. Let {u, u1, ..., up−1} be the vertices of star K1,p−1 and {v, v1, ..., vp−1} be the new
vertices corresponding to {u, u1, ..., up−1} which are added to obtain S′(K1,p−1).
Consider S = {u, v} , a h-set of S′(K1,p−1). We claim that S is a minimum hub set of
S′(K1,p−1). Since N(u) = {u1, u2, ..., up−1, v1, v2, ..., vp−1} and N(v) = {u1, u2, ..., up−1},
and removal of u from set S leads to nonexistence of S-path between any two vertices of
v1, v2, ..., vp−1, it follows that S is a minimum hub set. Hence h(S′(K1,p−1)) = 2. �
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Theorem 2.6. For all p ≥ 4, HI(S′(K1,p−1)) = 3.

Proof. Let {u, u1, ..., up−1} be the vertices of star K1,p−1 and {v, v1, ..., vp−1} be the new
vertices corresponding to {u, u1, ..., up−1} which are added to obtain S′(K1,p−1). From
Theorem 2.5, we have h(K1,p−1)) = 2 and H = {u, v} is a h-set of S′(K1,p−1). Then
m(S′(K1,p−1)−H) = 1. Therefore,

HI(S′(K1,p−1)) ≤ h(S′(K1,p−1)) + 1. (10)

To show that the number |H| + m(S′(K1,p−1) −H) is minimum, it is assumed that S is
any hub set other than H and m(S′(K1,p−1) − S) ≥ 1, then |S| + m(S′(K1,p−1) − S) >
h(S′(K1,p−1)) + 1. Hence for any hub set S,

|S|+ m(S′(K1,p−1)− S) > h(S′(K1,p−1)) + 1. (11)

From (10) and (11), we have HI(S′(K1,p−1)) = 3. �

Definition 2.1. [3] The double star graph Sn,m is the graph constructed from K1,n−1
and K1,m−1 by joining their centers v0 and u0. V (Sn,m) = V (K1,n−1) ∪ V (K1,m−1) and
E(Sn,m) = {v0u0, v0vi, u0uj : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1}.

Lemma 2.1. For all n,m ≥ 2, h(S′(Sn,m)) = 2.

Proof. Let {u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} be the vertex set of double star Sn,m and
{u′, u′1, u′2, ..., u′n−1, v′, v′1, v′2, ..., v′m−1} be the new vertices corresponding to
{u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} which are added to obtain S′(Sn,m). Consider S =
{u, v} is a hub set of S′(Sn,m) and |S| = 2. Let us claim that S is a minimum hub set of
S′(Sn,m). Since N(u) = {v, v′, u1, u2, ..., un−1, u′1, u′2, ..., u′n−1} and
N(v) = {u, u′, v1, v2, ..., vm−1, v′1, v′2, ..., v′m−1} and removal of u or v from S, leads to
non existence of S-path between any ui with vi. Thus S is a minimum hub set. Hence
HI(S′(Sn,m)) = 2. �

Theorem 2.7. For all n,m ≥ 2, HI(S′(Sn,m)) = 5.

Proof. Let {u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} be the vertex set of double star Sn,m and
{u′, u′1, u′2, ..., u′n−1, v′, v′1, v′2, ..., v′m−1} be the new vertices corresponding to
{u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} which are added to obtain S′(Sn,m). Consider S =
{u, v}, a hub set of S′(Sn,m).
Case 1: n = m = 2. From Lemma 2.1, we have h(S′(S2,2)) = 2 and S = {u, v} is a h-set
of S′(S2,2). Then m(S′(S2,2)− S) = 3. Therefore

HI(S′(S2,2)) ≤ h(S′(S2,2)) + m(S′(S2,2)− S) = 5. (12)

Consider S1 is any hub set of S′(S2,2) other than S with m(S′(S2,2) − S1) = 2, then
|S1| ≥ 4. This implies that

|S1|+ m(S′(S2,2)− S1) ≥ 2 + 4 = 6. (13)

Let S2 = {u, v, u′, v′} be a hub set of S′(S2,2), then m(S′(S2,2) − S2) = 1. This implies
that

|S2|+ m(S′(S2,2)− S2) = 4 + 1 = 5. (14)

Hence from (12), (13) and (14), HI(S′(S2,2)) = 5.
Case 2: n ≥ 2,m > 2 or n > 2,m ≥ 2
From Lemma 2.1, h(S′(Sn,m)) = 2, and S = {u, v} is a h-set of S′(Sn,m). Then m(S′(Sn,m)−
S) = max {n + 1,m + 1}. Therefore

HI(S′(Sn,m)) ≤ h(S′(Sn,m)) + m(S′(Sn,m)− S) = 2 + max {n + 1,m + 1}. (15)
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Consider S1 = {u, v, u′, v′}, a hub set of S′(Sn,m), then m(S′(Sn,m)−S2) = 1. This implies
that

|S1|+ m(S′(Sn,m)− S1) = 5. (16)

We claim that S1 is a minimum hub set. Since u is adjacent to {v, v′, u1, ..., un, u′1, ..., u′n},
and removal of u from S1 leads to nonexistence of S1-path between ui and u′i, it follows
that S1 is a minimum hub set. Hence from (15) and (16), HI(S′(Sn,m)) = 5. �

Lemma 2.2. For any wheel W1,p−1, h(S′(W1,p−1)) = 2.

Proof. Let {u, u1, u2, ..., up−1} be the vertex set of wheel graph W1,p−1 and {u′, u′1, u′2, ..., u′p−1}
be the new vertices corresponding to {u, u1, u2, ..., up−1, } which are added to obtain
S′(W1,p−1). Consider S = {u, u1}, a hub set of S′(W1,p−1). u and u1 are adjacent to
u2, ..., up−1 and u′1, u

′
2, ..., u

′
p−1, so for any x, y ∈ V (S′(W1,p−1) − S, there exists S-path

between them. Also S is minimum hub set because there do not exist S-path between the
vertex u′ and the vertices u′1, u

′
2, ..., u

′
p−1 if the vertex u1 is removed. Thus S is minimum

hub set of S′(W1,p−1), hence h(S′(W1,p−1)) = 2. �

Theorem 2.8. HI(S′(W1,p−1)) = p + 1.

Proof. Since S′(W1,p−1) contains a wheel graph W1,p−1 as its subgraph. If we choose the
set S as all vertices of W1,p−1 of S′(W1,p−1), then there exist p components each contains
only one vertex. So HI(S′(W1,p−1)) = p + 1. �

3. Duplication of Graph Elements

Lemma 3.1. Let (Pp)v be a graph obtained by duplication of each edge by vertex of path
Pp, then h((Pp)v) = p− 2, p ≥ 3.

Proof. Let (Pp)v be a graph obtained by duplication of each edge vivi+1 of path Pp (1 ≤
i ≤ p−1) by vertex ui. The nature of the graph G, shows that from the vertices vi at least
one vertex must belong to any hub set S as ui is adjacent to only vi and vi+1. Therefore
if S is any hub set, then |S| ≥ p− 2.
We claim that S = {v2, ..., vp−1} is a minimum hub set of (Pp)v. Since each vi is adjacent
to vi−1, vi+1, ui, and ui−1, (2 ≤ i ≤ p−2), if vi is removed from set S, then ui and ui−1 will
not have S-path between them. Thus S is a minimum hub set. Hence h((Pp)v) = p−2. �

Theorem 3.1. Let (Pp)v be a graph obtained by duplication of each edge by vertex of path
Pp, then HI((Pp)v) = p, p ≥ 3.

Proof. Let (Pp)v be a graph obtained by duplication of each edge vivi+1 of path Pp (1 ≤
i ≤ p−1) by vertex ui. Then from Lemma 3.1, h((Pp)v) = p−2 and H = {v2, v3, ..., vp−1}
is a h-set of (Pp)v, then m((Pp)v −H) = 2 which implies,

HI((Pp)v) ≤ h((Pp)v) + m((Pp)v −H) = p− 2 + 2 = p. (17)

We will show that the number |H|+ m((Pp)v −H) is the minimum. If S1 is a hub set of
(Pp)v other than H and m((Pp)v − S1) = 1, then |S1| ≥ p which implies that

|S1|+ m((Pp)v − S1) ≥ p + 1. (18)

Consider m((Pp)v − S1) ≥ 2, then |S1|+ m((Pp)v − S1) ≥ p. Hence for any hub set S1,

|S1|+ m((Pp)v − S1) ≥ p. (19)

From (17), (18) and (19), we have HI((Pp)v) = p, p ≥ 3. �

Lemma 3.2. Let (Cp)v be a graph obtained by duplication of each edge by vertex of cycle
Cp. Then h((Cp)v) = p− 1, p ≥ 3.
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Proof. Let (Cp)v be a graph obtained by duplication of each edge vivi+1 of cycle Cp

(1 ≤ i ≤ p− 1) by vertex ui and duplication edge vpv1 by vertex up. There are two types
of vertices in (Cp)v,

(1) d(ui) = 2 for 1 ≤ i ≤ p,
(2) d(vi) = 4, for 1 ≤ i ≤ p.

The nature of the graph (Cp)v, shows that out of the vertices vi and vi+1 at least one
vertex must belong to any hub set S as ui is adjacent to only vi, vi+1 and up is adjacent to
v1, vp. Therefore if S is any hub set then |S| ≥ p− 1. We claim that S = {v1, v2, ..., vp−1}
is the minimum hub set of (Cp)v. Since each vi, 2 ≤ i ≤ p − 1 is adjacent to vi−1, vi+1,
ui−1, and ui, if vi is removed from set S then there is no S-path between ui−1 and ui.
Thus S is the minimum hub set. Hence h((Cp)v) = p− 1. �

Theorem 3.2. Let (Cp)v be a graph obtained by duplication of each edge by vertex of cycle
Cp. Then HI((Cp)v) = p + 1, p ≥ 3.

Proof. Let (Cp)v be a graph obtained by duplication of each edge vivi+1 of cycle Cp (1 ≤
i ≤ p−1) by vertex ui and edge vpv1 by vertex up. Then from Lemma 3.2, h((Cp)v) = p−1,
and H = {v1, v2, ..., vp−1} is a h-set of (Cp)v. Then m((Cp)v −H) = 3 which implies,

HI((Cp)v) ≤ h((Cp)v) + m((Cp)v −H) = p− 1 + 3 = p + 2. (20)

Consider S = {v1, v2, ..., vp}, a hub set of (Cp)v, then m((Cp)v − S) = 1 which implies
that,

HI((Cp)v) ≤ |S|+ m((Cp)v − S) = p + 1. (21)

If S1 is any hub set other than S and m((Cp)v − S1) = 2, then |S1| ≥ p, so

|S1|+ m((Cp)v − S1) ≥ p + 2. (22)

If S2 is any hub set other than S and S1, and m((Cp)v − S2) = 1, then |S2| > p, thus

|S2|+ m((Cp)v − S2) > p + 1. (23)

From (20), (21), (22) and (23), we have HI((Cp)v) = p + 1, p ≥ 3. �

Lemma 3.3. Let Ge be a graph obtained by duplication of each vertex by an edge of path
Pp or cycle Cp. Then h(Ge) = p.

Proof. Let Ge be a graph obtained by duplication of vertices {v1, v2, ..., vp} of path Pp

or cycle Cp by an edge u2i−1u2i, (1 ≤ i ≤ p). Now set S = {v1, v2, ..., vp} is a minimum
hub set, since each vi is adjacent to u2i and u2i−1, and removal of vi from set S leads to
nonexistence of S-path between u2i and u2i−1. Hence h(Ge) = p. �

Theorem 3.3. Let Ge be a graph obtained by duplication of each vertex by an edge of
path Pp or cycle Cp. Then HI(Ge) = p + 2.

Proof. Let Ge be a graph obtained by duplication of vertices vi of path Pp or cycle Cp

by an edge u2i−1u2i(1 ≤ i ≤ p). Then from Lemma 3.3, we have h(Ge) = p, and H =
{v1, v2, ..., vp} is a h-set of graph Ge. Then m(Ge −H) = 2. Therefore

HI(Ge) ≤ h(Ge) + m(Ge −H) = p + 2. (24)

For showing that the number |H|+ m(Ge −H) is minimum. The minimality of both |H|
and m(Ge −H) is taken into consideration. The minimality of |H| is guaranteed as H is
h-set. Now if S is any hub set other than H and m(Ge − S) = 1, then |S| ≥ 2p > p + 2,
consequently |S|+m(Ge−S) > p+2. Consider m(Ge−S) ≥ 2, then |S|+m(Ge−S) ≥ p+2.
Hence for any hub set S,

|S|+ m(Ge − S) ≥ p + 2. (25)
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From (24) and (25), we have HI(Ge) = p + 2. �

Lemma 3.4. Let (K1,p−1)e be a graph obtained by duplication of each vertex of star K1,p−1
by an edge. Then h((K1,p−1)e) = p.

Proof. Let (K1,p−1)e be a graph obtained by duplication of vertices {v0, v1, ..., vp−1} of
star K1,p−1 by an edge u2iu2i+1, (0 ≤ i ≤ p − 1). We claim that set S = {v0, v1, ..., vp−1}
is minimum hub set. Since each vi is adjacent to u2i and u2i+1, also v0 is adjacent to
u0, u1, v1, ..., vp−1, if v0 is removed from set S then there do not exist is S-path between
u0, u1 with vi and if some vi(1 ≤ i ≤ p− 1) is removed from set S then there do not exist
S-path between u0, u1 with u2i and u2i+1(1 ≤ i ≤ p− 1). So S is minimum hub set, hence
h((K1,p−1)e) = p. �

Theorem 3.4. Let (K1,p−1)e be a graph obtained by duplication of each vertex of star
K1,p−1 by an edge. Then HI((K1,p−1)e) = p + 2.

Proof. Let (K1,p−1)e be a graph obtained by duplication of vertices {v0, v1, ..., vp−1} of star
K1,p−1 by an edge u2iu2i+1, (0 ≤ i ≤ p− 1). Then from Lemma 3.4, h((K1,p−1)e) = p, and
H = {v0, v1, ..., vp−1} is a h-set of graph (K1,p−1)e. Then m((K1,p−1)e−H) = 2. Therefore

HI((K1,p−1)e) ≤ h((K1,p−1)e) + m((K1,p−1)e −H) = p + 2. (26)

We will show that the number |H| + m((K1,p−1)e − H) is minimum. The minimality of
|H| is guaranteed as H is h-set. It remains to show that if S is any hub set other than
H and m((K1,p−1)e − S) = 1, then |S| ≥ 2p, hence |S| + m((K1,p−1)e − S) ≥ 2p + 1. If
m((K1,p−1)e − S) ≥ 2, then |S|+ m((K1,p−1)e − S) ≥ p + 2. Hence for any hub set S,

|S|+ m((K1,p−1)e − S) ≥ p + 2. (27)

From (26) and (27), HI((K1,p−1)e) = p + 2. �

Lemma 3.5. Let (K1,p−1)v be a graph obtained by duplication of each edge of star K1,p−1
by vertex. Then h((K1,p−1)v) = 1.

Proof. Let (K1,p−1)v be a graph obtained by duplication of each edge vvi of star K1,p−1
by vertex ui, (1 ≤ i ≤ p− 1). There are two types of vertices in (K1,p−1)v,

(1) d(ui) = 2 for 1 ≤ i ≤ p− 1,
(2) d(v) = 2p− 2,
(3) d(vi) = 2 for 1 ≤ i ≤ p− 1.

The nature of the graph (K1,p)v, shows that {v} is a hub set of G. So S = {v}, is the
minimum hub set. Therefore h((K1,p−1)v) = 1. �

Theorem 3.5. Let (K1,p−1)v be a graph obtained by duplication of each edge of star K1,p−1
by vertex. Then HI((K1,p−1)v) = 3.

Proof. Let (K1,p−1)v be a graph obtained by duplication of each edge vvi of star K1,p−1
by vertex ui, (1 ≤ i ≤ p− 1). Then from Lemma 3.5, h((K1,p−1)v) = 1, and H = {v} is a
h-set of (K1,p−1)v. Therefore m((K1,p−1)v −H) = 2, which implies,

HI((K1,p−1)v) ≤ h((K1,p−1)v) + m((K1,p−1)v −H) = 1 + 2 = 3. (28)

The minimality of |H| is guaranteed as H is h-set. It remains to show that if S is
any hub set other than H, then |S| + m((K1,p−1)v − S) ≥ 3. If m((K1,p−1)v − S) = 1
then |S| ≥ p ≥ 3, which implies that |S| + m((K1,p−1)v − S) > h((K1,p−1)v) + 2. If
m((K1,p−1)v − S) ≥ 2, then

|S|+ m((K1,p−1)v − S) ≥ h(G) + 2. (29)

From (28) and (29), HI((K1,p−1)v) = 3. �
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