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Abstract − In the present paper, we introduce the concept of a class of generalized
contraction mappings called A-contraction on S-metric space and investigate the
existence of fixed points over such spaces. Analogue result has been formulated
in integral setting over such an S-metric space. Moreover, the result is applied to
homotopy theory.
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1. Introduction and Preliminaries

In sixties, attempts were initiated through the study of 2-metric spaces by S.Gähler [1,2] to generalize
the metric space. However, Ha et al. [3] have pointed out that the results over 2-metrics spaces are
independent, rather than generalizations, of the corresponding results in metric spaces. Another such
generalization is D-metric space introduced by Dhage [4] in 1992 where he proved some results on fixed
points of contraction mappings over complete and bounded D-metric spaces. But in 2006, Mustafa
and Sims [5] pointed out that Dhage’s notion of a D-metric space is fundamentally flawed and most of
the results claimed by Dhage and others are invalid. They introduced a more appropriate and robust
version of a generalized metric space namely G-metric space in 2006. Sedghi et al. [6,7] improved and
modified D-metric space and thus introduced D∗-metric space. They proved some basic properties
of D∗-metric spaces and some fixed point theorems on it. In continuation with untiring attempts to
find a most appropriate one, Sedghi et al. [8, 9] recently introduced and characterized the concept of
S-metric space which modifies D-metric and G-metric spaces.

Definition 1.1. (S-metric space) Let X be a non-empty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,
(S1) S(x, y, z) = 0, if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X,S) is called an S-metric space.

According to Sedghi et al. [8], some of the examples of such S-metric spaces are:
(1) Let X = Rn and ‖.‖ be a norm on X, then S(x, y, z) = ‖y + z − 2x‖+ ‖y − z‖ is an S-metric on
X.
(2) Let X = Rn and ‖.‖ be a norm on X, then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is an S-metric on X.

1debashismathdey@gmail.com ; 2kushal.roy93@gmail.com(Corresponding Author); 3mantusaha.bu@gmail.com
1Koshigram Union Institution, Koshigram-713150, Purba Bardhaman, West Bengal, India
2,3 Department of Mathematics, The University of Burdwan, Purba Bardhaman-713104, West Bengal, India



Journal of New Theory 31 (2020) 95-103 / On Generalized Gontraction Principles over S−metric Spaces... 96

(3) Let X be a nonempty set, d be a metric on X, then S(x, y, z) = d(x, z) + d(y, z) is an S-metric on
X.
(4) [intuitive geometric example for S-metric] Let X = R2, d be a metric on X, therefore, S(x, y, z) =
d(x, y) + d(x, z) + d(y, z) is an S-metric on X. If we connect the points x, y, z by a line, we have a
triangle and if we choose a point a within the triangle, then the inequality S(x, y, z) ≤ S(x, x, a) +
S(y, y, a) + S(z, z, a) holds.
(5) Let R be the real line. Then S(x, y, z) = |x− z| + |y − z| for all x, y, z ∈ R is an S-metric on R.
This S-metric on R is called the usual S-metric on R.

Definition 1.2. [8] Let (X,S) be an S-metric space and A ⊂ X.
(1) A subset A of X is called S-bounded if there exists r > 0 such that S(x, x, y) < r for all x, y ∈ A.
(2) A sequence {xn} in X converges to x ∈ X if and only if S(xn, xn, x) → 0 as n → ∞. That is
for every ε > 0 there exists n0 ∈ N such that S(xn, xn, x) < ε whenever n ≥ n0. We denote this by
limn→∞ xn = x or limn→∞ S(xn, xn, x) = 0.
(3) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm)→ 0 as n,m→∞. That is for
every ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε whenever n,m ≥ n0.
(4) The S-metric space (X,S) is called complete if every Cauchy sequence is convergent to an element
of X.

Lemma 1.3. [8] For a S-metric space X, we have S(x, x, y) = S(y, y, x) ∀x, y ∈ X.

Lemma 1.4. [9] Let (X,S) be an S-metric space. If {xn} and {yn} are sequences in X such that
xn → x and yn → y as n→∞, then S(xn, xn, yn)→ S(x, x, y) as n→∞.

Definition 1.5. [9] Let T : X → Y be a map from an S-metric space X to an S-metric space Y .
Then T is continuous at x ∈ X if and only if Txn → Tx in Y whenever xn → x in X.

A mapping T is continuous at X if and only if it is continuous at all x ∈ X.

Theorem 1.6. [8] Let (X,S) be a complete S-metric space and let F : X → X be a contraction i.e

S (F (x), F (x), F (y)) ≤ LS (x, x, y) for all x, y ∈ X

where 0 ≤ L < 1. Then F has a unique fixed point u ∈ X. Furthermore, for any x ∈ X we have
limn→∞ F

n(x) = u with

S (Fn(x), Fn(x), u) ≤ 2Ln

1− L
S (x, x, F (x)) .

Theorem 1.7. [8] Let (X,S) be a compact S-metric space and let F : X → X satisfying

S (F (x), F (x), F (y)) < S (x, x, y) for all x, y ∈ X and x 6= y.

Then F has a unique fixed point in X.

2.A-contraction and fixed point

Akram et al. [10, 11] have defined A-contractions as follows: Let a nonempty set A consisting of all
functions α : R3

+ → R+ satisfying
(A1) : α is continuous on the set R3

+ of all triplets of nonnegative reals (with respect to the Euclidean
metric on R3).
(A2) : a ≤ kb for some k ∈ [0, 1) whenever a ≤ α (a, b, b) or a ≤ α (b, a, b) or a ≤ α (b, b, a), for all
a, b ∈ R+.

Definition 2.1. [10] A self map T on a metric space X is said to be A-contraction if it satisfies the
condition

d (Tx, Ty) ≤ α (d (x, y) , d (x, Tx) , d (y, Ty))

for all x, y ∈ X and for some α in A.
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Following the definition of A-contraction mappping on a metric space (see [10]- [11]) and over a
2-metric space (see [12]), we now define A-contractions on an S-metric space and prove fixed point
theorem on it.

Definition 2.2. A self map T on an S-metric space X is said to be A-contraction if it satisfies the
condition

S (Tx, Tx, Ty) ≤ α (S (x, x, y) , S (x, x, Tx) , S (y, y, Ty))

for all x, y ∈ X and for some α in A.

Now we state our main theorem.

Theorem 2.3. Let (X,S) be a complete S-metric space and let T be A-contraction mapping on X.
Then, T has a unique fixed point in X.

Proof. Let x0 be an arbitrary element of X and consider the sequence {xn} of iterates xn+1 = Txn,
n ∈ N . Now

S (x1, x1, x2) = S (Tx0, Tx0, Tx1) ≤ α (S (x0, x0, x1) , S (x0, x0, x1) , S (x1, x1, x2))

implies

S (x1, x1, x2) ≤ kS (x0, x0, x1) (1)

for some k ∈ [0, 1) because α ∈ A. By easy iteration one can check that

S (xn, xn, xn+1) ≤ knS (x0, x0, x1) . (2)

For all m > n and by using Lemma 1.3 and (S2) we get

S (xn, xn, xm) ≤ 2
m−2∑
i=n

S (xi, xi, xi+1) + S (xm−1, xm−1, xm)

≤ 2

m−2∑
i=n

kiS (x0, x0, x1) + km−1S (x0, x0, x1)

≤ 2[kn + kn+1 + ...km−1]S (x0, x0, x1)

≤ 2kn

1− k
S (x0, x0, x1) .

Taking limit as m,n → ∞ we get S (xn, xn, xm) → 0. This proves that the sequence {xn} is Cauchy
and by completeness of X, xn → z for some z ∈ X as n→∞. Now,

S(z, z, Tz) ≤ 2S(z, z, xn+1) + S(Tz, Tz, xn+1)

= 2S(xn+1, xn+1, z) + S(Txn, Txn, T z)

≤ 2S(xn+1, xn+1, z) + α(S(xn, xn, z), S(xn, xn, Txn), S(z, z, Tz))

= 2S(xn+1, xn+1, z) + α(S(xn, xn, z), S(xn, xn, xn+1), S(z, z, Tz)).

Therefore by taking limit as n → ∞ we get S(z, z, Tz) ≤ α(0, 0, S(z, z, Tz)), which implies that
S(z, z, Tz) = 0. So z is a fixed point of T . For uniqueness, let u, v ∈ X be two distinct fixed points of
T . So by definition of A-contraction,

S(u, u, v) = S(Tu, Tu, Tv) ≤ α (S (u, u, v) , S (u, u, Tu) , S (v, v, Tv))

= α (S (u, u, v) , S (u, u, u) , S (v, v, v))

= α (S (u, u, v) , 0, 0) .

Then by axiom A2 of α we have u = v and so the fixed point is unique.

Now we give an example in support of the Theorem 2.3.
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Example 2.4. First we take a function α : R3
+ → R+ as α(x, y, z) = β.(y + z), where 0 < β < 1

2 ,
which satisfies the property (A1) obviously. Now

a ≤ α(a, b, b) = β.(b+ b) = 2β.b implies a ≤ k.b where k = 2β < 1,

a ≤ α(b, a, b) = β.(a+ b) implies a ≤ k.b where k =
β

1− β
< 1 and also

a ≤ α(b, b, a) = β.(b+ a) = implies a ≤ k.b where k =
β

1− β
< 1.

So α satisfies the property (A2). Now Let X = [0, 1] and S(x, y, z) = |x− z|+ |y − z|. Clearly (X,S)
is a complete S metric space. Let T : X → X be given by

T (x) =

{
x
4 , for x ∈ [0, 12)
x
5 , for x ∈ (12 , 1].

One can check that T is an A-contraction on X = [0, 1] and satisfies all the conditions of the Theorem
2.3. Also T has a unique fixed point at x = 0.

Now we show that the above Theorem 2.3 holds for A-contraction mapping, in absence of which,
the map T fails to produce any fixed point in the underlying space though other conditions remain
invariant.

Example 2.5. Let X = [0, 1] ⊂ R and S(x, y, z) = |x− z| + |y − z|. Then, (X,S) is a complete
S metric space. Take a function α as defined in the previous Example 2.4. Then, α satisfies the
properties (A1) and (A2). If we assume T : X → X as

T (x) =

{
1, for x ∈ [0, 1)
1
3 , for x = 1.

Then T is a self mapping on a complete S-metric space [0, 1]. Next let x = 1
2 and y = 1, then it is easy

to check that β > 1
2 , which leads to the conclusion, that T is not an A-contraction mapping. Also, T

has no fixed point in X though other conditions of the Theorem 2.3 are being satisfied.

Theorem 2.6. Let (X,S) be a complete S-metric space and let T1 and T2 satisfy

S (T1x, T1x, T2y) ≤ α (S (x, x, y) , S (x, x, T1x) , S (y, y, T2y))

for all x, y ∈ X and for some α in A. Then T1 and T2 have a unique common fixed point in X.

Proof. Let us construct the following sequence in X.

xn =

{
T1xn−1, whenever n ∈ N is odd and

T2xn−1, whenever n ∈ N is even

Then

S(x1, x1, x2) = S(T1x0, T1x0, T2x1)

≤ α(S(x0, x0, x1), S(x0, x0, T1x0), S(x1, x1, T2x1))

= α(S(x0, x0, x1), S(x0, x0, x1), S(x1, x1, x2)) (3)

and therefore from the property of α we have S(x1, x1, x2) ≤ kS(x0, x0, x1). Also, we see that

S(x2, x2, x3) = S(x3, x3, x2) = S(T1x2, T1x2, T2x1)

≤ α(S(x2, x2, x1), S(x2, x2, T1x2), S(x1, x1, T2x1))

= α(S(x1, x1, x2), S(x2, x2, x3), S(x1, x1, x2))

(4)
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and we get from the property of α that S(x2, x2, x3) ≤ kS(x1, x1, x2) ≤ k2S(x0, x0, x1). Proceeding
in a similar fashion, we see that S(xn, xn, xn+1) ≤ kS(xn−1, xn−1, xn) ≤ knS(x0, x0, x1) for all n ∈ N.
Then it is a routine calculation to check that {xn} is Cauchy and since X is complete, there exists
some z ∈ X such that xn → z as n→∞. Now,

S(z, z, T1z) ≤ 2S(z, z, x2n) + S(T1z, T1z, x2n)

= 2S(z, z, x2n) + S(T1z, T1z, T2x2n−1)

≤ 2S(z, z, x2n) + α(S(x2n−1, x2n−1, z), S(z, z, T1z),

S(x2n−1, x2n−1, x2n)). (5)

Since α is continuous, taking n tending to infinity we get S(z, z, T1z) ≤ α(0, S(z, z, T1z), 0) implying
that S(z, z, T1z) = 0 i.e. T1z = z. In a similar way we can show that T2z = z and therefore z is a
common fixed point of T1 and T2. Uniqueness of fixed point is obvious.

3. Result in integral setting

In 2002, Branciari [13] first analyzed the existence of fixed point of a contractive mapping of integral
type defined over a complete meric space (X, d).

Theorem 3.1. [13] Let (X, d) be a complete metric space, c ∈ (0, 1) and let f : X → X be a mapping
such that for each x, y ∈ X, ∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt (6)

where ϕ : [0,+∞) → [0,+∞) is a Lesbesgue-integrable mapping which is summable (i.e. with finite
integral) on each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ ε
0 ϕ(t)dt > 0,

then f has a unique fixed point a ∈ X such that for each x ∈ X, lim
n→∞

fnx = a.

Rhoades [15] extended the result of Branciari by replacing the condition (6) by the following∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,fx),d(y,fy), [d(x,fy)+d(y,fx)]
2

}

0
ϕ(t)dt. (7)

Since then numerous generalizations have been made in this direction (see [15], [14] for details).

Motivated by these results we apply and prove the analogue of A-contraction mapping over a complete
S-metric space.

An important definition is needed to state our theorem in this section.

Definition 1.2. (Sub additivity)
u : [0,+∞)→ [0,+∞) is sub additive on each [a, b] ⊂ [0,+∞) if∫ a+b

0
u(t)dt ≤

∫ a

0
u(t)dt+

∫ b

0
u(t)dt. (8)

Now we state our result as following.

Theorem 3.2. Let T be a self-mapping of a complete S-metric space (X,S) satisfying the following
condition:∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ α

(∫ S(x,x,y)

0
ϕ(t)dt,

∫ S(x,x,Tx)

0
ϕ(t)dt,

∫ S(y,y,Ty)

0
ϕ(t)dt

)
(9)

for each x, y ∈ X with some α ∈ A, where ϕ : [0,+∞) → [0,+∞) is a Lesbesgue-integrable mapping
which is summable (i.e. with finite integral), sub additive on each [a, b] ⊂ [0,+∞), nonnegative, and
such that

for each ε > 0,

∫ ε

0
ϕ(t)dt > 0. (10)

Then T has a unique fixed point z ∈ X and for each x ∈ X, lim
n
Tnx = z.
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Proof. Let x0 be an arbitrary element of X and, for brevity, consider xn+1 = Txn. then for each
integer n ≥ 1, from (9) we get,∫ S(xn,xn,xn+1)

0
ϕ(t)dt

=

∫ S(Txn−1,Txn−1,Txn)

0
ϕ(t)dt

≤ α

(∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn−1,xn−1,Txn−1)

0
ϕ(t)dt,

∫ S(xn,xn,Txn)

0
ϕ(t)dt

)

≤ α

(∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

)
.

Then by the axiom A2 of function α,∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ k

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt (11)

for some k ∈ [0, 1) as α ∈ A.
In similar fashion, one can obtain∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ k

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

≤ k2
∫ S(xn−2,xn−2,xn−1)

0
ϕ(t)dt

≤ ...

≤ kn
∫ S(x0,x0,x1)

0
ϕ(t)dt. (12)

Now for m > n,

S (xn, xn, xm) ≤ 2
m−2∑
i=n

S (xi, xi, xi+1) + S (xm−1, xm−1, xm)

≤ 2
m−1∑
i=n

S (xi, xi, xi+1) .

Now applying subadditivity of ϕ(t)∫ S(xn,xn,xm)

0
ϕ(t)dt ≤

∫ 2S(xn,xn,xn+1)

0
ϕ(t)dt+

∫ 2S(xn+1,xn+1,xn+2)

0
ϕ(t)dt+ ...

+

∫ 2S(xm−2,xm−2,xm−1)

0
ϕ(t)dt+

∫ 2S(xm−1,xm−1,xm)

0
ϕ(t)dt

≤ [kn + kn+1 + ...+ km−2 + km−1]

∫ 2S(x0,x0,x1)

0
ϕ(t)dt

= kn[1 + k + ...+ km−n−2 + km−n−1]

∫ 2S(x0,x0,x1)

0
ϕ(t)dt

≤ kn

1− k

∫ 2S(x0,x0,x1)

0
ϕ(t)dt.

Now taking limit as m,n→∞, we get lim
m,n→∞

∫ S(xn,xn,xm)

0
ϕ(t)dt = 0 which, from (10) implies that

lim
m,n

S(xn, xn, xm) = 0.
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Therefore, {xn} is Cauchy, hence convergent. Call the limit z.
From (9) we get∫ S(Tz,Tz,xn+1)

0
ϕ(t)dt =

∫ S(Tz,Tz,Txn)

0
ϕ(t)dt

≤ α

(∫ S(z,z,xn)

0
ϕ(t)dt,

∫ S(z,z,Tz)

0
ϕ(t)dt,

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

)
.

Taking limit as n→∞, we get∫ S(Tz,Tz,z)

0
ϕ(t)dt ≤ α

(
0,

∫ S(z,z,Tz)

0
ϕ(t)dt, 0

)
.

So by the axiom A2 of function α,∫ S(Tz,Tz,z)

0
ϕ(t)dt = k.0 = 0

which, from (10), implies that S(Tz, Tz, z) = 0 or, Tz = z.
Next suppose that w(6= z) be another fixed point of T . Then from (9) we have∫ S(z,z,w)

0
ϕ(t)dt =

∫ S(Tz,Tz,Tw)

0
ϕ(t)dt

≤ α

(∫ S(z,z,w)

0
ϕ(t)dt,

∫ S(z,z,Tz)

0
ϕ(t)dt,

∫ S(w,w,Tw)

0
ϕ(t)dt

)

= α

(∫ S(z,z,w)

0
ϕ(t)dt,

∫ S(z,z,z)

0
ϕ(t)dt,

∫ S(w,w,w)

0
ϕ(t)dt

)

= α

(∫ S(z,z,w)

0
ϕ(t)dt, 0, 0

)
.

So by the axiom A2 of function α, ∫ S(z,z,w)

0
ϕ(t)dt = 0

which, from (10), implies that S(z, z, w) = 0 or, z = w and so the fixed point is unique.

Remark 3.3. On setting ϕ(t) = 1 over R+, the contractive condition of integral type transforms into
a general contractive condition not involving integrals.

4. An application to homotopy

In this section, we obtain a homotopy result as an application of Theorem 2.3. For this purpose first
we give the definition of homotopy between two functions.

Definition 4.1. [16] Let X,Y be two topological spaces, and let G,S : X → Y be two continuous
mappings. Then, a homotopy from G to S is a continuous function H : X × [0, 1] → Y such that
H(x, 0) = Gx and H(x, 1) = Sx, for all x ∈ X. Also, G and S are called homotopic mappings.

Theorem 4.2. Let X be a complete S−metric space and U be an open and V be a closed subset of
X with U ⊂ V . Let the operator F : V × [0, 1]→ X satisfies the following conditions:
1) x 6= F (x, t) for every x ∈ V \U and for any t ∈ [0, 1],
2) There exists some α ∈ A such that

S(F (x, t), F (x, t), F (y, t)) ≤ α(S(x, x, y), S(x, x, F (x, t)), S(y, y, F (y, t))) (13)
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for all t ∈ [0, 1] and x, y ∈ V,
3) There exists a continuous function f : [0, 1]→ R such that

S(F (x, t), F (x, t), F (x, s))) ≤ |f(t)− f(s)| (14)

∀ t, s ∈ [0, 1] and for every x ∈ V,
4) For any r > 0 we have α(a, b, 0) ≤ δr < r whenever a ≤ r or b ≤ r, where 0 < δ < 1.
Then F (., 0) has a fixed point if and only if F (., 1) has a fixed point.

Proof. Let us define G = {t ∈ [0, 1] : F (x, t) = x for some x ∈ U}.
First let us assume that F (., 0) has a fixed point. Then F (x, 0) = x for some x ∈ U since (1) holds.
Then 0 ∈ G and thus G is non-empty. We will show that G is a clopen subset of [0, 1], then from
connectedness of [0, 1] we can easily say that G = [0, 1].
First we prove thatG is open. let t0 ∈ G then there exists x0 ∈ U such that F (x0, t0) = x0 [as (1) holds].
Therefore there exists r > 0 such that B(x0, r) ⊂ U , where B(x0, r) = {x ∈ X : S(x, x, x0) < r}.
Now let, x ∈ B(x0, r) = {x ∈ X : S(x, x, x0) ≤ r} and we choose

ε =
1

2

[
r − sup

x∈B(x0,r)

α (S(x, x, x0), S(x, x, F (x, t0)), 0)

]
.

Therefore ε > 0 by condition (4). Since f is continuous on [0, 1], there exists η(ε) > 0 such that
|f(t)− f(t0)| < ε whenever t ∈ (t0 − η(ε), t0 + η(ε)) ⊂ [0, 1]. Now,

S(F (x, t), F (x, t), x0) = S(F (x, t), F (x, t), F (x0, t0))

≤ 2S(F (x, t), F (x, t), F (x, t0)) + S(F (x0, t0), F (x0, t0),

F (x, t0))

= 2S(F (x, t), F (x, t), F (x, t0)) + S(F (x, t0), F (x, t0),

F (x0, t0))

≤ 2|f(t)− f(t0)|+ α(S(x, x, x0), S(x, x, F (x, t0)),

S(x0, x0, F (x0, t0)))

= 2|f(t)− f(t0)|+ α(S(x, x, x0), S(x, x, F (x, t0)), 0).

(15)

Therefore, whenever t ∈ (t0 − η(ε), t0 + η(ε)) ⊂ [0, 1], we get S(F (x, t), F (x, t), x0) ≤ r implying that
F (x, t) ∈ B(x0, r). Therefore F (., t) : B(x0, r)→ B(x0, r) for every fixed t ∈ (t0−η(ε), t0 +η(ε)). Now
since F (., t) satisfies all the conditions of Theorem 2.3 we have, F (., t) has a fixed point in B(x0, r) ⊂ V,
but it must be in U as condition (1) holds. Therefore t ∈ G for every t ∈ (t0 − η(ε), t0 + η(ε)). Hence
(t0 − η(ε), t0 + η(ε)) ⊂ G. So G is open in [0, 1].
Now we show that G is closed also. Let {tn} ⊂ G such that tn → t∗ ∈ [0, 1] as n → ∞. Then there
exists xn ∈ U such that xn = F (xn, tn) for all n ∈ N. Moreover we have,

S(xn, xn, xm) = S(F (xn, tn), F (xn, tn), F (xm, tm))

≤ 2S(F (xn, tn), F (xn, tn), F (xn, tm)) + S(F (xn, tm), F (xn, tm),

F (xm, tm))

≤ 2|f(tn)− f(tm)|+ α(S(xn, xn, xm), S(xn, xn, F (xn, tm)),

S(xm, xm, F (xm, tm))

= 2|f(tn)− f(tm)|+ α(S(xn, xn, xm), S(xn, xn, F (xn, tm)), 0)

≤ 2|f(tn)− f(tm)|+ δS(xn, xn, xm) (16)

which implies S(xn, xn, xm) ≤ 2
1−δ |f(tn) − f(tm)| → 0 as n,m → ∞. Therefore {xn} is Cauchy in X

and since X is complete thus it converges to some x∗ ∈ V . Now we show that F (x∗, t∗) = x∗. Here
we see that,

S(xn, xn, F (x∗, t∗)) = S(F (xn, tn), F (xn, tn), F (x∗, t∗))

≤ 2S(F (xn, tn), F (xn, tn), F (xn, t
∗))

+S(F (xn, t
∗), F (xn, t

∗), F (x∗, t∗))

≤ 2|f(tn)− f(t∗)|+ α(S(xn, xn, x
∗), S(xn, xn, F (xn, t

∗)),

S(x∗, x∗, F (x∗, t∗))).
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Now S(xn, xn, F (xn, t
∗)) ≤ |f(tn)− f(t∗)| → 0 as n→∞. Thus using continuity of α we get,

S(x∗, x∗, F (x∗, t∗)) ≤ α(0, 0, S(x∗, x∗, F (x∗, t∗))) (17)

and therefore by the property of α we have, S(x∗, x∗, F (x∗, t∗)) ≤ k.0 = 0 implying that S(x∗, x∗, F (x∗, t∗))
= 0 that is F (x∗, t∗) = x∗. Therefore by condition (1) we get x∗ ∈ U and so t∗ ∈ G. Hence G is closed
also and so G = [0, 1] that is F (., 1) has also a fixed point. The converse part can be shown in a
similar way.
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