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ON CURVES OF CONSTANT BREADTH IN G1
3

Y. ÜNLÜTÜRK1, M. DEDE2, Ü. Z. SAVCI3,C. EKICI4, §

Abstract. In this work, differential equations characterizing curves of constant breadth
have been given in pseudo-Galilean space G1

3. The special cases related to these differen-
tial equations have been studied in G1

3.
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1. Introduction

The works concerning shapes of constant breadth are based on the paper ”De curvis
triangularibus” by Euler in 1870 [6]. In [11], a method was given to obtain some curves of
constant breadth to use their applications in the kinematics of machinery by Reuleaux. In
[2, 3, 6], some properties of the plane curves of constant breadth were given. The curves of
constant breadth on the sphere were given by Blaschke in [3]. Fujivara had put forward a
problem based on determining whether there exist “space curves of constant breadth” or
not, and as a solution of the problem, the ”breadth” concept for space curves was defined
and these curves were shown on a surface of constant breadth in [7].

Some geometric properties of the curves of constant breadth were given in the plane in
[8]. Then these properties were extended to the Euclidean 3-space E3 in [9]. Also, these
kind of curves were studied in four dimensional Euclidean space E4 in [10]. Also the curves
of constant breadth were studied in Euclidean n−space in [1]. Furthermore, the results of
the curves of constant breadth were also obtained in Galilean space in [12].

In this paper, we give the differential equations characterizing curves of constant breadth
in pseudo-Galilean space G1

3.

2. Preliminaries

Let G1
3 be the pseudo-Galilean 3-space, that is, G1

3 is a Cayley–Klein space equipped
with the projective metric of signature (0, 0,+,−). The absolute figure of the pseudo-
Galilean geometry consists of an ordered triple {ω, f, I}, where ω is the real (absolute)
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plane, f the real line (absolute line) in ω and I the fixed hyperbolic involution of points
of f . In [4], the hyperbolic involution is given by

(0 : 0 : x2 : x3)→ (0 : 0 : x3 : x2) (2.1)

at homogeneous coordinates.
There are two types of plane in the pseudo-Galilean space. Pseudo-Euclidean planes are

in the following form x = k, k ∈ R. Other planes are isotropic. A vector u = (u1, u2, u3)
is said to be non-isotropic if u1 6= 0. All unit non-isotropic vectors are of the form
u = (1, u2, u3). For isotropic vectors, u1 vanishes [4].

Let a = (x, y, z) and b = (x1, y1, z1) be vectors in the pseudo-Galilean space. The scalar
product is defined by

< a, b >= x1x. (2.2)

The norm of a is defined by ‖a‖ = |x|, and a is called a unit vector if ‖a‖ = 1.The scalar
product of two isotropic vectors p = (0, y, z) and q = (0, y1, z1) is defined by

< p, q >1= yy1 − zz1. (2.3)

The norm of p is defined by ‖p‖1 =
√
|y2 − z2|. An isotropic vector p = (0, y, z) is said to

be spacelike, timelike or lightlike if y2 − z2 > 0, y2 − z2 < 0 or y = ±z, respectively [4].
The cross product in the pseudo-Galilean space can be defined analogously to the

Minkowski case. The cross product of u = (u1, u2, u3) and v = (v1, v2, v3) is defined
as follows:

u ∧ v =

∣∣∣∣∣∣
0 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = (0, u3v1 − u1v3, u2v1 − u1v2). (2.4)

Given an admissible curve r(u) = (u, y(u), z(u)), the associated invariant moving trihe-
dron is given by

T = (1, y′(u), z′(u)),

N =
1

κ
(0, y′′(u), z′′(u)),

B =
1

κ
(0, εz′′(u), εy′′(u))

(2.5)

where κ =
√
|y′′(u)2 − z′′(u)2| is the curvature and τ =

1

κ2
det[r′(u), r′′(u), r′′′(u)] is the

torsion [5].
A curve is said to be timelike or spacelike if the principal normal vector N is spacelike or

timelike vector, respectively. The principal normal vector or simply the normal is spacelike
if ε = +1 and time-like if ε = −1.

For derivatives of the tangent (vector) t, the normal n and the binormal b, respectively,
the following Serret-Frenet formulas hold

T ′ = κN, N ′ = τB, B′ = τN. (2.6)
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From (6), the following important relation

r(x) = κ(x)N(x) + κ(x)τ(x)B(x)

is obtained as in [5].

3. Curves of constant breadth in G1
3

Let ϕ = ϕ(s) and ϕ∗ = ϕ∗(s) be simple closed curves of constant breadth in pseudo-
Galilean space G1

3. These curves will be denoted by C. The normal plane at every point
P on the curve meets the curve in the class Γ as in [7] having parallel tangents T and T ∗

in opposite directions at the opposite points ϕ and ϕ∗ of the curve. A simple closed curve
of constant breadth having parallel tangents in opposite directions at opposite points can
be represented with respect to Frenet frame by the equation

ϕ∗ = ϕ+m1T +m2N +m3B, (3.1)

where mi(s), 1 ≤ i ≤ 3 arbitrary functions of s and ϕ and ϕ∗ are opposite points. The
vector d = ϕ∗ − ϕ is called “the distance vector” of C. Differentiating both sides of (3.1)
and considering Frenet equations, we have

dϕ∗

ds
= T ∗

ds∗

ds
= (1 +

dm1

ds
)T + (m1κ+

dm2

ds
+m3τ)N

+ (
dm3

ds
+m2τ)B.

(3.2)

Thus, T ∗ = −T . Rewriting (3.2) we obtain following system of equations,

dm1

ds
+ 1 +

ds∗

ds
= 0,

dm2

ds
+m1κ+m3τ = 0,

dm3

ds
+m2τ = 0.

(3.3)

If we call θ as the angle between the tangent of the curve C at point ϕ with a given

fixed direction and s as arc length parameter of ϕ(s), consider
dθ

ds
= κ, we have (3.3) as

following;
dm1

dθ
= −f(θ),

dm2

dθ
= −m1 −m3ρτ,

dm3

dθ
= −m2ρτ,

(3.4)

where f(θ) = ρ + ρ∗; ρ =
1

κ
and ρ∗ =

1

κ∗
denote the radius of curvature at ϕ and ϕ∗,

respectively. If m1, m3 and their derivates are eliminated in equations (3.4), we obtain
the following equation with respect to m2:

d3m2

dθ3
+

d

dθ

[
ln(

τ

κ
)
] d2m2

dθ2
+

[
(
τ

κ
)2 +

d2

dθ2

(
ln(

τ

κ
)
)] dm2

dθ

+2(
τ

κ
)
d

dθ
(
τ

κ
)m2 +

df

dθ
− d

dθ

[
ln(

τ

κ
)
]
f −

∫
fdθ

d2

dθ2

[(
ln(

τ

κ
)
)]

= 0.

(3.5)



Y. ÜNLÜTÜRK, M. DEDE, Ü. Z. SAVCI, C. EKICI: ON CURVES OF CONSTANT BREADTH IN G1
3 67

The equation (3.5) is the characterization of the curve ϕ∗. If the distance between opposite
points of C and C∗ is constant, then we can write that

‖ϕ∗ − ϕ‖2 =

{
m2

2 −m2
3 , m1 = 0

m2
1 , m1 6= 0

}
(3.6)

According to the conditions in (3.6), we shall study the following cases:
Case 1. If m1 = 0, then we write that

m2
2 −m2

3 = k2 = const., (3.7)

hence, by differentiating (3.7) we have

m2
dm2

dθ
−m3

dm3

dθ
= 0, (3.8)

considering system (3.4) in (3.8), we obtain

m1m2 = 0, (3.9)

therefore, we have
m2 = 0 or m2 6= 0. (3.10)

Also, as a result of case 1, we find
f = 0

from (3.4), so the equation (3.5) turns to

d3m2

dθ3
+

d

dθ

[
ln(

τ

κ
)
] d2m2

dθ2
+

[
(
τ

κ
)2 +

d2

dθ2

(
ln(

τ

κ
)
)] dm2

dθ

+ 2(
τ

κ
)
d

dθ
(
τ

κ
)m2 = 0.

(3.11)

Based on the equation (3.9), we shall study the subcases:
Case 1.1. If m2 = 0, then

m3 = 0

from the equations (3.4). Therefore the curves ϕ∗and ϕ coincide.

Case 1.2: If m2 6= 0 and
τ

κ
= const., then we have

m2 = m3 = e
−
τ

κ
θ

from the equations (3.4). Thus again the curves ϕ∗and ϕ coincide.
Case 2. If m1 6= 0, then from the equation (3.6), we have

m2
1 = k2 (3.12)

where k ∈ R. Hence, differentiating (3.12) we obtain

m1
dm1

dθ
= 0. (3.13)

Then m1 = k ∈ R, from the equation (3.5), we obtain the following differential equation
of third order

d3m2

dθ3
+

d

dθ

[
ln(

τ

κ
)
] d2m2

dθ2
+

[
(
τ

κ
)2 +

d2

dθ2

(
ln(

τ

κ
)
)] dm2

dθ

+2(
τ

κ
)
d

dθ
(
τ

κ
)m2 −

d

dθ

[
ln(

τ

κ
)
]
f −

∫
fdθ

d2

dθ2

[(
ln(

τ

κ
)
)]

= 0.

(3.14)



68 TWMS J. APP. ENG. MATH. V.6, N.1, 2016

4. Conclusion

In this work, differential equations characterizing curves of constant breadth have been
given in pseudo-Galilean space G1

3. The special cases related to these differential equations
have been studied in G1

3. It is an open problem to get the results of curves of constant
breadth in higher dimensions of both Galilean and pseudo-Galilean spaces.
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[9] Köse,Ö., (1986), On space curves of constant breadth. Doğa Math., 10:11-14.

[10] Mağden,A. and Köse,Ö., (1997), On the curves of constant breadth in E4 space. Turk. J. Math., 21,
pp. 227-284.

[11] Reuleaux,F., (1963), The Kinematics of Machinery, trans. A. Kennedy, Dover, New York (reprint of
1876 translation of 1875 German original).
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